
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1045 | P a g e

www.ijacsa.thesai.org

A Novel Hybrid Deep Neural Network Classifier for

EEG Emotional Brain Signals

Mahmoud A. A. Mousa1, Abdelrahman T. Elgohr2, Hatem A. Khater3

Faculty of Engineering, Zagazig University, Zagazig, Egypt1, 2

Faculty of Engineering, Horus University, Damietta Egypt2, 3

School of Mathematical and Computer Sciences, Heriot Watt University, Dubai, UAE1

Abstract—The field of brain computer interface (BCI) is one of

the most exciting areas in the field of scientific research, as it can

overlap with all fields that need intelligent control, especially the

field of the medical industry. In order to deal with the brain and

its different signals, there are many ways to collect a dataset of

brain signals, the most important of which is the collection of

signals using the non-invasive EEG method. This group of data

that has been collected must be classified, and the features

affecting changes in it must be selected to become useful for use in

different control capabilities. Due to the need for some fields used

in BCI to have high accuracy and speed in order to comply with

the environment's motion sequences, this paper explores the

classification of brain signals for their usage as control signals in

Brain Computer Interface research, with the aim of integrating

them into different control systems. The objective of the study is

to investigate the EEG brain signal classification using different

techniques such as Long Short-Term Memory (LSTM),

Convolutional Neural Networks (CNN), as well as the machine

learning approach represented by the Support Vector Machine

(SVM). We also present a novel hybrid classification technique

called CNN-LSTM which combines CNNs with LSTM networks.

This proposed model processes the input data through one or more

of the CNN’s convolutional layers to identify spatial patterns and

the output is fed into the LSTM layers to capture temporal

dependencies and sequential patterns. This proposed combination

uses CNNs’ spatial feature extraction and LSTMs’ temporal

modelling to achieve high efficacy across domains. A test was done

to determine the most effective approach for classifying emotional

brain signals that indicate the user's emotional state. The dataset

used in this research was generated from a widely available MUSE

EEG headgear with four dry extra-cranial electrodes. The

comparison came in favor of the proposed hybrid model (CNN-

LSTM) in first place with an accuracy of 98.5% and a step speed

of 244 milliseconds/step; the CNN model came in the second place

with an accuracy of 98.03% and a step speed of 58

milliseconds/step; and in the third place, the LSTM model

recorded an accuracy of 97.35% and a step speed of 2 sec/step;

finally, in last place, SVM came with 87.5% accuracy and 39

milliseconds/step running speed.

Keywords—BCI; EEG; Brain Signals Classification; SVM;

LSTM, CNN; CNN-LSTM

I. INTRODUCTION

Brain Computer Interface (BCI) is a technology that enables
direct communication between the brain and an external device
using signals generated from the brain. It has been proposed as
a potential therapeutic treatment for various neurological
disorders and a tool for efficient human-computer interaction.

BCI technology can be used to control assistive devices such as
wheelchairs, prostheses and communication systems, as well as
to monitor brain activity and diagnose neurological diseases.
Moreover, BCI technology can be used to provide a more
natural form of human-computer interaction, allowing users to
control computers with thoughts [1]. BCI technology can be
divided into two main categories as shown in Fig.1: invasive
and noninvasive. Invasive BCI requires the insertion of
electrodes into the brain in order to capture brain signals, which
is a risky and complicated process. On the other hand,
noninvasive BCI relies on measuring signals from the scalp or
other parts of the body to detect brain activities. Noninvasive
BCI is more commonly used and includes
electroencephalography (EEG), magnetoencephalography
(MEG), and functional near-infrared spectroscopy (fNIRS).
EEG is the most widely used BCI technique and is based on
electrical signals generated by the brain [2].

EEG signals are a type of electrical activity that can be
measured from the brain. They are used in a variety of
engineering fields, including medical, robotics, and computer
engineering. In medical engineering, EEG signals are used to
diagnose and monitor neurological conditions. EEGs can be
used to detect seizures, diagnose sleep disorders, and monitor
brain activity during surgery. EEGs can also be used to measure
brain activity during cognitive tasks, such as memory tests. This
can help doctors better understand how the brain works and
how to treat neurological conditions [3]. In robotics
engineering, EEG signals are used to control robotic devices.
By measuring the electrical activity of the brain, robots can be
programmed to respond to certain commands. This can be used
to create robots that can interact with humans in a more natural
way. For example, robots can be programmed to respond to
facial expressions or voice commands [4]. In computer
engineering, EEG signals are used to create brain-computer
interfaces. These allow users to control computers with their
thoughts. This technology is still in its early stages, but it has
the potential to revolutionize the way we interact with
computers [5].

The most common EEG signal classification methods as
shown in Fig. 2 are supervised learning algorithms, such as
Support Vector Machines (SVMs), Artificial Neural Networks
(ANNs), and decision trees. These algorithms are used to
identify patterns in EEG signals that can be used to diagnose
and monitor neurological conditions [6]. For example, SVMs
can be used to classify EEG signals into different categories,
such as normal or abnormal, or to detect changes in EEG signals

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1046 | P a g e

www.ijacsa.thesai.org

over time. ANNs, which include Convolutional Neural
Network (CNN), can be used to identify patterns in EEG signals
that can be used to diagnose and monitor neurological
conditions. Decision trees can be used to identify patterns in
EEG signals that can be used to diagnose and monitor
neurological conditions [7].

Fig. 1. Brain computer interface technology [1].

Fig. 2. Dataset classification techniques [8].

A. Related Work

Z. -T. Liu et al. (2019) tested a proposed approach on DEAP
dataset, classifying Valance and Arousal emotional states using
K-nearest neighbor and support vector machine. The
experiments compare temporal windows of different lengths
and three EEG signal rhythms. The results show that the EEG
signal with one temporal window has the highest recognition
accuracy of 86.46%. A multimodal emotional communication-
based humans-robots interaction system would use the
suggested approach for real-time emotion identification [9].

T. Song et al. (2020) to recognize emotions in multichannel
EEG data used a dynamical graph convolutional neural network
(DGCNN). Our EEG emotion recognition method uses a graph
to describe multichannel EEG data and classify emotions using
this model. EEG emotion recognition is improved by learning
new features from the adjacency matrix. Emotion EEG datasets
SEED and DREAMER were extensively studied. The proposed
recognition method is more accurate than current methods. On
SEED, it averaged 90.4% in subject-dependent experiments
and 79.95% in subject-independent cross-validation [10].

