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Abstract—“Food is the most important thing for the people”, 

Food is intricately linked to both the national economy and the 

livelihood of the people, serving as a vital material for our daily 

existence. Wheat, standing as one of the three core grain crops, 

holds paramount importance in safeguarding national food 

security. However, the wheat planting process remains constantly 

exposed to a diverse array of environmental factors, ranging from 

the intensity of light to fluctuations in temperature, soil fertility, 

fertilizer application methods, and water availability. 

Occasionally, these variables trigger diseases and insect 

infestations that can seriously affect wheat yield and quality if not 

promptly and effectively addressed. Therefore, it is imperative to 

manage these challenges in a timely and effective manner, 

ensuring the safety and integrity of wheat production, which in 

turn guarantees the stability of our national food supply. 

Traditional methods of manual detection of pests and diseases 

mainly rely on naked eye observation and manual statistics. Such 

solutions are highly subjective, have low timeliness, and difficult 

to unify precision. With the development of computer technology 

and deep learning, more and more research and applications have 

been carried out to address the shortcomings of traditional manual 

detection methods. In this study, deep learning is combined with 

the application of disease and insect pest recognition. Studying 

wheat powdery mildew, scab, leaf rust, and midge, convolutional 

and capsule networks are investigated for pest recognition, 

establishing an image recognition system for wheat diseases and 

pests. 

Keywords—Deep Learning; Identification of diseases and insect 

pests; Image classification; System development 

I. INTRODUCTION 

Wheat, a major food crop, faces challenges from diseases 
and insect pests triggered by environmental factors [1, 2]. 
Prompt and accurate identification is crucial to prevent 
production losses and potential crop failure. Rust, a common 
menace to wheat crops, can wreak havoc on yields. In epidemic 
years, it can reduce production by a substantial 20% to 30%. 
And in extreme cases, the damage can be even more devastating, 
exceeding 50% and threatening the very existence of wheat 
production [3, 4]. The figures from the Shandong Plant 
Protection Research Institute are particularly startling. From 
2000 to 2018, the losses attributed to diseases and insect pests in 
China's prime wheat-growing regions amounted to a staggering 
17.67 million tons. That's a loss equivalent to the food supply of 
nearly 289 million people. 

The prevention and prompt diagnosis of wheat diseases and 
insect pests are imperative for minimizing their detrimental 
effects on production, yet the unpredictable nature of the 

agricultural environment poses significant obstacles in the 
prevention of such threats. Therefore, timely diagnosis and 
treatment become paramount. Traditionally, disease and pest 
detection has relied on manual methods, involving naked-eye 
judgments and manual statistics [5, 6]. The automatic feature 
extraction function of deep learning enables the automatic 
classification and recognition of wheat pest images by learning 
the inherent patterns and characteristics of sample data. This 
overcomes the limitations of manual recognition in terms of 
timeliness, subjectivity, and potential damage, offering a novel 
scientific approach to wheat pest recognition. 

A multi-channel network model, CNN-Caps Nets, is 
established based on convolutional and capsule networks, 
consisting of multiple conv, pooling, primary capsule, and 
SoftMax layers. The convolution kernel transmitted by the 
convolution layer is received by the primary capsule layer, and 
more image features are extracted for image classification. By 
comparison, the CNN-Caps Nets model has the best 
classification effect under the structure of four channels and the 
number of capsules in the capsule layer is 16. The recognition 
accuracy of wheat powdery mildew, scab, leaf rust and midge 
images are 90%, 71%, 91% and 58.3%, respectively. A 
comprehensive image-sharing database for wheat pests and 
diseases was established, and a corresponding image recognition 
system was designed and developed, leveraging the CNN-
CapsNet model for effective image classification. 

II. MATERIALS AND METHODS 

A. Data Acquisition and Data Set Construction 

The quantity and quality of wheat disease and insect pest 
image samples will directly affect the efficiency and accuracy of 
subsequent image segmentation and image classification. Due to 
environmental and regional factors, it is difficult to collect 
images of wheat diseases and insect pests. This study obtains 
images with high quality, obvious features, and easy recognition 
from public data sets (LWDCD, Wheat Leaf Dataset, CGIAR, 
IDADP, IP102), agricultural databases (National Agricultural 
Science Data Center, Agricultural Big Data, etc.) and Baidu 
Gallery the image data is used as the research object, as shown 
in Table I. 

