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Abstract—Anticipating student performance in higher 

education is crucial for informed decision-making and the 

reduction of dropout rates. This study focuses on the intricate 

analysis of diverse educational datasets using machine learning, 

particularly emphasizing dimensionality reduction. The aim is to 

empower educators with data-driven insights, enabling timely 

interventions for academic improvement. By categorizing 

individuals based on their inherent aptitudes, the study seeks to 

mitigate failure rates and enhance the overall educational 

experience. The integration of predictive modeling, particularly 

employing the robust Random Forest Classifier (RFC), allows the 

academic community to proactively address challenges and foster 

a supportive learning environment, thereby improving student 

outcomes. To bolster predictive capabilities, the study adopts the 

RFC model and enhances its efficacy through advanced 

optimization algorithms, specifically Electric Charged Particles 

Optimization (ECPO) and Artificial Rabbits Optimization (ARO). 

These sophisticated algorithms are strategically integrated to 

refine decision-making processes and enhance predictive 

precision. Furthermore, the analysis of the input variables has 

been conducted to assess their individual impact on student 

performance. This analysis can help institutions identify and 

address areas for improvement in their management practices. 

The study's commitment to leveraging state-of-the-art machine 

learning and bio-inspired algorithms underscores its dedication to 

achieving precise and resilient predictions of the performance of 

4424 students, ultimately contributing to the advancement of 

educational outcomes. The research outcomes highlight the 

superiority of the RFEC model, optimized through ECPO for 

RFC, in aligning with actual measured values, affirming its 

efficacy in predictive accuracy. 
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I. INTRODUCTION 

Success in higher education is crucial for employment, 
social equity, and economic development. Addressing dropout 
rates stands out as a significant challenge for higher education 
institutions aiming to enhance their success. The definition of 
dropout lacks universal acceptance, leading to variations in the 
reported proportion of students leaving, influenced by differing 
definitions, calculation methods, and data sources [1]. Research 
often analyzes dropouts by considering the timing of the event, 
distinguishing between early and late dropouts [2]. Comparing 
dropout rates across institutions becomes challenging due to 
discrepancies in reporting practices [3]. Consequently, the 

diverse definitions and reporting variations contribute to the 
complexity of understanding and addressing the dropout issue in 
higher education [4]. 

In the domain of higher education research, student dropout 
is precisely defined as a distinctive manifestation of attrition, 
delineating individuals who disengage from the higher 
education system without acquiring a (first) degree and fail to 
complete their academic pursuits after that. This narrow 
conceptualization has gained prominence in scholarly 
investigations, as evidenced by studies such as those conducted 
by Schröder-Gronostay and Daniel, Ziegele, and Heublein, 
Schmelzer, and Sommer [5–7]. Consequently, alterations in 
degree programs or fields of study, interruptions in academic 
pursuits, and changes in institutions are categorized as different 
forms of attrition. Various methods exist for gauging the 
frequency of student dropout, with the most effective being 
statistical tracking of course progression, wherein the 
investigation status of each student is documented every 
semester [8–10]. 

As students’ progress through multiple semesters in their 
academic programs, their evaluation occurs on a semester or 
term basis. The final academic status, whether at graduation or 
in a subsequent semester, is inherently influenced by preceding 
semesters. This pattern allows for the prediction of future 
semester performance based on historical academic data. 
Contemporary advancements in this predictive process leverage 
various Data Mining (DM) tools and techniques, particularly 
within the domain of Educational Data Mining (EDM) [11–13]. 
EDM focuses on the prediction of Student Academic 
Performance (SAP) [14] and often employs predictive models 
generated by DM tools. These models play a vital part in 
facilitating SAP prediction, enabling the monitoring of students' 
academic progress. This, in turn, assists in determining strategic 
interventions for both students and other education stakeholders 
[15–17]. 

II. LITERATURE REVIEW 

The exploration, modeling, and prediction of student 
performance and academic progression have garnered 
substantial research attention in recent decades, as evidenced by 
an influx of scholarly contributions [18–20]. While early works 
in this domain trace back to the '70s and '80s, the contemporary 
surge in data availability from educational institutions, coupled 
with the ascent of data science, has ushered in novel research 
avenues [21–25]. Also, recent research related to this study’s 
target, exemplified by Jayaprakash et al. delved 
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comprehensively into the intricate factors shaping students' 
academic accomplishments and their applicability in identifying 
students at risk. This study innovatively introduced an upgraded 
Random Forest classifier, striving for heightened accuracy in 
classification and prediction when juxtaposed with alternative 
algorithms like Naive Bayes, Bagging, Boosting, and the 
conventional Random Forest [26]. In alignment with this, Batool 
et al. employed the Random Forest classification model to 
anticipate students' final exam outcomes, leveraging publicly 
available datasets with diverse demographic features. The 
assessment incorporated meticulous methodologies such as 
hold-out and cross-validation [27]. Chen and Zhai's 
investigation took a multifaceted approach, employing three 
task-oriented educational datasets and implementing seven 
parameter-optimized machine learning methods for diverse 
performance prediction tasks [28]. Additionally, Asselmen et al. 
concentrated on the effectiveness of Ensemble Learning 
methods, proposing an innovative Predictive Feature Analytics 
(PFA) approach grounded in various models (Random Forest, 
XGBoost and AdaBoost,) to augment predictive accuracy in 
performance of students. The proposed models underwent 
rigorous evaluation across three distinct datasets [29]. 

Harnessing the capabilities of machine learning (ML) 
models to predict student dropout, enrollment, and graduation 
brings numerous advantages to both students and educational 
institutions. These models empower educators to accurately 
identify individuals in danger of dropping out, allowing them to 
create targeted support strategies that improve the likelihood of 
a successful post-graduation path. In this research, the recently 
developed Random Forest Classifier (RFC) method was applied 
to identify crucial factors influencing dropout, enrollment, and 
graduation outcomes. The RFC model underwent optimization 
using two distinct optimizers, Electric Charged Particles, and 
Artificial Rabbits, aimed at improving its overall performance. 
A subset of data was utilized from existing scientific articles 
during the training phase. After training, the model's 
effectiveness was assessed by testing it with separate data. 
Ultimately, the model that demonstrated optimal performance, 
surpassing the predefined benchmark ratio denoted as the actual 
measured value, was identified as the most adept in predictive 
capacities.  