In 2020, S. K. Khare and colleagues introduced an adaptive
tunable Q wavelet transform for selecting tuning parameters
automatically. Grey wolf optimization identifies the best tuning
parameters. GWO tuning parameters divide EEG signals into
sub bands. Time-domain properties of SB are inputted into a
multiclass least-squares support vector machine. Evaluating the
classification accuracy of four main emotions - happiness, fear,
sadness, and relaxation - compared to current methods. A radial

basis function kernel that outperforms prior methods on the
same dataset achieves an accuracy of 95.70%. This article
presents a nonparametric method for decomposing EEG signals
to improve efficiency. This approach can enhance the progress
of BCI system development by utilizing machine learning
techniques [11].

Chowdary MK, et al., (2022) aim to classify emotions from
electroencephalogram signals by utilizing different recurrent
neural network structures. Three architectures employed in this
study for emotion recognition using EEG signals are RNN
(recurrent neural network), LSTM (long short-term memory
network), and GRU (gated recurrent unit). Experimental data
confirmed the efficiency of these networks in terms of
performance measures. The study utilized the EEG Brain Wave
Dataset: Feeling Emotions and obtained an average accuracy of
95% for RNN, 97% for LSTM, and 96% for GRU in detecting
emotions [12].

EEG capture and emotion categorization in a simulated
driving environment is suggested by Chen J. et al. (2024) to
study panic emotion and accident-avoidance skills. The
program models obstacle avoidance at different risk levels
using vehicle speed. The system models the brain's
physiological structure for data processing using graph neural
networks (GNN) with functional connection and attention
mechanisms. Various research compared entropy and power
properties. The top single-label F1 score was 76.7%, and the
three-class classification was 75.26 % accurate. Binary
classification had 91.5% accuracy and the highest F1 score for
a single label was 91.86%. Deep learning algorithms can
accurately mimic hazardous events, record the driver's EEG
data, and quickly track emotional states, according to
experiments [13].

This research investigates classifying brain signals for use
as control signals in Brain-Computer Interface (BCI) systems
designed for various robotic applications. The aim is to
compare four methods for multi-class classification: Long
Short-Term Memory (LSTM) and Convolutional Neural
Networks (CNN) from deep learning, a proposed hybrid CNN-
LSTM approach, and Support Vector Machine (SVM) from
machine learning. Ultimately, this research seeks to determine
the most effective method for classifying emotional brain
signals that reflect the user's emotional state.

The rest of this paper is organized as follows: Section II
demonstrates the main concepts for signals classification
overview; Section III presents the classification models;
Section IV describes the dataset; Sections V and VI elaborate
the classification results and a discussion of the results
generated from the tests; Section VII mentions the applications
that can benefit from this research topic; Section VIII concludes
the paper and presents the future work.

II. CLASSIFICATION OVERVIEW

Dataset classification is a process of organizing data into
categories based on certain characteristics. It is a way of
organizing data into meaningful groups so that it can be more
easily analyzed and understood. Dataset classification is used
in a variety of fields, including data mining, machine learning,
and artificial intelligence.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1047 | P a g e

www.ijacsa.thesai.org

Fig. 3. Dataset classification process overview [14].

The process of dataset classification, as shown in Fig. 3
begins with the identification of the data that needs to be
classified. This data can come from a variety of sources, such
as databases, text documents, images, and audio files. Once the
data has been identified, it is then divided into categories based
on certain characteristics. These characteristics can include
size, type, content, and other attributes.

Once the data has been divided into categories, it is then
analyzed to determine the relationships between the different
categories. This analysis can be done using a variety of
techniques, such as clustering, decision trees, and neural
networks. The goal of this analysis is to identify patterns and
trends in the data that can be used to make predictions or
decisions. Once the data has been classified and analyzed, it can
then be used for a variety of purposes. For example, it can be
used to create predictive models, to identify customer segments,
or to detect anomalies in the data. It can also be used to create
visualizations of the data, such as charts and graphs, which can
be used to better understand the data [15].

III. CLASSIFICATION MODELS

A. Support Vector Machine (SVM)

Support Vector Machines (SVMs) are a powerful and
versatile machine learning algorithm used for classification and
regression tasks. SVMs are a supervised learning algorithm that
can be used to classify data into two or more classes. They are
based on the concept of finding a hyperplane that best divides a
dataset into two classes. The main advantage of SVMs is that
they are very effective in high dimensional spaces. This is
because they use a kernel trick to map the data into a higher
dimensional space, where it can be separated by a hyperplane.
This allows them to capture complex relationships between the
data points [16]. SVMs are also very robust to overfitting. This
is because they use a regularization parameter which helps to

reduce the complexity of the model and prevent overfitting.
SVMs are also very efficient in terms of both time and memory.
This is because they only need to store a subset of the training
data, which makes them very efficient in terms of memory
usage. In addition, SVMs are very versatile and can be used for
a variety of tasks such as classification, regression, and outlier
detection [17].

Building a Support Vector Machine (SVM) algorithm with
Python as shown in Algorithm 1 [18], is a relatively
straightforward process. The first step is to import the necessary
libraries. The most common libraries used for SVM in Python
are Scikit-learn, Numpy, and Matplotlib. Once the libraries are
imported, the next step is to prepare the data. This involves
loading the data into a Pandas Data Frame, cleaning the data,
and splitting it into training and testing sets. It is important to
ensure that the data is properly scaled and normalized before
training the model. The next step is to create the SVM model.
This is done by instantiating an SVM classifier object from the
Scikit-learn library. The classifier object can then be fitted to
the training data using the fit() method. Once the model is
trained, it can be used to make predictions on the test data. This
is done by calling the predict() method on the classifier object.
The predictions can then be evaluated using a variety of metrics
such as accuracy, precision, recall, and F1 score [19].