Data sets are essential for training pest classification models. 
Obtain image data from Wheat-ORL shared database, classify 
them and collect them in different folders. Using Python, read 
all pic files in a folder, rename and categorize diseases/insects, 
then record names and labels in a CSV file as a dataset. The 
specific data format is shown in Table II. 
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TABLE I. DATA SOURCES 

Wheat Pests and 

Diseases 

Image Categories 

Number of pictures 
Total 

Dataset 
Agricultural 

Databases 

Baidu 

Gallery 

Pest-free 245 0 55 300 

Wheat powdery mildew 470 10 20 500 

Wheat scab 157 3 30 190 

Wheat leaf rust 445 5 100 550 

Wheat midge 30 10 20 60 

TABLE II. DATASET DATA FORMATS 

Image Name Category Memo 

Heal _ 0. jpg health Pest-free 

Bfb _ 0. jpg bfb Wheat powdery mildew 

Cmb _ 0. jpg cmb Wheat scab 

Yxb _ 0. jpg yxb Wheat leaf rust 

Xjc _ 0. jpg xjc Wheat midge 

The 1600-image dataset is divided into training and test sets 
at a 8:2 ratio for machine learning requirements. The distribution 
details are shown in Table III. 

TABLE III. DATA SET DISTRIBUTION 

Categories 
Date set 

Training Set Testing Set 

Pest-free 240 60 

Wheat powdery mildew 400 100 

Wheat scab 152 38 

Wheat leaf rust 440 110 

Wheat midge 48 12 

B. Graphic Pre-processing 

In the process of image generation, it will be affected by 
noise, insufficient or excessive illumination, inappropriate 
shooting angle, etc., resulting in a decrease in image quality. In 
order to improve the accuracy of image feature extraction 
segmentation and classification smoothing filtering and 
sharpening of the image can better distinguish the target disease 
spots pest areas and background in the image. 

Smoothing filtering is a low-frequency spatial domain 
filtering tech to eliminate noise [7]. For different noise 
characteristics, selecting the corresponding filtering technology 
can achieve very obvious results. In OpenCV processing library, 
two kinds of filters are commonly used: Gaussian filter and 
bilateral filter. 

The Gaussian filter is a linear filtering technique that finds 
extensive application in image smoothing and blurring [8]. 
When it comes to digital image processing, Gaussian noise is a 
commonly encountered type of noise. Therefore, Gaussian 
filtering is extensively utilized in images that are affected by this 
type of noise. Its basic principle is to achieve image smoothing 
by weighted averaging the values of each pixel in the image 

itself and other pixels in the neighborhood. The two-dimensional 
Gaussian function is the basis for building a Gaussian filter, and 
the function formula is shown in Eq. (1): 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−
(𝑥2+𝑦2)

2𝜎2     (1) 

Bilateral filtering is a nonlinear filter that can simultaneously 
reduce noise, smooth images and save edges. The filter consists 
of two functions: two geometrical spaces determine filter 
coefficients and pixel values determine filter system. In the two-
sided filter, the output pixel values are weighted depending on 
the values of the neighboring pixels, wherein the weighting 
formula is as follows: 

As shown in Eq. (2): 

g(i, j) =
∑ fk,l (k,l)w(i,j,k,l)

∑ wk,l (i,j,k,l)
    (2) 

where, the weight coefficients w (i, j, k, D) depend on the 
product of the domain kernel D (i, j, k, D) and the range kernel 
r(i, j, k, l), the formulas are shown in Eq. (3), Eq. (4) and Eq. (5). 

d(i, j, k, l) = exp (−
(i−k)2+(j−l)2

2σd
2 )  (3) 

r(i, j, k, l) = exp (−
∥f(i,j)−f(k,l)∥2

2σr
2 ) (4) 

w(i, j, k, l) = exp (−
(i−k)2+(j−l)2

2σd
2 −

∥f(i,j)−f(k,l)∥2

2σr
2 )    (5) 

Two-sided filtering preserves image edges better by 
considering both spatial and value domain differences [9]. 
Therefore, this study will use bilateral filtering method to 
smooth the image to remove noise and solve the distortion 
problem in image segmentation. 

The purpose of sharpening filter is to highlight the edge of 
the image and make the image clearer. By adding gradient or 
finite difference to the high-frequency components in the image, 
the edges and contours in the image are more obvious. Laplacian 
operator based on second-order differential is often used to 
achieve image sharpening. 