The research utilizes the RFC for predictive modeling and 
integrates advanced optimization algorithms, Electric Charged 
Particles Optimization (ECPO) and Artificial Rabbits 
Optimization (ARO). ECPO and ARO were chosen for their 
superior ability to navigate complex search spaces and avoid 
local optima, ensuring more accurate predictions. Additionally, 
the analysis of input variables helps identify areas for 
improvement in management practices. By leveraging state-of-
the-art machine learning and bio-inspired algorithms, the study 
aims to achieve precise predictions for student performance, 
ultimately advancing educational outcomes. 

The paper is structured as follows. Literature review is given in 
Section II. The detailed explanation of the model is given, and 
the meta-heuristic techniques employed are covered in Section 
III. In addition, the description of the dataset and its processing 
are covered in depth in this section. The created models' 
performance assesses in Section IV. In Section V and VI, the 

conclusion and future works shows the summary of paper based 
on results and description. 

III. MATERIALS AND METHODOLOGY 

A. Random Forest Classifier (RFC) 

The RF is a supervised ML algorithm tailored for 
classification and prediction tasks, highlighting its prowess in 
classification. In this method, the term "forest" denotes a 
collection of numerous decision trees, and the model's 
robustness grows as more trees are added. Utilizing diverse data 
samples, the RFC method constructs individual decision trees. 
When faced with the challenge of predicting the class for new 
data points, each tree independently provides its prediction, 
thereby playing a role in the overall decision-making process. 
The culmination of this process involves identifying the most 
effective solution through a voting mechanism, with each 
decision tree contributing a vote for an input vector (x). The final 

prediction ( 𝐶𝑟𝑓
𝐵 ) is determined through a majority vote. 

Functioning as an ensemble method, this model leverages the 
power of multiple uncorrelated models (trees) working together 
to surpass the performance of a single model. By adopting this 
collaborative approach, errors are mitigated, and overall 
accuracy is improved, as a range of diverse decision trees 
collectively contribute to the ultimate prediction. 

In shaping decision trees, crucial considerations involve the 
selection of attributes and pruning techniques. Among these, the 
Gini Index method holds prominence as a commonly favored 
approach for attribute selection within RFC [30]. This method 
gauges the impurity of attributes concerning their respective 
classes. The assessment involves measuring impurity by 
randomly selecting a sample case from the training set and 
predicting its class as 𝐶𝑖 . This informed attribute selection is 
articulated through the following equation, where (𝐹(𝐶𝑖 , 𝑇)/
(|𝑇|) signifies the probability that a chosen case belongs to the 
class 𝐶𝑖 [31]. 

∑∑ (𝐹(𝑗≠𝑖 𝐶𝑖 , 𝑇)/(|𝑇|)(𝐹(𝐶𝑗, 𝑇)/(|𝑇|) (1) 

When establishing a prediction model with RFC, it is 
imperative to define two key parameters: the number of trees 
and each tree node's assigned input variables. RFC is composed 
of N decision trees (with N being user-defined), and these trees 
collaboratively contribute their votes to ascertain the class of 
new data points, relying on their predictions [32]. 

The framework associated with RFC is displayed in Fig. 1. 

 

Fig. 1. Flowchart of the RFC. 
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B. Electric Charged Particles Optimization (ECPO) 

Drawing inspiration from the interactions of electric-charged 
particles (ECPs), the ECPO functions as a population-based 
algorithm. It incorporates several internal parameters, each 
serving a specific purpose. The total number of ECPs is denoted 
as nECP, as well as nECPI represents the number of interacting 
ECPs. Additionally, naECP denotes the archive pool's size, and 
MaxITER indicates the maximum number of iterations. 

One crucial aspect is nECPI, determining the number of 
particles engaged in interactions using a unique strategy. During 
these interactions, when two particles come into contact, a 
distinctive dynamic unfolds. The worst-performing particle 
repels the best one, while simultaneously, the best-performing 
particle attracts the worst one. This interplay within the ECPO 
framework contributes to its optimization process. 

Algorithm 1, encapsulating the pseudo-code of the ECPO 
algorithm [33]: 

ALGORITHM 1. PSEUDO-CODE OF ECPO OPTIMIZER 

Input objective function, Problem Size (dimension of a problem), nECP, 

nECPI, Strategy, naECP, and MaxITER              

Output ECPbest  

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 () 

For Iter=1: MaxITER 

Selection () 

Interaction () 

BoundsCheck () 

Diversification () 

PopulationUpdate () 
end for                                                                

1) Initialization: Commencing with the era of nECP-

charged particles in the search space, the ECPO, like other 

population-based metaheuristics, sees the sorting of these 

charged particles from the finest to the worst. The charged 

particles in this ECPO version are generated randomly utilizing 

an ordinary dispersion method. Nevertheless, the 

implementation of any other strategy for creating the initial 

ECPs can be comfortably carried out by the user. 

2) Archive pool: Alongside the generated population, an 

archive pool, denoted as archiveECP and of a predetermined 

size naECP, is established and populated with the best ECPs. 

The role of this archive is to retain only the finest ECPs, as will 

be detailed later. The archive ECP is updated at the conclusion 

of each cycle. 

3) Selection: Selecting the appropriate ECPs is a critical 

step that significantly influences the algorithm's functionality 

and the results of subsequent phases. In the ECPO algorithm, a 

random set of charged particles, denoted as nECPI, is selected 

from the population. Subsequently, these particles are arranged 

in order from the worst to the best. The chosen particles 

undergo the interaction phase in accordance with the specified 

plan. 

4) Interaction: As previously noted, not all ECPs engage in 

communication with each other; only a selected subset, 

determined by nECPI, participates in this phase. In this stage, 

the chosen nECPI particles interact with each other in diverse 

ways, as specified in the plan. For instance, consider a scenario 

where nECPI = 3 (this applies to any other value of nECPI as 

well). These particles are arranged from the best to the worst 

and denoted as. The particles denoted as 𝐸𝐶𝑃1, 𝐸𝐶𝑃2, and 𝐸𝐶𝑃3 

are arranged from the best to the worst. The overall best particle 

is represented as 𝐸𝐶𝑃𝑏𝑒𝑠𝑡 . 