Algorithm 1: SVM model

Input: X (array of input data (features)), Y (array of output data

(classes - labels))

Output: performance of model (accuracy – precision – confusion
matrix)

1. Function:

 Training _ SVM

 clf = svm.SVC(kernel='kernal type')

 clf.fit(X_train, y_train)

2. Initialize:

 Learning rate – Number of runs (epoch)

 for i in X array

 if (Y(i) x X(i) x q) > 1

 then

update: q = q + learning rate x ((X(i)*Y(i))*(-2*(1/epoch)*q)

 else

update: q = q + learning rate x (-2*(1/epoch)*q)

 end if

 end

In the context of multi-class classification, SVMs can be
used to construct a maximum-margin hyperplane that divides
the feature space into regions, each corresponding to a
particular class. The algorithm then searches for the optimal
hyperplane that maximizes the margin between the classes.
This hyperplane is then used to classify new data points. The
advantage of SVMs is that they can be used to classify data with
a large number of features and classes, as well as data with non-
linear boundaries. Furthermore, SVMs are robust to outliers and
can be used to classify data with a high degree of accuracy [19],
[20].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1048 | P a g e

www.ijacsa.thesai.org

B. Long Short Term Memory (LSTM)

The Long Short-Term Memory (LSTM) classifier is a
powerful deep learning algorithm that can be used to classify
data. It is a type of recurrent neural network (RNN) that is
capable of learning long-term dependencies in data. The LSTM
classifier is a powerful tool for predicting and classifying data,
and it has been used in a variety of applications, such as natural
language processing, speech recognition, time series
forecasting, and classifying sequences of data, such as text,
audio, and video. As shown in Fig. 4, the LSTM classifier is
composed of a series of memory cells, each of which contains
a set of weights and biases. The weights and biases are adjusted
during the training process to learn the patterns in the data [21].
The memory cells are connected in a chain, and each cell is
connected to the next cell in the chain. This allows the network
to remember information from previous cells and use it to make
predictions [22]. The LSTM classifier is trained using a
supervised learning algorithm. During the training process, the
network is presented with a set of input data and the desired
output. The network then adjusts the weights and biases of the
memory cells to learn the patterns in the data. Once the training
is complete, the network can be used to make predictions on
new data [23].

Fig. 4. LSTM classifier model flowchart [21].

Building an LSTM model with Python is a great way to get
started with deep learning. The first step in building an LSTM
model with Python is to import the necessary libraries. The
most popular library for deep learning in Python is TensorFlow,
which provides a high-level API for building and training
neural networks. Other popular libraries include Keras,
PyTorch, and Theano. Once the libraries are imported, the next
step is to prepare the data. This involves loading the data,
preprocessing it, and splitting it into training and test sets. It is
important to ensure that the data is properly normalized and
scaled before training the model. The next step is to define the
model architecture. This involves specifying the number of
layers, the number of neurons in each layer, the type of
activation functions, and the type of optimizer. It is also
important to specify the input and output shapes of the model.
Once the model architecture is defined, the next step is to
compile the model. This involves specifying the loss function,

the optimizer, and the metrics to be used for evaluating the
model. Finally, the model can be trained. This involves
specifying the number of epochs, the batch size, and the
validation split. It is important to monitor the training process
to ensure that the model is not overfitting or underfitting the
data [22].

C. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a type of artificial
neural network used in deep learning that is specifically
designed to process data that has a grid-like structure, such as
tabular and images datasets. CNNs are composed of multiple
layers of neurons that each perform a specific task as shown in
Fig. 5. The first layer of neurons is responsible for detecting
edges and other basic features in the input image. The second
layer of neurons is responsible for detecting more complex
features, such as shapes and patterns. The third layer of neurons
is responsible for recognizing objects in the image. The fourth
layer of neurons is responsible for recognizing more complex
objects, such as faces or animals [24].

CNNs are particularly useful in robotics because they are
able to process large amounts of data quickly and accurately.
For example, a CNN can be used to identify objects in an image
or video feed. It can also be used to analyze cognitive data
represented in a database that enables robots to understand the
surrounding environment and also understand the commands
stored within it and classify them according to the event the
robot is exposed to. This is useful for robots that need to identify
objects in their environment in order to navigate or interact with
them. CNNs can also be used to classify objects in a scene,
which is useful for robots that need to recognize and interact
with objects in their environment [25].

Fig. 5. Convolutional Neural Network (CNN) architecture.

Building a Convolutional Neural Network (CNN) model is
a complex process that requires a lot of knowledge and
experience. However, with the right guidance, it can be done
relatively easily. The following steps outline the process of
building a CNN model as described in Algorithm 2 [26]:

 Data Preparation: The first step in building a CNN
model is to prepare the data. This includes gathering the
data, cleaning it, and formatting it into a suitable format
for the model. This step is important as it ensures that
the model is trained on the most accurate and up-to-date
data.

 Model Architecture: The next step is to decide on the
model architecture. This includes deciding on the
number of layers, the type of layers, and the number of
neurons in each layer. This step is important as it

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1049 | P a g e

www.ijacsa.thesai.org

determines the complexity of the model and how well it
will perform.

 Training: Once the model architecture is decided, the
next step is to train the model. This involves feeding the
data into the model and adjusting the weights and biases
of the neurons in order to minimize the error. This step
is important as it ensures that the model is able to
accurately predict the output given the input.

 Evaluation: After the model is trained, the next step is to
evaluate the model. This involves testing the model on
unseen data and measuring its performance. This step is
important as it allows us to determine how well the
model is performing and if it needs to be improved.

 Deployment: The final step is to deploy the model. This
involves making the model available to users so that
they can use it to make predictions. This step is
important as it allows the model to be used in real-world
applications.

These are the basic steps for building a CNN model.
However, there are many other steps that can be taken to
improve the model, such as hyperparameter tuning,
regularization, and data augmentation. With the right guidance
and experience, building a CNN model can be a relatively
straightforward process.

Algorithm 2: CNN model

Input: tabular EEG emotional brain signal dataset

Output: confusion matrix and model testing accuracy

1. Import necessary libraries

(Numpy as np, pandas as pd, tensorflow as tf, Sequential, Dense,

Conv1D, MaxPooling1D, and Flatten)

2. Load the emotional dataset

dataset = pd read _ datatype ('dataset . datatype')

3. Analysis the dataset

Input signals = dataset drop (columns = ['target columns'])

Labels = dataset ['last column']

4. Split the dataset into training and testing sets

data train, data test, labels train, labels test = train test split (data,

labels, test size = test ratio to complete dataset, random state = no. of

states)

5. Build the CNN model

model = Sequential ([

 Conv1D parameter definition (filters, kernel size, activation

functions)

 Input shape = X train shape.

 MaxPooling1D size.

 Dense (output layer count, output activation function

6. Train the model

Training history = model fit (data train, labels train, epochs number,

batch size, validation data (data test, labels test))

7. Evaluate the model

loss accuracy = model evaluate (data test, labels test)

print Test Loss

print Test Accuracy

print confusion matrix

D. CNN-LSTM Hybrid Model

The CNN-LSTM model, which combines Convolutional
Neural Networks (CNNs) with Long Short-Term Memory
(LSTM) networks, excels at modeling the interdependence of

spatial and temporal data. This powerful combination leverages
CNNs' ability to extract spatial features and LSTMs' strength in
temporal modeling, leading to high effectiveness across various
domains.