The Laplace operator calculates pixel grayscale differences 
within an image neighborhood, an image enhancement 
technique derived from second-order differential [10]. It 
computes gradients in four or eight directions of the center pixel, 
adds these gradients to assess the relationship between the center 
pixel's grayscale and others, and adjusts pixel grayscale based 
on the gradient operation's result [11]. Its calculation formula is 
shown in Eq. (6). 

∇2f=
∂2f

∂x2
+

∂2f

∂y2
   (6) 

C. Image Segmentation 

OpenCV [12] is an open-source computer vision library, 
which contains rich visual processing algorithms. In terms of 
image segmentation, there are three classic algorithms: 
watershed segmentation algorithm, pyramid segmentation 
algorithm and mean shift segmentation algorithm [13]. Their 
implementation process is simple, as long as the corresponding 
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algorithm function can be called to complete the image 
segmentation according to the edge and other features. 

Compared with the other two classical OpenCV algorithms, 
the watershed algorithm is easier to implement. However, if the 
input image has no obvious feature edge or is seriously affected 
by noise, the target area in the image will be difficult to 
represent, which makes the image over-segmentation 
phenomenon appear in the watershed algorithm based on 
gradient image. To compensate for this shortcoming, OpenCV 
provides an improved watershed algorithm that uses Markers to 
mark how different regional gradient-guided image 
segmentation is defined to effectively reduce oversegmentation 
[14]. 

OpenCV's GrabCut is a popular image segmentation 
algorithm. It utilizes image texture and boundary info with 
minimal user interaction for excellent segmentation. It's a graph-
based method where each pixel is a node, and pixel dissimilarity 
is expressed by weighted edges. Cuts' capacity corresponds to 
an energy function, with min/max flow algorithms used to cut 
the graph. The resulting min cut corresponds to the desired 
boundary [15]. 

III. DEEP LEARNING 

As a subfield of human intelligence, deep learning uses 
neural networks as the main model. Convolutional neural 
network and capsule network are two representative network 
models, which are often used in image processing and image 
classification. 

CNN is a deep feedforward network with local receptive 
fields, shared weights, and pooling [16]. It mainly consists of 
convolution, pooling, fully connected layers, and activation 
functions. Various combination ns of these layers create neural 
network models with distinct performances [17]. The network 
model structure is shown in Fig. 1. 

A. Convolution Layer 

The convolution layer, the heart of CNN, comprises several 
kernels with pairs of weights and biases [18]. It extracts features 
from input images, influenced by kernel size. Nodes in the layer 
receive input from the preceding network, and convolution 
analyzes each part deeply to yield a more abstract feature set 
[19]. 

The convolution kernel is a filter that applies to image parts 
based on its size, like 3×3 or 5 ×5 grids. Each channel in the 
convolution layer uses a distinct filter. It convolves RGB images 
into five feature maps, with different filter values per channel. 
Filter size and stride (pixels between convolutions) can vary, 
affecting the learned features. Images may be sampled by pixels 
based on layer hyperparameters and zero padding. Outputs from 
multiple channels can be fed into a merging layer. 

B. Pool Layer 

The pooling layer serves to filter and select the features 
extracted by the convolutional layer, effectively reducing the 
matrix size and subsequently diminishing the number of 
parameters in the fully connected layer. This is achieved by the 
pooling layer's ability to decrease pixel information in the input 
image [20]. Usually, the maximum value in each pool is used. 
The output result is the maximum value in each single block 
area. In general, the pooling layer will be connected after the 
convolution layer in CNN networks, because pooling can reduce 
the space size of volume feature data, reduce the number of 
parameters and calculation in the network, and suppress the 
occurrence of over-fitting to a certain extent. 

C. Fully Connected Layer 

Full connection integrates local features extracted before it 
into a complete graph via a weight matrix. The fully connected 
layer, with its multi-layered structure, acts as a “classifier” in 
CNN. After processing through convolution and pooling layers, 
extracted features contain high-level image information. 
Connecting the fully connected layer maps these features to the 
sample mark space, performs non-linear combinations, and 
classifies the image using the extracted features. The final 
classification recognition is obtained through the softmax layer. 

In neural networks, receptive field maps the pixel range on 
the feature map from each conv layer. Traditional neural nets 
connect each input image pixel to a neuron, leading to a large 
number of weights and training difficulties. The local receptive 
field in CNNs depends on the conv kernel size, establishing local 
connections to form extracted features, reducing weights. By 
setting conv step size, overlapping areas are avoided, preventing 
weight increase. 