 Strategy 1 

In the initial strategy, communication occurs among the 
chosen ECP utilizing only the best overall ECP, denoted as 
𝐸𝐶𝑃𝑏𝑒𝑠𝑡 , and one other ECP at a time. In this specific scenario 
where three ECPs are involved in the interaction, each ECP 
generates two new particles labeled 𝐸𝐶𝑃𝑖 𝑛𝑒𝑤 1 and 𝐸𝐶𝑃𝑖 𝑛𝑒𝑤 2 
(where i represents the index of the chosen ECP). 

- For 𝐸𝐶𝑃1 : 

Initially, it is simultaneously influenced by 𝐸𝐶𝑃2  and 
𝐸𝐶𝑃𝑏𝑒𝑠𝑡  to transition to 𝐸𝐶𝑃1 𝑛𝑒𝑤 1 . Subsequently, 𝐸𝐶𝑃1  is 
influenced concurrently by 𝐸𝐶𝑃3  and 𝐸𝐶𝑃𝑏𝑒𝑠𝑡  to transition to 
𝐸𝐶𝑃1 𝑛𝑒𝑤 2 . The consequent force required to move 𝐸𝐶𝑃1 
to 𝐸𝐶𝑃1 𝑛𝑒𝑤 1 is given by: 

𝐹 = 𝐹𝑏1 + 𝐹21   (2) 

In this context,  𝐹𝑏1 denotes the force exerted by 𝐸𝐶𝑃𝑏𝑒𝑠𝑡 , 
and 𝐹21 represents the force exerted by 𝐸𝐶𝑃2 on 𝐸𝐶𝑃1.. 

Here is how these two forces are expressed: 

 𝐹𝑏1 = 𝛽 × ( 𝐸𝐶𝑃𝑏𝑒𝑠𝑡 − 𝐸𝐶𝑃1 )  (3) 

𝐹21 = β × (𝐸𝐶𝑃1 − 𝐸𝐶𝑃2 )  (4) 

The random number 𝛽  can be generated utilizing various 
distributions. 

The forces can be expressed to indicate that 𝐸𝐶𝑃𝑏𝑒𝑠𝑡  attracts 
𝐸𝐶𝑃1  (since  𝐸𝐶𝑃𝑏𝑒𝑠𝑡 is superior to 𝐸𝐶𝑃1 ), while  𝐸𝐶𝑃2  repels 
 𝐸𝐶𝑃1  (as 𝐸𝐶𝑃2 ) is inferior to  𝐸𝐶𝑃1 ). 

Therefore, the cumulative force driving  𝐸𝐶𝑃1  to transition 
to  𝐸𝐶𝑃1 𝑛𝑒𝑤 1  is determined by: 

 𝐸𝐶𝑃1 𝑛𝑒𝑤 1 =  𝐸𝐶𝑃1 + 𝐹 

=  𝐸𝐶𝑃1 + 𝐹𝑏1 + 𝐹21    

=  𝐸𝐶𝑃1 + β × ( 𝐸𝐶𝑃𝑏𝑒𝑠𝑡 − 𝐸𝐶𝑃1 ) + 𝛽 × (𝐸𝐶𝑃1 − 𝐸𝐶𝑃2 )(5) 

Similarly, the total force propelling 𝐸𝐶𝑃1  to transition to 
 𝐸𝐶𝑃1 𝑛𝑒𝑤 2  can be expressed as: 

 𝐸𝐶𝑃1 𝑛𝑒𝑤 2 =  𝐸𝐶𝑃1 + 𝐹 

= 𝐸𝐶𝑃1 + 𝐹𝑏1 + 𝐹31    

=  𝐸𝐶𝑃1 + β × ( 𝐸𝐶𝑃𝑏𝑒𝑠𝑡 − 𝐸𝐶𝑃1 ) + 𝛽 × (𝐸𝐶𝑃1 − 𝐸𝐶𝑃3 )(6) 

- For 𝐸𝐶𝑃2 : 

Initially, it is concurrently influenced by 𝐸𝐶𝑃1 and 𝐸𝐶𝑃𝑏𝑒𝑠𝑡  
to transition to  𝐸𝐶𝑃2 𝑛𝑒𝑤 1 . Following that, 𝐸𝐶𝑃2  is 
simultaneously influenced by 𝐸𝐶𝑃3  and 𝐸𝐶𝑃𝑏𝑒𝑠𝑡  to move 
to  𝐸𝐶𝑃2 𝑛𝑒𝑤 1 . The forces acting on 𝐸𝐶𝑃2  share the same 
expressions as Eq. (5) as well as Eq. (6). 

- For 𝐸𝐶𝑃3  : 
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The third particle experiences a dual influence, initially from 
 𝐸𝐶𝑃1  and 𝐸𝐶𝑃𝑏𝑒𝑠𝑡 , leading to its transition to  𝐸𝐶𝑃3 𝑛𝑒𝑤 1 . 
Subsequently, 𝐸𝐶𝑃3  is simultaneously affected by 𝐸𝐶𝑃2  and 
𝐸𝐶𝑃𝑏𝑒𝑠𝑡 , directing its movement to  𝐸𝐶𝑃3 𝑛𝑒𝑤 2 . 

 Strategy 2 

In the second strategy, 𝐸𝐶𝑃𝑏𝑒𝑠𝑡  is not connected with the 
remaining ECPs, and the interaction is carried out on the 
selected ECP using all the remaining interacting ECPs. 
Subsequently, in the outlined scenario where there are three 
interacting ECPs, one new ECP is generated by each ECP, 
referred to as 𝐸𝐶𝑃𝑖 𝑛𝑒𝑤  (where i denotes the index of the chosen 
ECP). 