This hybrid model finds applications in tasks involving
complex sequential data. It utilizes CNNs for spatial analysis
and LSTMs for understanding temporal sequences. The CNN-
LSTM model processes input data through one or more
convolutional layers to identify spatial patterns. The output
from these layers then feeds into LSTM layers to capture
temporal dependencies and sequential patterns. Finally, dense
layers are often used for classification or regression tasks.
Algorithm 3 lists the whole process of proposed model.

The model's strength lies in the specialized functions of its
layers. CNNs excel at extracting features from spatial data,
while LSTMs represent complex temporal connections. This
combination allows the model to learn both spatial and
temporal characteristics simultaneously, enabling a
comprehensive interpretation of the data. However, achieving
optimal performance requires careful hyperparameter tuning
for both CNN and LSTM components, and ensuring
compatibility between the input data shape and both layer types.
A small code example using the Keras library shows how to
sequentially add CNN and LSTM layers for spatiotemporal
modelling [27].

Algorithm 3: CNN-LSTM model

Input: tabular EEG emotional brain signal dataset

Output: confusion matrix and model testing accuracy

1. Import necessary libraries

(Numpy as np, pandas as pd, tensorflow as tf, Sequential, Dense,

Conv1D, MaxPooling1D, and Flatten)

2. Load the emotional dataset

dataset = pd read _ datatype ('dataset . datatype')

3. Analysis the dataset

Input signals = dataset drop (columns = ['target columns'])

Labels = dataset ['last column']

4. Split the dataset into training and testing sets

data train, data test, labels train, labels test = train test split (data,

labels, test size = test ratio to complete dataset, random state = no. of

states)

5. Build the CNN-LSTM model

model = Sequential ([

 Conv1D parameters definition (filters, kernel size, activation

functions)

 Input shape = X train shape.

 MaxPooling1D size.

 LSTM parameters definition (units’ size, return sequences)

 Dense (output layer count, output activation function)

6. Train the model

Training history = model fit (data train, labels train, epochs number,

batch size, validation data (data test, labels test))

7. Evaluate the model

loss accuracy = model evaluate (data test, labels test)

print Test Loss

print Test Accuracy

print confusion matrix

IV. DATASET DESCRIPTION

Datasets can be used to analyze trends, identify patterns,
and make predictions. They can also be used to compare

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1050 | P a g e

www.ijacsa.thesai.org

different groups of people or different types of data, store
information about people, places, events, and other topics, and
create visualizations like charts, graphs, and maps. They can
even be used to generate reports and presentations.

Datasets can be used to analyze trends, identify patterns,
and make predictions. They can also be used to compare
different groups of people or to compare different types of data.
They can also be used to store information about people, places,
events, and other topics. Datasets can be used to create
visualizations, such as charts, graphs, and maps. They can also
be used to create reports and presentations. They can also be
used to store information about people, places, events, and other
topics [28].

The dataset used in this research is a mental emotional
sentiment dataset that was collected by other researchers using
a commercial MUSE EEG headband which was used with a
resolution of four (TP9, AF7, AF8, TP10) electrodes. To collect
the data, researchers used a widely available MUSE EEG
headgear with four dry extra-cranial electrodes. As can be seen
in Fig. 6, micro voltage readings are taken from electrodes TP9,
AF7, AF8, and TP10. Two individuals (1 male, 1 female, aged
20-22) each provided 60 seconds of data for each of the 6 film
segments, for a total of 12 minutes (720 seconds) of brain
activity data (6 minutes for each emotional state). A total of 36
minutes of EEG data was obtained from each individual,
including six minutes of "neutral brainwave" data. The brain's
waves were captured at a variable frequency and then
resampled to 150Hz, yielding a collection of 324,000 data
points. The positive and negative valence descriptors were
evaluated instead of the emotions themselves to determine
which activities were most likely to elicit. For a third category,
representing the subject's baseline emotional state, neutral data
were also obtained before any data on emotions were gathered
(to prevent contamination from the latter). We only gathered
data from each participant for three minutes every day to
minimize the influence of a baseline emotional state [29].

Fig. 6. Position of used EEG electrodes on human skull [29].

V. CLASSIFICATION RESULTS

Classification results are the outcomes of a classification
process, which is a type of data mining technique used to

identify patterns and relationships in data. Classification results
are used to make predictions about future data points, and can
be used to make decisions about how to best utilize resources.
Classification results are typically presented in the form of a
confusion matrix, which is a table that shows the number of true
positives, false positives, true negatives, and false negatives
[30]. The confusion matrix is used to evaluate the accuracy of
the classification model, and can be used to identify areas where
the model is performing well or poorly. Classification results
can also be used to identify important features in the data that
are driving the model’s predictions. This can be done by
looking at the feature importance scores, which are calculated
by the model and indicate how important each feature is in
making the prediction. This can be used to identify which
features are most important for making accurate predictions,
and can be used to inform decisions about which features to
focus on when building a model [31], [32].

Fig. 7. Classes appearance analysis.

Finally, classification results can be used to compare
different models and determine which one is the best for a given
task. This can be done by looking at the accuracy scores of each
model, as well as other metrics such as precision, recall, and F1
score. Comparing the results of different models can help
identify which model is best suited for a given task, and can
help inform decisions about which model to use [32].

To classify the dataset, it must first understand its details,
the resultant classes from each row of input, and the number of
instances of each class over the whole dataset. As the
information from the dataset were analyzed, it was discovered
that there are three separate classes as a consequence of all the
input rows, which are positive, negative, and neutral, as they
represent an indicator of the subject's emotional state. After
each class was counted, it was discovered that the positive case
occurred 708 times, the negative case appeared 708 times, and
the neutral case appeared 716 times as shown in Fig. 7. These
statistics reveal the dataset's balance, from which the difference
in findings may be precisely calculated. As the last stage in
studying the dataset, a sample may be obtained for each class
using a variety of inputs, as illustrated in Fig. 8.

A. SVM Results

When implementing the SVM algorithm, the tensorflow
library was used for deep learning in Python, on the Kaggle
coding website. And by classifying the studied dataset, and
specifying each of the training data percentage as 50%, the
testing data percentage as 25%, the validation data percentage
as 25%, and 100 epochs to test the algorithm and conclude the
best classification result.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1051 | P a g e

www.ijacsa.thesai.org

Fig. 8. Classes sample.