 

Fig. 1. Structural diagram of the network model. 
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The convolution kernel's weight is learned and remains 
constant during convolution. This ensures that the same target in 
different image positions exhibits similar characteristics. Weight 
sharing reduces the number of weights in the model. For 
instance, a 3×3 kernel with nine parameters convolves with 
different image areas to detect the same features. Different 
kernels correspond to unique weight parameters for detecting 
distinct features. 

In the convolutional neural network model, the network 
model with different performance can be obtained by combining 
different number of convolutional layers and pooling layers into 
different network structures. 

The advantages of the Inception network model are mainly 
reflected in the control of parameter quantity and calculation 
amount, while ensuring a higher classification accuracy. The 
Inception model replaces the full connection layer with global 
average pooling, reducing overfitting in the classified network. 
Network performance is enhanced by widening the network. 
Different-sized convolution kernels enrich layer information in 
each module. The third edition introduces convolution 
factorization, decomposing large kernels into smaller ones, 
saving parameters and reducing model size. The latest version 
incorporates the residual idea of ResNet for deeper networks. 

The main contribution of the ResNet residual network model 
is the discovery of degenerative phenomena, and the invention 
of fast connections for degenerative phenomena, and the 
inclusion of congruent connections, so that gradient propagation 
can skip the convolution layer, even if the number of network 
layers reaches a thousand layers can still be trained [21]. The 
problem that the depth of neural network training is too large is 
eliminated greatly, and the problem that the learning ability of 
neurons decreases with the increase of the depth of the network 
model is solved. 

D. Dynamic Routing Algorithm 

The dynamic routing algorithm enables the capsule network 
to achieve superior recognition results. It involves capsules in 
lower layers predicting and learning instantiation parameters for 
upper layers via transformation matrices. Consistent predictions 
from multiple capsules activate upper-layer capsules, outputting 
feature vectors with expanded receptive fields. This algorithm 
comprises vector calculations and route selections, detailed in 
specific computational expressions. 

The capsule layer activation output vector Vj is calculated as 
Eq. (7), Eq. (8) and Eq. (9). 

𝑆𝑗 = ∑ 𝑐𝑖𝑗𝑖 𝑢𝑗|𝑖̂    (7) 

𝑢𝑗|𝑖̂ = 𝑊𝑖𝑗𝑢𝑖    (8) 

𝑣𝑗 =
∥𝑠𝑗∥

2

1+∥𝑠𝑗∥
2

𝑠𝑗

∥𝑠𝑗∥
   (9) 

Routing parameters, which are used to realize dynamic 
routing between capsule layers. The specific calculation is 
shown in Eq. (10) and Eq. (11). 

𝑏𝑖𝑗 ← 𝑢𝑗|𝑖̂ ⋅ 𝑣𝑗    (10) 

𝑐𝑖𝑗 =
exp𝑏𝑖𝑗

∑ exp𝑘 𝑏𝑖𝑘̂
    (11) 

The loss function can be used to evaluate the implementation 
effect and performance of the model. The classical capsule 
network loss function adopts the interval loss function, and the 
specific calculation is shown in Eq. (12). 

𝐿𝑘 = 𝑇𝑘𝑚𝑎𝑥(0,𝑚+−∥ 𝑣𝑘 ∥)
2 + 𝜆(1 − 𝑇𝑘)𝑚𝑎𝑥(0, ∥ 𝑣𝑘 ∥
−𝑚−)2   (12) 

IV. CNN-CAPSNETS CLASSIFICATION MODEL 

A. Model Structure 

By integrating the strengths of two prominent deep learning 
network models, we have formulated the CNN-CapsNets model 
specifically for wheat disease and insect pest classification. This 
model is a fusion of classical convolutional neural networks, 
ResNet, Inception, and Capsule Networks. The CNN-CapsNets 
model effectively retains feature information through the 
utilization of the capsule layer within the Capsule Network 
architecture. Due to the shallow layer of the capsule network, 
the ability to obtain features is limited. So, in the model CNN-
CapsNets we design multiple channel structures. In each channel 
we extract more image features through different numbers of 
convolution layers pooling layers and capsule combinations 
[22]. To mitigate under-fitting in capsule networks for large-
scale images, a pooling layer is employed after convolutional 
feature extraction to downsize the image, thereby reducing 
computational parameters. Finally combined with the idea of 
Inception model to discard the full connection layer and 
implement classification in the SoftMax layer. The model 
structure is shown in Fig. 2. 

 

Fig. 2. Structural diagram of the CNN-Caps Nets classification model. 
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Fig. 2 shows that the CNN-Caps Nets model is multi-
channel, dividing the Caps Net's result matrix into several parts. 
Parallel processing of different channels and lines enhances 
training efficiency. 

