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Abstract—The field of brain computer interface (BCI) is one of 

the most exciting areas in the field of scientific research, as it can 

overlap with all fields that need intelligent control, especially the 

field of the medical industry. In order to deal with the brain and 

its different signals, there are many ways to collect a dataset of 

brain signals, the most important of which is the collection of 

signals using the non-invasive EEG method. This group of data 

that has been collected must be classified, and the features 

affecting changes in it must be selected to become useful for use in 

different control capabilities. Due to the need for some fields used 

in BCI to have high accuracy and speed in order to comply with 

the environment's motion sequences, this paper explores the 

classification of brain signals for their usage as control signals in 

Brain Computer Interface research, with the aim of integrating 

them into different control systems. The objective of the study is 

to investigate the EEG brain signal classification using different 

techniques such as Long Short-Term Memory (LSTM), 

Convolutional Neural Networks (CNN), as well as the machine 

learning approach represented by the Support Vector Machine 

(SVM). We also present a novel hybrid classification technique 

called CNN-LSTM which combines CNNs with LSTM networks. 

This proposed model processes the input data through one or more 

of the CNN’s convolutional layers to identify spatial patterns and 

the output is fed into the LSTM layers to capture temporal 

dependencies and sequential patterns. This proposed combination 

uses CNNs’ spatial feature extraction and LSTMs’ temporal 

modelling to achieve high efficacy across domains. A test was done 

to determine the most effective approach for classifying emotional 

brain signals that indicate the user's emotional state. The dataset 

used in this research was generated from a widely available MUSE 

EEG headgear with four dry extra-cranial electrodes. The 

comparison came in favor of the proposed hybrid model (CNN-

LSTM) in first place with an accuracy of 98.5% and a step speed 

of 244 milliseconds/step; the CNN model came in the second place 

with an accuracy of 98.03% and a step speed of 58 

milliseconds/step; and in the third place, the LSTM model 

recorded an accuracy of 97.35% and a step speed of 2 sec/step; 

finally, in last place, SVM came with 87.5% accuracy and 39 

milliseconds/step running speed. 

Keywords—BCI; EEG; Brain Signals Classification; SVM; 

LSTM, CNN; CNN-LSTM 

I. INTRODUCTION 

Brain Computer Interface (BCI) is a technology that enables 
direct communication between the brain and an external device 
using signals generated from the brain. It has been proposed as 
a potential therapeutic treatment for various neurological 
disorders and a tool for efficient human-computer interaction. 

BCI technology can be used to control assistive devices such as 
wheelchairs, prostheses and communication systems, as well as 
to monitor brain activity and diagnose neurological diseases. 
Moreover, BCI technology can be used to provide a more 
natural form of human-computer interaction, allowing users to 
control computers with thoughts [1]. BCI technology can be 
divided into two main categories as shown in Fig.1: invasive 
and noninvasive. Invasive BCI requires the insertion of 
electrodes into the brain in order to capture brain signals, which 
is a risky and complicated process. On the other hand, 
noninvasive BCI relies on measuring signals from the scalp or 
other parts of the body to detect brain activities. Noninvasive 
BCI is more commonly used and includes 
electroencephalography (EEG), magnetoencephalography 
(MEG), and functional near-infrared spectroscopy (fNIRS). 
EEG is the most widely used BCI technique and is based on 
electrical signals generated by the brain [2]. 

EEG signals are a type of electrical activity that can be 
measured from the brain. They are used in a variety of 
engineering fields, including medical, robotics, and computer 
engineering. In medical engineering, EEG signals are used to 
diagnose and monitor neurological conditions. EEGs can be 
used to detect seizures, diagnose sleep disorders, and monitor 
brain activity during surgery. EEGs can also be used to measure 
brain activity during cognitive tasks, such as memory tests. This 
can help doctors better understand how the brain works and 
how to treat neurological conditions [3]. In robotics 
engineering, EEG signals are used to control robotic devices. 
By measuring the electrical activity of the brain, robots can be 
programmed to respond to certain commands. This can be used 
to create robots that can interact with humans in a more natural 
way. For example, robots can be programmed to respond to 
facial expressions or voice commands [4]. In computer 
engineering, EEG signals are used to create brain-computer 
interfaces. These allow users to control computers with their 
thoughts. This technology is still in its early stages, but it has 
the potential to revolutionize the way we interact with 
computers [5]. 