The classification results of the algorithm came with an
accuracy of 87.5%, after only 15 epochs (early stop), radial
basis function (RBF) kernel [33], and 39 ms/step running speed.
When viewing the confusion matrix as shown in Fig. 9, which
describe matching between actual label and predicted label. It
can be seen that the results are not mixed up, or in another sense,
the algorithm is not confused between dataset classes when
determining the result significantly.

B. LSTM Results

The Long Short-Term Memory (LSTM) model was
developed on the Kaggle coding platform using the Python
tensorflow deep learning framework. By categorising the
examined dataset, designating the percentage of each training
data as 50%, the percentage of test data as 25%, and the
percentage of validation data as 25%, 100 epochs for model
testing, and selecting the best classification result. This model
was built to contain the input layer, and the last layer is
responsible for the output, and because the dataset contains
more than two expected results (3 classes), the Softmax
Activation Function is used [34].

The algorithm's classification results showed an accuracy of
97.35% after just 38 epochs (early stopping) and a running
speed of 2 s/step, which is an excellent result. This result was
reached by setting the learning rate to 0.001 and using Adam as
the model's optimization library. In addition, through Fig. 10, it
can be noted that the classification model was very sharp in
showing the results, as it was not confused with the actual result
of implementing the classification except in very simple cases
that do not exceed 0.06 for each class confused with other
classes.

C. CNN Results

On the Kaggle coding platform, the tensorflow deep
learning library in Python was utilized to create the
convolutional neural network model. By classifying the
investigated data set, defining the percentage of each training
data as 50%, the proportion of test data as 25%, and the
proportion of validation data as 25%, 100 epochs for model
testing, and identifying the best classification result.

This model was built to contain the input layer, five hidden
layers all of which contain an activation function of the type
Rectified Linear Unit (ReLU) [35], and this function is
considered one of the best choices in the selection of the
activation. The last layer is responsible for the output, and

because the dataset contains more than two expected results (3
classes), the Softmax Activation Function is used.

Fig. 9. Confusion Matrix of SVM model result.

Fig. 10. Confusion matrix for LSTM model results.

The algorithm's classification results came with an accuracy
of 98.03 % after only 38 epochs (early stopping) and 58 ms/step
running speed, which is a great result. This result was obtained
as a result of setting the learning rate to 0.001 and using
Adamax as the optimization library on the model. Moreover, it
can be shown in Fig. 11 that the classification model was
extremely crisp in displaying the results, as it was not confused
with the real result of implementing the classification except in
very basic examples where 0.03 for each class confused with
other classes was not exceeded.

D. CNN-LSTM Results

The CNN-LSTM model was implemented on the Kaggle
coding platform using the Python tensorflow deep learning
framework. By classifying the dataset, allocating 50% of the
data for training, 25% for testing, and 25% for validation,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1052 | P a g e

www.ijacsa.thesai.org

conducting 50 epochs for model evaluation, and choosing the
optimal classification outcome. This model was constructed
with an input layer, three CNN layers utilizing the ReLU
activation function and progressively increasing filter sizes
starting from 64 bits. It also includes LSTM layers and a final
output layer. Since the dataset consists of three distinct classes,
the Softmax Activation Function is employed.

Fig. 11. Confusion matrix for CNN model results.

Fig. 12. CNN-LSTM confusion matrix.

The algorithm achieved a classification accuracy of 98.50%
after completing 100 epochs without early stopping.
Additionally, it demonstrated a running speed of 244 ms/step,
which is considered an outstanding outcome. The attainment of
this outcome was accomplished by configuring the learning rate
to 0.001 and employing Adam as the optimization library for
the model. Furthermore, Fig.12 demonstrates that the
classification model exhibited a high level of accuracy in
presenting the findings, as it only encountered confusion with
the actual outcome of the classification in rare instances that did
not surpass 0.06 for each misclassified class.

VI. RESULT AND DISCUSSION

When comparing the results of different models to classify
the studied dataset (SVM, LSTM, CNN, and CNN-LSTM),
more than one aspect can be relied on for comparison, the first
and most important of which is the accuracy of the
classification when implementing the model, the second is the
confusion matrix, which is related in one way or another to the
first factor in the comparison, and the third factor that was taken
into account when comparing is speed of implementation of the
model, as measured by the speed of the test steps and also the
speed of early stopping when testing the model. Table I
compiles these features for all models utilized in the paper.

TABLE I. COMPARISION FACTOR CONCLUSION

Model
Comparison factors

Accuracy Test speed Early stop

SVM 87.5 % 39 ms/step 15 epochs

LSTM 97.35 % 2 sec/step 15 epochs

CNN 98.03 % 58 ms/step 38 epochs

CNN-LSTM 98.50 % 244 ms/step No

With regard to the first factor in the comparison, which is
the accuracy of the model in implementation, it came in the
foreground, and it is considered one of the best classification
results applied to the studied data set. It is the result of
classification using CNN-LSTM with an accuracy of 98.50%.
Then it comes in second place, and not by a large difference, is
the result of classification using CNN, with an accuracy of 98
%, while in third place was the LSTM model with 97.35 %
accuracy, finally SVM where the classification accuracy was
not good enough compared to the previous three models with
an accuracy of 87.5 %.

As mentioned previously, the confusion matrix is linked to
the accuracy of the classification, or in other words, this matrix
is a breakdown of the characteristics of the classification result
that lead to its accuracy. The order of the models when
comparing the results based on the quality of the matrix came
in the same order as the models in terms of accuracy.

As for the third factor in the comparison, it is actually
divided into two different factors, which are the speed of
implementation by step and the speed of implementation in
early stopping when testing the model. In view of the speed of
execution by step, the SVM model came in first place with a
speed of 39 ms/step, and in second place came the CNN model
with 58 ms/step, and the CNN-LSTM model came in third place
with a large difference from its predecessors with 244 ms/step.
and in last place LSTM with extreme test step speed time with
2 sec/step However, when looking at the speed of early
stopping, the order can differ relatively, as the SVM model
comes in first place equally with the LSTM model by stopping
after only 15 epochs out of 100 epochs that were specified for
implementation, and the CNN-LSTM model remains in last
place with no early stop out of 100 epochs also for
implementation.

As a result of this comparison, it can be concluded that
although the classification of the CNN-LSTM is the best as a
model for classification, it must be taken into account that the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1053 | P a g e

www.ijacsa.thesai.org

previous results are dependent on the input factors of each
model, which were fixed in all cases, so that comparison can be
made based on the equality of classification characteristics.