- For 𝐸𝐶𝑃1 : 

 𝐸𝐶𝑃1 is simultaneously influenced by  𝐸𝐶𝑃2  as well 
as 𝐸𝐶𝑃3 , inducing movement to  𝐸𝐶𝑃1 𝑛𝑒𝑤 . The resulting force 
required to transition 𝐸𝐶𝑃1 to 𝐸𝐶𝑃1 𝑛𝑒𝑤 is expressed by: 

𝐹 = 𝐹21 + 𝐹31   (7) 

𝐹31  represents the force exerted by  𝐸𝐶𝑃3  on  𝐸𝐶𝑃1 , and 
𝐹21  is the force exerted by 𝐸𝐶𝑃2  on  𝐸𝐶𝑃1 . Therefore, the 
cumulative force propelling 𝐸𝐶𝑃1 to transition to  𝐸𝐶𝑃1 𝑛𝑒𝑤 is 
determined by: 

 𝐸𝐶𝑃1 𝑛𝑒𝑤 =  𝐸𝐶𝑃1 + 𝐹1 

= 𝐸𝐶𝑃1 + 𝐹21 + 𝐹31    

=  𝐸𝐶𝑃1 + β × ( 𝐸𝐶𝑃1 − 𝐸𝐶𝑃2 ) + 𝛽 × (𝐸𝐶𝑃1 − 𝐸𝐶𝑃3 )(8) 

- For 𝐸𝐶𝑃2 : 

The second particle, 𝐸𝐶𝑃2 , is concurrently influenced by the 
first and third particles ( 𝐸𝐶𝑃1  and 𝐸𝐶𝑃3 ), resulting in 
movement to  𝐸𝐶𝑃2 𝑛𝑒𝑤 . The resulting force required to 
transition 𝐸𝐶𝑃1  to 𝐸𝐶𝑃1 𝑛𝑒𝑤  is expressed by: 

𝐹 = 𝐹12 + 𝐹32   (9) 

𝐹12 is the force exerted by 𝐸𝐶𝑃1 on 𝐸𝐶𝑃2 , and 𝐹32  is the 
force exerted by 𝐸𝐶𝑃3  on 𝐸𝐶𝑃2 . The overall force propelling 
𝐸𝐶𝑃2  to transition to 𝐸𝐶𝑃2 𝑛𝑒𝑤 is determined by Eq. (8). 

- For 𝐸𝐶𝑃3  : 

𝐸𝐶𝑃3  is simultaneously influenced by  𝐸𝐶𝑃1 and 𝐸𝐶𝑃2   
with the force expressed as: 

𝐹 = 𝐹13 + 𝐹23   (10) 

𝐹13 is the force exerted by  𝐸𝐶𝑃1  on 𝐸𝐶𝑃3 , and 𝐹23 is the 
force exerted by 𝐸𝐶𝑃2  on 𝐸𝐶𝑃3 . The detailed expressions for 
𝐹13 and 𝐹23 are akin to the expressions in Eq. (9). Consequently, 
𝐸𝐶𝑃3 𝑛𝑒𝑤  will transition to 𝐸𝐶𝑃3 𝑛𝑒𝑤 . 

 Strategy 3 

In the third strategy, a combination of the first and second 
strategies is applied to generate new ECPs. Consequently, for 
the illustrated scenario where nECPI = 3, nine new ECPs are 
generated, with 6 resulting from strategy 1 and 3 from strategy 
2. The equations previously described are applicable in this 
context. 

At the conclusion of the interaction phase, a set of ECPs is 
termed new-ECP, and its size remains consistent with the 
original ECP population. This remains true regardless of the 
chosen nECPI or the strategy utilized. In simpler terms, if the 
process begins with 30 particles, the population size remains 30 
particles after the interaction phase, irrespective of the strategy 
or the number of particles involved in the interaction. 

In the final phase of ECPO, the newly generated ECPs are 
subject to bounds checks to ensure they fall within the defined 
search space. If any ECPs are found to exist outside these 
bounds, adjustments are made accordingly. Subsequently, a 
subset of the newly created ECPs undergoes expansion based on 
the probability of diversification (Pd). The diversity operator, 
integral to ECPO, incorporates information from both the new 
ECP population (newECP) and the existing archive pool 
(archiveECP). 

Following the diversification phase, the population is 
updated by aligning the new population with the previously 
established archive pool. The best nECP particles, ranked from 
1 to nECO, shape the updated population. This refined 
population then undergoes the same procedure as explained 
earlier for another cycle. 

In terms of termination, the current version of ECPO 
concludes after iterating MAXIter times, utilizing the various 
phases described above. However, users retain the flexibility to 
terminate the process differently if desired. 

C. Artificial Rabbits Optimization (ARO) 

ARO, or Adaptive Rabbit Optimization, draws its inspiration 
from the resourceful survival techniques employed by rabbits in 
their natural surroundings. These techniques, intricately 
designed to outwit predators and ensure effective evasion, form 
the foundation of ARO. The algorithm assimilates the foraging 
and hiding strategies inherent in rabbits, along with their adept 
energy management, creating a dynamic framework that 
seamlessly transitions between these strategic modes [34]. 

1) Detour foraging: During the quest for sustenance, a 

distinctive detour foraging strategy is observed in rabbits, with 

a focus on distant food sources and a potential oversight of 

nearby ones. Within the ARO framework, a community of 

rabbits is envisioned, each possessing its designated territory 

comprising burrows and grass. Encounters among these rabbits 

at each other's foraging sites occur randomly. In this scenario, 

a mathematical model is presented to articulate the deviation 

search behavior demonstrated by rabbits. 