The most common EEG signal classification methods as 
shown in Fig. 2 are supervised learning algorithms, such as 
Support Vector Machines (SVMs), Artificial Neural Networks 
(ANNs), and decision trees. These algorithms are used to 
identify patterns in EEG signals that can be used to diagnose 
and monitor neurological conditions [6]. For example, SVMs 
can be used to classify EEG signals into different categories, 
such as normal or abnormal, or to detect changes in EEG signals 
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over time. ANNs, which include Convolutional Neural 
Network (CNN), can be used to identify patterns in EEG signals 
that can be used to diagnose and monitor neurological 
conditions. Decision trees can be used to identify patterns in 
EEG signals that can be used to diagnose and monitor 
neurological conditions [7]. 

 
Fig. 1. Brain computer interface technology [1]. 

 
Fig. 2. Dataset classification techniques [8]. 

A. Related Work 

Z. -T. Liu et al. (2019) tested a proposed approach on DEAP 
dataset, classifying Valance and Arousal emotional states using 
K-nearest neighbor and support vector machine. The 
experiments compare temporal windows of different lengths 
and three EEG signal rhythms. The results show that the EEG 
signal with one temporal window has the highest recognition 
accuracy of 86.46%. A multimodal emotional communication-
based humans-robots interaction system would use the 
suggested approach for real-time emotion identification [9]. 

T. Song et al. (2020) to recognize emotions in multichannel 
EEG data used a dynamical graph convolutional neural network 
(DGCNN). Our EEG emotion recognition method uses a graph 
to describe multichannel EEG data and classify emotions using 
this model. EEG emotion recognition is improved by learning 
new features from the adjacency matrix. Emotion EEG datasets 
SEED and DREAMER were extensively studied. The proposed 
recognition method is more accurate than current methods. On 
SEED, it averaged 90.4% in subject-dependent experiments 
and 79.95% in subject-independent cross-validation [10]. 

In 2020, S. K. Khare and colleagues introduced an adaptive 
tunable Q wavelet transform for selecting tuning parameters 
automatically. Grey wolf optimization identifies the best tuning 
parameters. GWO tuning parameters divide EEG signals into 
sub bands. Time-domain properties of SB are inputted into a 
multiclass least-squares support vector machine. Evaluating the 
classification accuracy of four main emotions - happiness, fear, 
sadness, and relaxation - compared to current methods. A radial 

basis function kernel that outperforms prior methods on the 
same dataset achieves an accuracy of 95.70%. This article 
presents a nonparametric method for decomposing EEG signals 
to improve efficiency. This approach can enhance the progress 
of BCI system development by utilizing machine learning 
techniques [11]. 

Chowdary MK, et al., (2022) aim to classify emotions from 
electroencephalogram signals by utilizing different recurrent 
neural network structures. Three architectures employed in this 
study for emotion recognition using EEG signals are RNN 
(recurrent neural network), LSTM (long short-term memory 
network), and GRU (gated recurrent unit). Experimental data 
confirmed the efficiency of these networks in terms of 
performance measures. The study utilized the EEG Brain Wave 
Dataset: Feeling Emotions and obtained an average accuracy of 
95% for RNN, 97% for LSTM, and 96% for GRU in detecting 
emotions [12]. 

EEG capture and emotion categorization in a simulated 
driving environment is suggested by Chen J. et al. (2024) to 
study panic emotion and accident-avoidance skills. The 
program models obstacle avoidance at different risk levels 
using vehicle speed. The system models the brain's 
physiological structure for data processing using graph neural 
networks (GNN) with functional connection and attention 
mechanisms. Various research compared entropy and power 
properties. The top single-label F1 score was 76.7%, and the 
three-class classification was 75.26 % accurate. Binary 
classification had 91.5% accuracy and the highest F1 score for 
a single label was 91.86%. Deep learning algorithms can 
accurately mimic hazardous events, record the driver's EEG 
data, and quickly track emotional states, according to 
experiments [13]. 

This research investigates classifying brain signals for use 
as control signals in Brain-Computer Interface (BCI) systems 
designed for various robotic applications. The aim is to 
compare four methods for multi-class classification: Long 
Short-Term Memory (LSTM) and Convolutional Neural 
Networks (CNN) from deep learning, a proposed hybrid CNN-
LSTM approach, and Support Vector Machine (SVM) from 
machine learning. Ultimately, this research seeks to determine 
the most effective method for classifying emotional brain 
signals that reflect the user's emotional state. 