The CNN-LSTM was the best of them, as it has the highest
accuracy, which is the most important factor in the comparison.
In addition, the execution speed (step speed) was not bad
(between the other models), but despite that, it was the most in
the number of epochs that the model needed to infer the best
classification result (training the model) but this did not
significantly affect the outcome of the total execution time of
the model.

And if we exclude the factor of execution speed, then CNN-
LSTM, CNN and LSTM are very close in the result of
classification accuracy, then these models can be equally
reliable on the classification of the data set. In contrast, if the
accuracy factor is excluded, the SVM model is the fastest in
step speed and the least in the number of epochs required to
train the model equally with the LSTM model, so SVM can be
said that it is the best in the speed factor.

Considering that the CNN-LSTM result is the best model
studied in this paper in terms of accuracy, which is the most
reliable factor in the comparison. In the end, this model can also
be compared with the similar models previously published on a
similar database and with the different models. Through the
previous literature study during previous years, published
research showed limited accuracy of the techniques used, as K-
nearest neighbor recorded an accuracy of 86.46% in Z-T. Liu.
et al.'s 2019 research. T. Song et al. also recorded in their
research published in 2020, an accuracy of 90.4% using
DGCNN. Also, it was followed by the accuracy of the research
of S.K. Khare et al. 2020, which reached 95.7% using the
LSSVM, and then the RNN, LSTM, and GRU models obtained
an accuracy of 95%, 97%, and 96% respectively in the research
of Chowdary MK et al. 2022. Finally, Chen J. et al. 2024 are
achieved 75.26% multi-classification accuracy by using GNN
model in their published study. On the other hand, expectations
were raised for an impressive result using the studied model
(CNN-LSTM), where a classification accuracy was obtained
that achieved a gorgeous mark in prediction. A summary of the
results of the reviewed researches appears in Table II, where
each row indicates the research person, the model used in it, and
the model’s accuracy result during testing.

TABLE II. LITERATURE RESULTS SUMMARY COMPARED WITH PROPOSED

MODEL

Author
Comparison

Model Accuracy

Z-T. Liu et al. (2019) [9] K-NN 86.46 %

T. Song et al. (2020) [10] DGCNN 90.40 %

S.K. Khare et al. (2020) [11] LSSVM 95.70 %

Chowdary MK et al. (2022) [12]

RNN 95.00 %

LSTM 97.00 %

GRU 96.00 %

Chen J. et al. (2024) [13] GNN 75.26 %

Proposed model CNN-LSTM 98.50 %

VII. APPLICATIONS

Brain Computer Interfacing (BCI) is a technology, which
enables communication between humans and machines through
the direct interpretation of brain activities. This technology has
a wide range of potential applications as shown in Fig. 13 and
has been explored by researchers in fields such as medical
diagnostics, prosthetics, human-machine interaction, and
communication aids [36].

Fig. 13. BCI applications.

After classifying the data set, the classification model may
be used to connect the model's inputs, which are brain signals,
and any application that can be controlled by the dataset's
distinct classifications. When looking at the field of medical
industries, it is possible to coordinate between commands to
control prosthetic limbs through brain signals directly, through
three different commands linked to the three groups of the data
set, for patients with paraplegia or total paralysis who are
unable to move their natural organs, or move the muscles to
control the Industrial limb [37]–[39]. Among the applications
is Brain control in industrial robots in smart industries. It is also
possible to link the results of classification (one of the classes
for the data set) and a set of successive commands that include
a path for a complete industrial process, so that the controller
has the ability to control the brain in three separate industrial
processes [40]. In addition, brain control technology can be
used to control laboratory robots, and this can be used in
research and scientific projects that allow the formation of
innovative systems of intelligent control [41].

One of the most exciting applications of BCI in gaming and
entertainment is the ability to control game characters and
objects with your thoughts. This could allow players to control
their characters in a more natural and intuitive way, as well as
allowing for more complex interactions with the game world.
For example, a player could use their thoughts to control a
character’s movements, or to manipulate objects in the game
world. This could open up a completely new level of immersion
and interaction with games [42].

Brain-Computer Interface (BCI) technology might change
how individuals see themselves and their surroundings. BCI
technology raises ethical and legal issues. BCI technology may
enhance quality of life and give therapeutic advantages, but also

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1054 | P a g e

www.ijacsa.thesai.org

presents privacy, autonomy, and informed consent problems
[43].

VIII. CONCLUSION AND FUTURE WORK

The domain of Brain-Computer Interface (BCI) stands as an
exceptionally captivating realm of scientific inquiry due to its
potential intersections with diverse industries, particularly
those requiring intelligent control, such as industry and
medicine. Various methodologies are employed to assemble
datasets of cerebral signals for the comprehensive
understanding of the intricate signals emanating from the brain.
Among these methodologies, the non-invasive
Electroencephalogram (EEG) method holds particular
significance. The acquired dataset necessitates meticulous
categorization, wherein the identification of influential
characteristics responsible for inducing changes becomes
imperative for its applicability across diverse control
modalities.

Furthermore, the demand for precision and expeditious
processing in BCI applications, especially in alignment with
dynamic environmental motion sequences, prompted a
comparative evaluation of four alternative classification
models, namely Support Vector Machine (SVM), Long Short-
Term Memory (LSTM), Convolutional Neural Network
(CNN), and the hybrid CNN-LSTM model. The findings of this
comparative analysis underscore the notable efficacy of the
CNN-LSTM model, manifesting an accuracy of 98.5%
alongside an operational speed of 244 milliseconds per step.
Following suit, the CNN model secured the second position,
achieving an accuracy of 98% with a step speed of 58
milliseconds per step. Occupying the third position, the LSTM
model demonstrated an accuracy of 97.35%, albeit at a
comparatively slower step speed of 2 seconds per step.
Conclusively, the SVM model finalized the comparison,
registering an accuracy of 87.5% and a step speed of 39
milliseconds per step. These findings accentuate the CNN-
LSTM model's prowess in BCI applications, positioning it as
the preeminent choice for striking a commendable equilibrium
between accuracy and processing speed within dynamic
environmental contexts.

Future work can involve two avenues: exploring the
accuracy of other classification models and developing entirely
new ones to advance the field. Additionally, we can investigate
the creation of an integrated system utilizing brain signals for
control and evaluate its overall performance in accurately
executing commands based on the underlying classification
accuracy.