�⃗� 𝑖(𝑡 + 1) = 𝑥𝑗(𝑡) + 𝑆 × (𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)) + 𝑤(0.5

× (0.05 + 𝑟1)) × 𝑚1,    

𝑖, 𝑗 = 1,… , 𝑛 𝑎𝑛𝑑 𝑗 ≠ 1   (11) 

𝑆 = 𝑀 × 𝑣   (12) 

𝑀 = (𝑒 − 𝑒(
𝑡−1

𝐼
)
2

) × sin (2𝜋𝑟2)  (13) 

𝑣(𝑦) = {
1     𝑖𝑓   𝑦 = 𝑓(1)
0                     𝑒𝑙𝑠𝑒

   𝑘 = 1, … , 𝑑 𝑎𝑛𝑑 𝑙 = 1,… , ⌈𝑟3 ×

𝑑⌉    (14) 
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𝑓 = 𝑝(𝑑)   (15) 

𝑚1 = 𝑁(0,1)   (16) 

In the given framework, 𝑛 denotes the quantity of rabbits 
within the population, while 𝑑 represents the dimension of the 
problem. The position of the 𝑖 − 𝑡ℎ  rabbit at time t + 1 is 

denoted by �⃗� 𝑖(𝑡 + 1). The variable 𝑛1 is distributed according 
to the standard normal distribution. 𝑇  signifies the maximum 
number of iterations, and 𝑥𝑖(𝑡) denotes the position of the 𝑖 −
𝑡ℎ  rabbit at time 𝑡 . The variable 𝑝  generates a random 
rearrangement (permutation) of integers ranging from 1 to 𝑑. 
Additionally, 𝑤  is a mapping tool within the algorithm, 
facilitating the random selection of elements from the explorer 
to introduce variation in the search process. The random 
numbers 𝑟1, 𝑟2, 𝑟3 fall within the range of (0, 1). Lastly, 𝑆 is 
introduced to represent the run length, symbolizing the speed of 
movement during detour foraging in the algorithm. This 
comprehensive set of parameters and variables collectively 
defines the key components and dynamics of the rabbit 
optimization algorithm. 

2) Random hiding: To secure their survival, rabbits 

demonstrate a proclivity for randomly selecting one of their 

burrows as a shelter. The mathematical model capturing this 

stochastic shelter-seeking behavior is articulated through the 

following equations. The formulation of the 𝑗 − 𝑡ℎ burrow of 

the 𝑖 − 𝑡ℎ rabbit is expressed as: 

�⃗� 𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑁 × 𝑓 × 𝑥 𝑖(𝑡),   𝑖, 𝑗 = 1,… , 𝑛 𝑎𝑛𝑑 𝑗 ≠ 1
 (17) 

𝐷 =
𝐼−𝑡+1

𝐼
× 𝑟4   (18) 

𝑚2 = 𝑁(0,1)   (19) 

𝑓(𝑦) = {
1     𝑖𝑓   𝑦 = 𝑔(1)
0                     𝑒𝑙𝑠𝑒

   𝑘 = 1,… , 𝑑 (20) 

�⃗� 𝑖,𝑟(𝑡) = 𝑥 𝑖(𝑡) +  𝑁 × 𝑓 × 𝑥 𝑖(𝑡)  (21) 

The parameter of hiding, denoted as N, undergoes linear 

reduction throughout the iteration process from 1 to 
1

𝐼
 with the 

incorporation of a random perturbation. 

In the final stages of implementing either the random hiding 
or detour foraging strategies, the update to the position of the 
𝑖 − 𝑡ℎ rabbit adheres to the formula outlined in Eq. (22): 

𝑥 𝑖(𝑡 + 1) = {
𝑥 𝑖(𝑡)                    𝑔(𝑥 𝑖(𝑡)) ≤ 𝑔 (�⃗� 𝑖(𝑡 + 1))

�⃗� 𝑖(𝑡 + 1)            𝑔(𝑥 𝑖(𝑡)) > 𝑔 (�⃗� 𝑖(𝑡 + 1))
(22) 

3) Energy shrinks: Due to the recurrent cycles of detour 

foraging and random hiding, the energy level of the rabbits 

gradually diminishes. Therefore, the incorporation of an energy 

factor becomes crucial within the ARO framework: 

𝐸(𝑡) = 4 (1 −
𝑡

𝐼
) 𝑙𝑛

1

𝑟
  (23) 

The algorithmic steps for ARO in Algorithm 2, are displayed 
as Pseudo-code form as well as Fig. 2 shows the flowchart of 
ARO. 

ALGORITHM 2: PSEUDO-CODE OF ARO ALGORITHM 

Randomly initialize a set of rabbits. 𝑋𝑖 (solutions) and evaluate their fitness 

Fit, and 𝑋𝑏𝑒𝑠𝑡 is the best solution found so far. 

While the stop criterion is not satisfied, do 

for each individual 𝑋𝑖 do 
Compute the energy factor A  

if A > 1 
Choose a rabbit randomly from other individuals. 
Compute R  

Perform detour foraging  

Compute the fitness 𝐹𝑖𝑡𝑖 . 
Upgrade the position of the current individual  
else 

Generate 𝑑 burrows and randomly pick one as hiding  
Perform random hiding  

Compute the fitness 𝐹𝑖𝑡𝑖 . 
Update the position of the individual  

end if 

Upgrade the best solution found so far 𝑋𝑏𝑒𝑠𝑡 

end for  
end while 

return 𝑋𝑏𝑒𝑠𝑡 

D. Data Collection 

The primary objective of this investigation is to create a 
robust framework for the precise assessment of student's 
academic achievements, taking into account contextual nuances. 
A crucial step in this process involves the thorough 
preprocessing of the dataset, wherein textual data undergoes 
conversion into numerical values. This transformation forms the 
foundation for the application of ML algorithms and advanced 
statistical methodologies, facilitating a comprehensive analysis 
of the dataset. The diverse variables within the dataset are 
systematically categorized, ensuring a structured approach to 
understanding and predicting academic performance. This 
strategic approach aims to enhance the accuracy and 
effectiveness of the assessment, providing valuable insights into 
the complex landscape of students' academic achievements. 

The research incorporates a comprehensive set of inputs to 
explore various dimensions influencing students' academic 
performance. 

 The Student Demographics category covers details such 
as Marital Status, Nationality, and Gender, including 
additional factors like being a Displaced Candidate and 
the age at enrollment. 

 Parental Information delves into the educational 
qualifications and occupations of both mother and father, 
providing insights into the familial context. 

 Financial and Support Information offers a 
comprehensive view of students' financial backgrounds, 
including their academic fee situation, scholarship status, 
and potential debt. 