B. Optimization Strategy 

In the process of establishing the classification model of 
wheat diseases and insect pests, this paper takes the data set as 
the input sample information of the network model, and provides 
the following optimization strategy assumptions on training and 
optimizing the model. Although both convolutional neural 
network and capsule network have the ability to automatically 
extract features, the images of wheat diseases and insect pests 

taken in the production environment basically have complex 
backgrounds. If the images are segmented in advance, can the 
classification recognition degree of the classification model be 
improved? In this paper, the improved watershed algorithm and 
GrabCut algorithm are used to segment the image respectively, 
and the processed images are established respectively. The data 
set without image segmentation (dataset-no), the improved 
watershed image segmentation data set (dataset-w), and the 
GrabCut image segmentation data set (dataset-g). After that, the 
datasets were used for model training and quizzes, respectively. 
Finally, the performance and recognition of the classification 
model are taken as a reference to select the optimal image 
segmentation scheme. 

 

Fig. 3. Multimodal data processing and fusion process. 

Fig. 3 shows multimodal data processing and fusion process. 
The classification model of pests and diseases in this study is 
designed as a multi-channel structure, which can extract features 
in different channels to improve the classification accuracy. 
Although this structure has the characteristic of parallel 
processing, it has a good effect on improving the efficiency of 
the model. However, the hardware requirements of parallel 
processing are also improved, and it is also necessary to consider 
that when the number of channels increases infinitely, the 
learned image features will be repeated, which will lead to 
redundancy in the classification model structure and affect the 
accuracy and efficiency of the type. Therefore, under the current 
hardware equipment conditions, the two-channel, four-channel, 
and eight-channel structure models are designed respectively. 
To determine the optimal number of channels, various network 
models with diverse architectures are trained and validated using 
a uniform dataset. However, it is worth noting that as the number 
of capsules increases, the computational load of the network 
model also escalates accordingly. In order to ensure a higher 
recognition degree and optimize the recognition efficiency of the 
acquired model, under the optimal number of paths, a model 
with 4, 8, 10, and 16 capsules in each primary capsule layer is 
designed. Fig. 4 shows comparison diagram of the multimodal 
data fusion effect. 

C. Cross Validation 

Cross-validation is often used as a precision test method, and 
its main purpose is to verify the stability of the designed network 
model and whether there is an over-fitting phenomenon [23]. 
Cross-validation is also called loop estimation. In a given 

training sample, most of the data is taken out for modeling, and 
a small part of the data is used to verify the established model. 
In this way, the suitable optimal network model can be found. 
Given the limited number of samples in the dataset, this study 
adopts the leave-one-out cross-validation method, where the 
original training set is partitioned into a new training set and a 
validation set in a 9:1 ratio. 

 

Fig. 4. Comparison diagram of the multimodal data fusion effect. 
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Fig. 5. Curve of image recognition accuracy of wheat disease pests over 

time. 

Fig. 5 shows curve of image recognition accuracy of wheat 
disease pests over time. The training set trains the classification 
network, while the verification set checks for overfitting. 
Performance is assessed by comparing verification accuracy 
[24]. 

V. RESULT ANALYSIS 

A. Influence of Image Segmentation Selection on Model 

In this study, the accuracy of the test set is used as the 
judging standard, and the reserved test set is divided into three 
processing methods: no image segmentation, improved 
watershed image segmentation, and GrabCut image 
segmentation to complete the test set establishment, and the data 
sets of different image segmentation algorithms. The model is 
trained, and the results are shown in the Fig. 6. 

Fig. 6. results of datasets with different image segmentation 
algorithms. The figure indicates that the enhanced watershed 
and GrabCut segmentation dataset has minimal impact on 
enhancing the classification model's accuracy for training. 
Although GrabCut has a reduction in training time, when 
GrabCut image segmentation, the segmentation time is too long 
for large-size images [25]. So finally select the data set that does 
not segment the image in advance to train the model. 

B. Influence of Channel Number on Model 

The accuracy of the training set and verification set without 
image segmentation is used as the evaluation criterion. The 
training results of the network model with different channels of 
2, 4, and 8 are shown in the figure, and the verification results 
are shown in Fig. 7. Fig. 7 shows training results of the network 
models for the different channels. Fig. 7 shows that as the 
number of model channels increases, training accuracy nears 
97%, but training time also rises due to the added channels. 