ACKNOWLEDGMENT

We would like to thank Heriot-Watt University for its
support to publish this paper. We also thank Horus University
(Egypt) for its explicit support throughout this research and for
providing access to high featured computer labs for models’
implementation.

Kaggle platform was used as a workspace for modeling the
studied approaches and implementing the proposed models.

REFERENCES

[1] S. N. Abdulkader, A. Atia, and M. S. M. Mostafa, “Brain computer
interfacing: Applications and challenges,” Egyptian Informatics Journal,
vol. 16, no. 2. Elsevier B.V., pp. 213–230, Jul. 01, 2015. doi:
10.1016/j.eij.2015.06.002.

[2] Anupama H S, N. K. Cauvery, and Lingaraju G M, “Brain Computer
Interface and Its Types-A Study,” Int J Adv Eng Technol, vol. 3, no. 2,
pp. 739–745, 2012, Accessed: Feb. 22, 2024. [Online]. Available:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=15cd
5fc6fd521f60cc35a2f4079b14360601117a.

[3] M.-P. Hosseini, A. Hosseini, and K. Ahi, “A Review on Machine
Learning for EEG Signal Processing in Bioengineering,” IEEE Rev
Biomed Eng, vol. 14, pp. 204–218, 2021, doi:
10.1109/RBME.2020.2969915.

[4] L. Bi, X.-A. Fan, and Y. Liu, “EEG-Based Brain-Controlled Mobile
Robots: A Survey,” IEEE Trans Hum Mach Syst, vol. 43, no. 2, pp. 161–
176, 2013, doi: 10.1109/TSMCC.2012.2219046.

[5] R. Bhavsar, Y. Sun, N. Helian, N. Davey, D. Mayor, and T. Steffert, “The
correlation between EEG signals as measured in different positions on
scalp varying with distance,” in Procedia Computer Science, Elsevier
B.V., 2018, pp. 92–97. doi: 10.1016/j.procs.2018.01.015.

[6] J. das C. Rodrigues, P. P. R. Filho, E. Peixoto, A. K. N, and V. H. C. de
Albuquerque, “Classification of EEG signals to detect alcoholism using
machine learning techniques,” Pattern Recognit Lett, vol. 125, pp. 140–
149, 2019, doi: https://doi.org/10.1016/j.patrec.2019.04.019.

[7] H. Dose, J. S. Møller, H. K. Iversen, and S. Puthusserypady, “An end-to-
end deep learning approach to MI-EEG signal classification for BCIs,”
Expert Syst Appl, vol. 114, pp. 532–542, 2018, doi:
https://doi.org/10.1016/j.eswa.2018.08.031.

[8] J. Abdillah, I. Asror, and Y. F. A. Wibowo, “Emotion Classification of
Song Lyrics using Bidirectional LSTM Method with GloVe Word
Representation Weighting,” Jurnal RESTI (Rekayasa Sistem Dan
Teknologi Informasi), vol. 4, no. 4, pp. 723–729, 2020, Accessed: Feb.
22, 2024. [Online]. Available:
http://jurnal.iaii.or.id/index.php/RESTI/article/download/2156/284.

[9] Z.-T. Liu, Q. Xie, M. Wu, W.-H. Cao, D.-Y. Li, and S.-H. Li,
“Electroencephalogram Emotion Recognition Based on Empirical Mode
Decomposition and Optimal Feature Selection,” IEEE Trans Cogn Dev
Syst, vol. 11, no. 4, pp. 517–526, Dec. 2019, doi:
10.1109/TCDS.2018.2868121.

[10] T. Song, W. Zheng, P. Song, and Z. Cui, “EEG Emotion Recognition
Using Dynamical Graph Convolutional Neural Networks,” IEEE Trans
Affect Comput, vol. 11, no. 3, pp. 532–541, Jul. 2020, doi:
10.1109/TAFFC.2018.2817622.

[11] S. K. Khare, V. Bajaj, and G. R. Sinha, “Adaptive Tunable Q Wavelet
Transform-Based Emotion Identification,” IEEE Trans Instrum Meas,
vol. 69, no. 12, pp. 9609–9617, Dec. 2020, doi:
10.1109/TIM.2020.3006611.

[12] M. K. Chowdary, J. Anitha, and D. J. Hemanth, “Emotion Recognition
from EEG Signals Using Recurrent Neural Networks,” Electronics
(Basel), vol. 11, no. 15, Jul. 2022, doi: 10.3390/electronics11152387.

[13] J. Chen, X. Lin, W. Ma, Y. Wang, and W. Tang, “EEG-based emotion
recognition for road accidents in a simulated driving environment,”
Biomed Signal Process Control, vol. 87, no. 8, Jan. 2024, doi:
10.1016/j.bspc.2023.105411.

[14] B. Chakravarthi, S. C. Ng, M. R. Ezilarasan, and M. F. Leung, “EEG-
based emotion recognition using hybrid CNN and LSTM classification,”
Front Comput Neurosci, vol. 16, Oct. 2022, doi:
10.3389/fncom.2022.1019776.

[15] M. Besserve, K. Jerbi, F. Laurent, S. Baillet, J. Martinerie, and L. Garnero,
“Classification methods for ongoing EEG and MEG signals,” Biol Res,
vol. 40, no. 4, pp. 415–437, 2007, doi: http://dx.doi.org/10.4067/S0716-
97602007000500005.

[16] M. Yoshikawa, M. Mikawa, and K. Tanaka, “A myoelectric interface for
robotic hand control using support vector machine,” in 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2007, pp.
2723–2728. doi: 10.1109/IROS.2007.4399301.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1055 | P a g e

www.ijacsa.thesai.org

[17] T. N. T. Thu and V. D. Xuan, “Using support vector machine in FoRex
predicting,” in 2018 IEEE International Conference on Innovative
Research and Development (ICIRD), 2018, pp. 1–5. doi:
10.1109/ICIRD.2018.8376303.

[18] K. Harimoorthy and M. T, “Multi-disease prediction model using
improved SVM-radial bias technique in healthcare monitoring system,” J
Ambient Intell Humaniz Comput, vol. 12, Feb. 2021, doi:
10.1007/s12652-019-01652-0.

[19] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support
vector machines,” IEEE Intelligent Systems and their Applications, vol.
13, no. 4, pp. 18–28, 1998, doi: 10.1109/5254.708428.

[20] D. Tomar and S. Agarwal, “A comparison on multi-class classification
methods based on least squares twin support vector machine,” Knowl
Based Syst, vol. 81, pp. 131–147, 2015, doi:
https://doi.org/10.1016/j.knosys.2015.02.009.