 Economic Indicators introduce external factors like the 
Academic Unemployment Rate, Educational Inflation 
Rate, and GDP, providing contextual economic insights. 

 Enrollment Information examines the mode and order of 
application, as well as the specialized field of study 
chosen by students. 
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Fig. 2. Flowchart of ARO. 

 Finally, Academic Performance metrics include 
attendance regimes, past educational credentials, and a 
comprehensive breakdown of curricular units, 
encompassing enrollment, evaluation, approval, grading, 
and units without evaluation. 

This multifaceted approach ensures a nuanced analysis, 
considering diverse aspects that collectively contribute to the 
intricate landscape of student academic performance [17]. 

In Fig. 3, the visual representation intricately displays the 
impact of inputs on each other and, crucially, on the target 
variable. The color spectrum, from white (positive impact) to 
purple (negative impact), guides the discernment of dynamics at 

play. Parameters show a self-reinforcing nature, evident from 
bold white along the main diameter. The final line outlining each 
input's impact on the target reveals crucial insights. Inputs like 
Tuition Fees Up to Date, Scholarship Recipient, Curricular 
Units (evaluations), Curricular Units (approved), and Curricular 
Units (grade) emerge as influential with substantial positive 
impact. 

Conversely, Debtor, Gender, and Age at Enrollment show 
predominantly negative impacts. The remaining parameters in 
pale colors signify minimal influence, underlining limited 
significance in the predictive context. This visual analysis offers 
a nuanced perspective on dataset relationships, guiding focus 
toward the most impactful variables for predictive modeling. 

 

Fig. 3. Correlation matrix for the input and output variables. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

1038 | P a g e  

www.ijacsa.thesai.org 

E. Hyperparameter 

Table I presents the hyperparameters used for the different 
developed models in this study: RFC, RFAR, and RFEC. These 
hyperparameters significantly influence the performance and 
efficiency of each model. 

TABLE I. RESULT OF HYPERPARAMETERS FOR THE DEVELOPED MODELS 

Model
s 

n_estimato
rs 

max_dept
h 

min_samples_sp
lit 

min_samples_le
af 

RFC 20 10 2 1 

RFAR 123 1311 2 1 

RFEC 56 64 2 1 

IV. RESULTS 

A. Model Applicability Assessment 

In assessing classification problems, Accuracy is a 
commonly employed metric to gauge a model's overall 
performance. This metric relies on four essential elements: True 
Positives (Tp) for accurate positive predictions, True Negatives 
(Tn) signifying precise negative predictions, False Positives 
(Fp) representing inaccurate positive predictions, and False 
Negatives (Fn) indicating incorrect negative predictions. 
However, the utility of Accuracy diminishes in situations 
involving imbalanced data, where it tends to favor the majority 
class, limiting its interpretability. To address this drawback, 
three additional evaluation metrics—namely Recall, Precision, 
and F1-Score—are frequently utilized. These metrics provide a 
more nuanced understanding of a model's performance, 
particularly in the presence of imbalanced class distributions. 
Presented through mathematical equations, typically numbered 

from 24 to 27, these metrics collaboratively contribute to a 
refined and comprehensive assessment of the effectiveness of a 
classification model. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝑇𝑛+𝐹𝑝+𝐹𝑛
   (24) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
   (25) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑝𝑅 =
𝑇𝑝

𝑃
=

𝑇𝑝

𝑇𝑝+𝐹𝑛
  (26) 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (27) 

B. Convergence Results 

The utilization of a convergence diagram is a prevalent 
practice in scientific discourse, employed to visually elucidate 
the progression of convergence or optimization inherent in a 
model or algorithm across successive iterations. This 
methodology finds frequent application in diverse domains, 
including but not limited to machine learning, optimization 
techniques, and computational science. In the context of this 
article, the convergence diagram, as illustrated in Fig. 4, 
functions as a tool for juxtaposing the convergence trajectories 
of the two optimized iterations of the RFC model, namely RFEC 
and RFAR. A discerning analysis of the diagram reveals that, 
during the initial iterations, the RFEC model attains a superior 
convergence level compared to the RFAR model. Notably, the 
RFEC model sustains this superiority throughout subsequent 
iterations, culminating in its establishment as the preeminent 
model. This visual representation effectively communicates the 
distinctive convergence dynamics of the two optimized models, 
substantiating the designation of the RFEC model as the optimal 
choice within the scope of this study. 

 

Fig. 4. Line plot for convergence of hybrid models. 
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C. Hyperparameter 

D. Comparing Results of Predictive Models 

Table IⅠ encapsulates a comprehensive compilation of 
outcomes emanating from the formulated RFC models, 
facilitating a nuanced comprehension of their performances. 
Concurrently, Fig. 5 employs a radar plot to present an 
evaluative comparison among these models. The objective is to 
discern the model that exhibits the highest precision in 
predictions when contrasted with real-world outcomes. A 
substantial proportion of the dataset undergoes rigorous training, 
and the remaining values are meticulously subjected to testing. 
The results, spanning the entire dataset, are systematically 
documented. The pivotal parameter for model assessment lies in 
all datasets, graphically elucidated in Fig. 5. The evaluation of 
accuracy is conducted across three distinct phases: Train, Test, 
and All. In the training phase, the RFEC model emerges as the 
frontrunner, boasting an accuracy of 0.9997, outpacing the RFC 
model at 0.9060 and the RFAR model at 0.8949. Transitioning 
to the testing phase, the RFAR model excels with an accuracy 
of 0.8985, surpassing the RFC model at 0.7589 and the RFEC 
model at 0.7566. Remarkably, in the comprehensive all data 
groups, the RFEC model ascends to the zenith with an accuracy 

of 0.9326, followed by the RFAR model at 0.8985 and the RFC 
model at 0.8619. The visual representation encapsulated in Fig. 
5 distinctly underscores the discernible superiority of the RFEC 
model in predictive accuracy, affirming its prominence among 
the models considered. 