Fig. 8 shows distribution of identification accuracy for 
different wheat disease pest categories. Finally, a classification 
model with four channels is selected according to the 
verification accuracy and training time. In comparison to the 
other two models, the classification model with four channels 
exhibits the highest verification accuracy, while maintaining a 
relatively short training time, thus ensuring optimal training 
efficiency [26]. 

C. Effect of Capsule Quantity on Model 

The training results of the network model with 4, 8, 10, 16 
capsules in each primary capsule layer under the 4-channel 
model are shown. When using the same data set to train the 
network models with different capsule number structure, the 
training accuracy has no obvious difference, and the final 
training accuracy is in the range of 97 +0.45%. 

Fig. 9 shows training results of the network model with 
different numbers of capsules in the main capsule layer. 
However, when comparing the verification accuracy, it can be 
seen that after 10 Epoch, the highest verification accuracy is the 
CNN-CapsNets model with 16 capsules in the primary glue 
layer [27, 28]. However, through continuous cycle verification, 
it is found that the accuracy of the four models rises gently and 
the accuracy begins to approach. Due to the limitation of device 
memory, when the number of capsules is increased again on the 
basis of 16, the time required to run the algorithm is too long. 
Therefore, based on the limitations of the current hardware 
equipment, considering the time and accuracy, this paper adopts 
a 4-channel classification model with 16 capsules. 

 
Fig. 6. Results of datasets with different image segmentation algorithms. 
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Fig. 7. Training results of the network models for the different channels. 

 
Fig. 8. Distribution of identification accuracy for different wheat disease pest categories. 

 

Fig. 9. Training results of the network model with different numbers of capsules in the main capsule layer. 
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Fig. 10. Effect of multimodal data enhancement on identification performance. 

 
Fig. 11. Comparison of multiple model training results. 

Fig. 10 shows the effect of multimodal data enhancement on 
identification performance. The CNN-CapsNets classification 
model was compared with classical models such as Inception 
model, ResNet model, CapsNet model, etc., and the results are 
shown in the Fig. 11. 

As illustrated in the figure, the model employed in this study 
achieves a significantly superior classification accuracy 
compared to the Inception, ResNet, and CapsNet models. 
However, training time is longer than Inception and ResNet but 
shorter than CapsNet. This is because the CNN-CapsNets model 
extracts more features through multiple channels, which 
increases the cost of capsule layer parameter calculation and 
leads to increased training time. Compared with the CapsNet 
model, the training practice of the CNN-CapsNets model uses 
the convolution layer to extract image features, thereby reducing 
the dynamic routing computational overhead of using capsules 
to extract features. 

The classification model is tested with a pre-dense test set, 
as shown in the figure. The number of training samples impacts 
recognition accuracy in deep learning models. More samples 
enhance the model's generalization and recognition accuracy 
[29]. Because the images in the training sample and the test 
sample are not pre-processed in this study, the image quality is 

different, which reduces the recognition rate to a certain extent. 
Among the four diseases, powdery mildew and leaf rust have 
higher recognition accuracy, not only because of the large 
number of samples, but also because these two diseases have 
prominent spot characteristics, for example, powdery mildew 
will appear on the surface of the plant with white powdery 
mildew. Mildew layer, the image features are obvious, and the 
network model is easier to extract features, so the classification 
effect is better [30]. 

VI. CONCLUSION 

In this paper, four common wheat diseases and insect pests, 
wheat powdery mildew, wheat leaf rust, wheat scab and wheat 
midge, are used as research objects, combined with deep 
learning technology to study the classification and recognition 
method of pest images, and use Python, Java, and WeChat applet 
technology to build A wheat pest image recognition system. 

To implement the classification of pests and disease images, 
a classification network model, termed CNN-CapsNets, is 
established by integrating convolutional neural networks and 
capsule networks. The model can extract more different features 
to generate feature maps through multi-channel and multi-level 
structural characteristics, and then save more image feature 
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information for classification through the high retention of 
capsule layer features, so the classification recognition rate is 
higher. Because the model can complete the internal calculation 
of the model in parallel in the form of multi-threads, the time 
required to process features is shortened, so it is faster than the 
classic capsule network in the same training environment. 

Completed the development of the image recognition system 
of wheat diseases and insect pests. The migration of the pest 
classification model is realized by Python programming, and the 
API is developed to realize the call of the small program client, 
and the development and implementation of the identification 
system is completed. Finally, the recognition speed of the 
system is kept within 15s on average. 
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