[21] J. Hernandez, D. López, and N. Vera, “Primary user characterization for
cognitive radio wireless networks using long short-term memory,” Int J
Distrib Sens Netw, vol. 14, p. 155014771881182, Feb. 2018, doi:
10.1177/1550147718811828.

[22] S. Tortora, S. Ghidoni, C. Chisari, S. Micera, and F. Artoni, “Deep
learning-based BCI for gait decoding from EEG with LSTM recurrent
neural network,” J Neural Eng, vol. 17, no. 4, Aug. 2020, doi:
10.1088/1741-2552/ab9842.

[23] H. Almutairi, G. M. Hassan, and A. Datta, “Classification of Obstructive
Sleep Apnoea from single-lead ECG signals using convolutional neural
and Long Short Term Memory networks,” Biomed Signal Process
Control, vol. 69, p. 102906, 2021, doi:
https://doi.org/10.1016/j.bspc.2021.102906.

[24] E. Pranav, S. Kamal, C. Satheesh Chandran, and M. H. Supriya, “Facial
Emotion Recognition Using Deep Convolutional Neural Network,” in
2020 6th International Conference on Advanced Computing and
Communication Systems (ICACCS), 2020, pp. 317–320. doi:
10.1109/ICACCS48705.2020.9074302.

[25] K. Noda, H. Arie, Y. Suga, and T. Ogata, “Multimodal integration
learning of robot behavior using deep neural networks,” Rob Auton Syst,
vol. 62, no. 6, pp. 721–736, 2014, doi: 10.1016/j.robot.2014.03.003.

[26] B. Cao, H. Niu, J. Hao, and G. Wang, “Building EEG-based CAD object
selection intention discrimination model using convolutional neural
network (CNN),” Advanced Engineering Informatics, vol. 52, p. 101548,
2022, doi: https://doi.org/10.1016/j.aei.2022.101548.

[27] G. A. Marcoulides, “Discovering Knowledge in Data: an Introduction to
Data Mining,” J Am Stat Assoc, vol. 100, no. 472, pp. 1465–1465, Dec.
2005, doi: 10.1198/jasa.2005.s61.

[28] Daniel T. Larose, Discovering Knowledge in Data : An Introduction to
Data Mining, Second edition. Wiley-Interscience, Hoboken, N.J., ©2005,
2017.

[29] J. Bird, A. Ekart, C. Buckingham, and D. Faria, “Mental Emotional
Sentiment Classification with an EEG-based Brain-machine Interface,”
Feb. 2019.

[30] R. Ahmed Hegazii, E. Abdelhalim, and H. El-Din Mostafa, “A Proposed
Technique for Breast Cancer Prediction and Classification Based on

Machine Learning Section A-Research paper Eur,” Chem. Bull, vol. 2023,
no. 8, pp. 7648–7656, doi: 10.48047/ecb/2023.12.8.619.

[31] T. Kaur and T. K. Gandhi, “Deep convolutional neural networks with
transfer learning for automated brain image classification,” Mach Vis
Appl, vol. 31, no. 3, p. 20, 2020, doi: 10.1007/s00138-020-01069-2.

[32] F. Hemmatian and M. K. Sohrabi, “A survey on classification techniques
for opinion mining and sentiment analysis,” Artif Intell Rev, vol. 52, no.
3, pp. 1495–1545, 2019, doi: 10.1007/s10462-017-9599-6.

[33] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin,
“Training and Testing Low-degree Polynomial Data Mappings via Linear
SVM,” 2010.

[34] B. Gao and L. Pavel, “On the Properties of the Softmax Function with
Application in Game Theory and Reinforcement Learning,” Apr. 2017,
[Online]. Available: http://arxiv.org/abs/1704.00805

[35] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in Proceedings of the 27th International
Conference on International Conference on Machine Learning, in
ICML’10. Madison, WI, USA: Omnipress, 2010, pp. 807–814.

[36] S. N. Abdulkader, A. Atia, and M.-S. M. Mostafa, “Brain computer
interfacing: Applications and challenges,” Egyptian Informatics Journal,
vol. 16, no. 2, pp. 213–230, 2015, doi:
https://doi.org/10.1016/j.eij.2015.06.002.

[37] J. H. Jeong, K. H. Shim, D. J. Kim, and S. W. Lee, “Brain-Controlled
Robotic Arm System Based on Multi-Directional CNN-BiLSTM
Network Using EEG Signals,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 28, no. 5, pp. 1226–1238, May 2020, doi:
10.1109/TNSRE.2020.2981659.

[38] M. A. A. Mousa, A. Elgohr, and H. Khater, “Path Planning for a 6 DoF
Robotic Arm Based on Whale Optimization Algorithm and Genetic
Algorithm,” Journal of Engineering Research, vol. 7, no. 5, pp. 160–168,
Nov. 2023, doi: 10.21608/erjeng.2023.237586.1256.

[39] M. A. A. Mousa, A. T. Elgohr, and H. A. Khater, “Trajectory
Optimization for a 6 DOF Robotic Arm Based on Reachability Time,”
Annals of Emerging Technologies in Computing, vol. 8, no. 1, pp. 22–35,
Jan. 2024, doi: 10.33166/AETiC.2024.01.003.

[40] M. A. Elazab, hamouda Abueldahab, A. Elgohr, and M. S. Elhadidy, “A
Comprehensive Review on Hybridization in Sustainable Desalination
Systems,” Journal of Engineering Research, vol. 7, no. 5, pp. 89–99, Nov.
2023, doi: 10.21608/erjeng.2023.235480.1238.

[41] B. Zhang, J. Wang, and T. Fuhlbrigge, “A review of the commercial brain-
computer interface technology from perspective of industrial robotics,” in
2010 IEEE International Conference on Automation and Logistics, 2010,
pp. 379–384. doi: 10.1109/ICAL.2010.5585311.

[42] S. Dutta, T. Banerjee, N. D. Roy, B. Chowdhury, and A. Biswas,
“Development of a BCI-based gaming application to enhance cognitive
control in psychiatric disorders,” Innov Syst Softw Eng, vol. 17, no. 2, pp.
99–107, 2021, doi: 10.1007/s11334-020-00370-7.

[43] S. Burwell, M. Sample, and E. Racine, “Ethical aspects of brain computer
interfaces: a scoping review,” BMC Med Ethics, vol. 18, no. 1, p. 60,
2017, doi: 10.1186/s12910-017-0220-y.