E. Classification Outcomes 

Table ⅡI provides a detailed breakdown of Precision, Recall, 
and F1-score metrics concerning the classification of 4424 
students based on their academic performance. These tabulated 
metrics offer valuable insights, illuminating the model's 
precision in positive predictions, ability to accurately identify 
true positives, and overall effectiveness in classifying students 
based on their academic achievements. The precision values 
reflect the accuracy of the model in making positive predictions, 
while recall signifies the model's ability to capture true positives. 
Additionally, the F1-score offers a comprehensive measure that 
balances precision and recall, providing a holistic assessment of 
the model's performance in classifying students across various 
academic performance categories. These tables play a pivotal 
role in the comprehensive evaluation of the model's 
effectiveness in handling diverse aspects of academic 
performance prediction. 

TABLE II. RESULT OF DEVELOPED MODELS FOR RFC 

Phase Index values 
Models 

RFC RFAR RFEC 

Train 

Accuracy 0.9060 0.8949 0.9997 

Precision 0.9123 0.8971 0.9997 

Recall 0.9060 0.8949 0.9997 

F1-score 0.9031 0.8924 0.9997 

Test 

Accuracy 0.7589 0.8985 0.7566 

Precision 0.7496 0.8999 0.7495 

Recall 0.7589 0.8985 0.7566 

F1-score 0.7446 0.8963 0.7449 

All 

Accuracy 0.8619 0.8985 0.9326 

Precision 0.8648 0.9002 0.9258 

Recall 0.8619 0.8985 0.9268 

F1-score 0.8562 0.8958 0.9258 
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Fig. 5. Radar plot for achievement of developed models based on evaluators. 

1) Precision: In this evaluative index, a meticulous 

examination of each model's performance across distinct 

categories elucidates the RFEC model's prominence. Notably, 

its proximity to the numerical value 1 stands out conspicuously, 

surpassing the comparative performance of other models. This 

observation underscores the RFEC model's superior precision 

and effectiveness in positive predictions within the evaluated 

groupings. 

2) Recall: In this evaluation index, uniform performance is 

observed across all models in the graduate group, registering an 

identical score of 0.98. Contrarily, within the dropout and 

enrollment categories, the singular RFC model exhibited 

inferior performance compared to other models. Further 

scrutiny reveals notable distinctions between the two optimized 

models: the RFEC model outperforms the RFAR model by 

14.08% in the enrollment group and 4.59% in the dropout 

group. These discernible variations underscore the efficacy of 

optimization, particularly emphasizing the superior predictive 

capabilities of the RFEC model in specific academic 

performance categories. 

3) F1-score: In this performance index, the RFEC model 

emerges as the most adept, achieving a commendable accuracy 

rate of 93% in dropout predictions, 85% in enrollment, and 95% 

in graduation. These results position the RFEC model as the 

standout performer, showcasing its efficacy in accurately 

predicting students' academic outcomes across diverse 

performance categories. 

In Fig. 6, a comprehensive examination is conducted, 
contrasting the predictive performance of models against actual 
measured values. Notably, within the dropout category, the 
RFEC model exhibits a superior level, closely aligning with the 
measured values, indicating accurate predictions. Similarly, in 
the enrollment grouping, the RFEC model demonstrates 
predictions that closely resemble reality. However, in the 
graduate category, the RFAR model outperforms other models. 
In summary, the RFEC model displays superior performance 
compared to its counterparts, and while its performance in the 
graduate group may appear suboptimal, its overall predictive 
accuracy in other categories warrants commendation. 

TABLE III. EVALUATION INDEXES OF THE PERFORMANCE OF DEVELOPED MODELS 

Model Situation 

Index values 

Precision Recall F1-score 

RFC 

Dropout 0.93 0.83 0.88 

Enrolled 0.82 0.59 0.69 

Graduate 0.83 0.98 0.9 

RFAR 

Dropout 0.95 0.87 0.91 

Enrolled 0.87 0.71 0.78 

Graduate 0.88 0.98 0.93 

RFEC 

Dropout 0.96 0.91 0.93 

Enrolled 0.89 0.81 0.85 

Graduate 0.92 0.98 0.95 
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Fig. 6. 3D Ribbon plot for the comparison between the measured and predicted values. 

In Fig. 7, a detailed representation of the confusion matrix 
unveils the accurate classification of students and instances of 
misclassifications. Within the RFEC model, a meticulous 
examination reveals the accurate classification of 4100 out of 
4424 students across various academic grades. Specifically, 
within these classifications, 1294 students were accurately 
identified in the Dropout category, 642 in the Enrolled category, 
and 2164 in the Graduate category. However, the model 

exhibited 324 instances of misclassification. In contrast, the 
RFAR model displayed 449 misclassifications, while the 
conventional RFC model accurately misclassified 611 students. 
This comprehensive breakdown provides valuable insights into 
the models' performance, aiding in a nuanced understanding of 
their strengths and limitations in accurately categorizing 
students into their respective classes.

   

 
Fig. 7. Confusion matrix for each models’ accuracy. 
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In Fig. 8, a comprehensive analysis of model performance is 
facilitated through the presentation of two Receiver Operating 
Characteristic (ROC) charts strategically overlaid for enhanced 
comparison. The ROC charts visually depict the trade-off 
between true positive and false positive rates across different 
classification thresholds. The optimal model in this context is 
identified by a larger area under the curve (AUC), denoting 
superior discriminatory power. The meticulous examination of 
the presented ROC charts leads to the unequivocal identification 
of the RFEC model as the most efficacious among its 
counterparts. This determination is substantiated by the model's 
early attainment of the number 1 true positive rate, signifying its 
prompt and accurate identification of positive instances. 
Additionally, a discernible concentration of the ROC curve 
below the graph further underscores the RFEC model's 
exceptional performance. These nuanced observations 
collectively position the RFEC model as the optimal choice, 
demonstrating a superior ability to balance true positive and 
false positive rates and thereby affirming its efficacy in 
classification tasks. 

F. Analysing Input Variables 

Fig. 9 presents the impact of the presented input variables on 
the performance of the students. Student success in education is 
a complex issue with many contributing factors, including the 
ability to pay tuition fees. Input variables, such as student 
demographics, home environment, and school resources, play a 
crucial role in determining student financial well-being and their 
ability to meet tuition obligations. Understanding how these 
factors influence tuition fee payment is essential for developing 
effective interventions to improve student outcomes and 
promote financial equity in education 

Student demographics, such as socioeconomic status, 
gender, race, and ethnicity, are among the most significant input 
variables influencing tuition fee payment. Studies have 
consistently shown that students from low-income families 
tends to struggle more with tuition payments than their peers 
from higher-income households. This financial burden is often 

exacerbated by disparities in access to scholarships and financial 
aid, leaving students from low-income backgrounds at a greater 
risk of tuition delinquency or default. 

Gender also plays a role in tuition fee payment, with boys 
generally facing more financial challenges than girls. This 
disparity may stem from differences in employment 
opportunities, access to financial resources, and cultural 
expectations. Race and ethnicity are also associated with 
variations in tuition fee payment. For instance, African 
American and Hispanic students tend to have lower rates of 
tuition payment compliance than White and Asian students. 
These payment disparities are likely due to a combination of 
factors, including historical discrimination, unequal access to 
financial aid, and disparities in parental education. 

The home environment is another critical input variable that 
influences tuition fee payment. Parental involvement in 
education is particularly important, as it has been shown to 
positively impact student financial literacy and budgeting skills. 
Parents who actively support their children's financial education, 
such as teaching them about saving, budgeting, and the 
importance of paying bills, can help students make informed 
decisions about their tuition obligations. Additionally, a 
supportive and nurturing home environment, free from conflict 
and stress, can foster a positive financial mindset that promotes 
responsible fiscal behaviour. 

School resources, such as financial aid counseling services 
and tuition assistance programs, play a crucial role in helping 
students meet their tuition obligations. Schools that provide 
comprehensive financial literacy education and accessible 
financial aid resources can empower students to make informed 
decisions about their financial aid options and better manage 
their tuition payments. Additionally, schools with strong 
partnerships with community organizations and financial 
institutions can expand access to scholarships, work-study 
programs, and other forms of financial assistance that can 
alleviate the burden of tuition payments. 

 

Fig. 8. ROC curve for developed models. 
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The impact of input variables on tuition fee payment has 
significant implications for educational practice. It is crucial to 
recognize that financial well-being is not solely determined by 
individual effort or ability; it is also shaped by factors beyond a 
student's control. Educators, policymakers, and community 
leaders must work together to address the inequities that exist in 
education and create a more equitable financial environment for 
all students. This includes providing targeted financial literacy 
education and support services to students from low-income 
backgrounds, promoting parental involvement in financial 

education, and expanding access to scholarships, work-study 
programs, and other forms of financial assistance. 

Input variables, such as student demographics, home 
environment, and school resources, play a critical role in 
determining a student's ability to pay tuition fees. By 
understanding the impact of these variables, educators, 
policymakers, and community leaders can develop effective 
interventions to improve student financial well-being, promote 
financial equity in education, and ensure that all students have 
the opportunity to reach their full potential. 

 

Fig. 9. The SHAP sensitivity analysis of the models. 

G. Discussion 

Table IV compares the accuracy of the present study's RFEC 
model with several published models. The RFEC model 
achieved the highest accuracy at 92.58%, significantly 
outperforming others. The superior performance of the RFEC 
model is attributed to the integration of advanced optimization 
algorithms (ECPO and ARO), which enhance the model's ability 
to handle complex data. This demonstrates the effectiveness of 
using sophisticated machine learning techniques and 
optimization to improve predictive accuracy in educational 
research. 

TABLE IV. PRESENT MODEL EVALUATION WITH PUBLISHED STUDIES 

Study Developed Models Accuracy 

Present study RFEC 92.58% 

Kabakchieva [35] DTC 72.74% 

Bichkar and R. R. Kabra [36] DTC 69.94% 

Nguyen and Peter [37] DTC 82% 

Edin Osmanbegovic et al. [38] NBC 76.65% 

V. CONCLUSION 

This research has strategically applied predictive data 
mining modeling, specifically employing the potent Random 
Forest Classifier (RFC), to address challenges within the 
academic domain proactively. The primary aim is to empower 

educators with the capacity to intervene timely, thereby 
enhancing academic trajectories, reducing failure rates, 
elevating the overall educational experience, and fostering an 
environment conducive to improved student outcomes. The 
single RFC model exhibited suboptimal performance in 
predictive modeling. To enhance its efficacy, two optimization 
algorithms, Electric Charged Particles Optimization (ECPO) 
and Artificial Rabbits Optimization (ARO), were incorporated. 
This integration led to the creation of two new optimized 
models, namely RFEC and RFAR. The utilization of these two 
optimizers represents a pioneering initiative in the domain of 
student performance forecasting, signifying a noteworthy 
advancement for future research and applications in this field. 
This article conducts an analysis and prediction of information 
data about 4424 students based on their previous enrollment, 
graduation, and dropout records. Additionally, a comparative 
assessment of each model's results against the actual measured 
values is performed to ascertain the optimal predictive model. 
The outcomes, accompanied by pertinent tables and figures, 
indicate that the RFEC model exhibits the smallest deviation, 
approximately 7.32%, in contrast to the actual measured values. 
This stands in contrast to the RFAR-optimized model, which 
demonstrates a higher difference of about 10.14%, and the RFC 
single model, showcasing a more substantial difference of 
approximately 13.81% from the measured values. 
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VI. FUTURE STUDY 

Future research should focus on expanding data sources to 
include socio-economic backgrounds and extracurricular 
activities for a comprehensive understanding of student 
performance. Collaborating with interdisciplinary experts can 
enrich analyses by considering individual characteristics, social 
dynamics, and institutional practices. Longitudinal studies are 
essential for tracking academic trajectories and developing 
proactive intervention strategies. Validating predictive models 
across diverse contexts and populations is crucial for ensuring 
scalability and effectiveness. Ethical guidelines must be 
prioritized for transparent and accountable deployment of 
predictive analytics. Exploring emerging technologies like 
artificial intelligence offers opportunities to enhance 
personalized learning experiences. By addressing these areas, 
future studies can contribute to advancing predictive analytics in 
higher education and fostering a more inclusive learning 
environment. 
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