The rest of this paper is organized as follows: Section II 
demonstrates the main concepts for signals classification 
overview; Section III presents the classification models; 
Section IV describes the dataset; Sections V and VI elaborate 
the classification results and a discussion of the results 
generated from the tests; Section VII mentions the applications 
that can benefit from this research topic; Section VIII concludes 
the paper and presents the future work. 

II. CLASSIFICATION OVERVIEW 

Dataset classification is a process of organizing data into 
categories based on certain characteristics. It is a way of 
organizing data into meaningful groups so that it can be more 
easily analyzed and understood. Dataset classification is used 
in a variety of fields, including data mining, machine learning, 
and artificial intelligence. 
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Fig. 3. Dataset classification process overview [14]. 

The process of dataset classification, as shown in Fig. 3 
begins with the identification of the data that needs to be 
classified. This data can come from a variety of sources, such 
as databases, text documents, images, and audio files. Once the 
data has been identified, it is then divided into categories based 
on certain characteristics. These characteristics can include 
size, type, content, and other attributes. 

Once the data has been divided into categories, it is then 
analyzed to determine the relationships between the different 
categories. This analysis can be done using a variety of 
techniques, such as clustering, decision trees, and neural 
networks. The goal of this analysis is to identify patterns and 
trends in the data that can be used to make predictions or 
decisions. Once the data has been classified and analyzed, it can 
then be used for a variety of purposes. For example, it can be 
used to create predictive models, to identify customer segments, 
or to detect anomalies in the data. It can also be used to create 
visualizations of the data, such as charts and graphs, which can 
be used to better understand the data [15]. 

III. CLASSIFICATION MODELS 

A. Support Vector Machine (SVM) 

Support Vector Machines (SVMs) are a powerful and 
versatile machine learning algorithm used for classification and 
regression tasks. SVMs are a supervised learning algorithm that 
can be used to classify data into two or more classes. They are 
based on the concept of finding a hyperplane that best divides a 
dataset into two classes. The main advantage of SVMs is that 
they are very effective in high dimensional spaces. This is 
because they use a kernel trick to map the data into a higher 
dimensional space, where it can be separated by a hyperplane. 
This allows them to capture complex relationships between the 
data points [16]. SVMs are also very robust to overfitting. This 
is because they use a regularization parameter which helps to 

reduce the complexity of the model and prevent overfitting. 
SVMs are also very efficient in terms of both time and memory. 
This is because they only need to store a subset of the training 
data, which makes them very efficient in terms of memory 
usage. In addition, SVMs are very versatile and can be used for 
a variety of tasks such as classification, regression, and outlier 
detection [17]. 

Building a Support Vector Machine (SVM) algorithm with 
Python as shown in Algorithm 1 [18], is a relatively 
straightforward process. The first step is to import the necessary 
libraries. The most common libraries used for SVM in Python 
are Scikit-learn, Numpy, and Matplotlib. Once the libraries are 
imported, the next step is to prepare the data. This involves 
loading the data into a Pandas Data Frame, cleaning the data, 
and splitting it into training and testing sets. It is important to 
ensure that the data is properly scaled and normalized before 
training the model. The next step is to create the SVM model. 
This is done by instantiating an SVM classifier object from the 
Scikit-learn library. The classifier object can then be fitted to 
the training data using the fit() method. Once the model is 
trained, it can be used to make predictions on the test data. This 
is done by calling the predict() method on the classifier object. 
The predictions can then be evaluated using a variety of metrics 
such as accuracy, precision, recall, and F1 score [19]. 

Algorithm 1: SVM model 

Input: X (array of input data (features)), Y (array of output data 

(classes - labels)) 

Output: performance of model (accuracy – precision – confusion 
matrix) 

1.    Function: 

     Training _ SVM  

                   clf = svm.SVC(kernel='kernal type') 

                   clf.fit(X_train, y_train) 

 

2.     Initialize: 

      Learning rate – Number of runs (epoch)  

             for i in X array 

                    if (Y(i) x X(i) x q) > 1 

                    then  

update: q = q + learning rate x ((X(i)*Y(i))*(-2*(1/epoch)*q) 

                    else 

update: q = q + learning rate x (-2*(1/epoch)*q) 

                     end if 

                     end 

In the context of multi-class classification, SVMs can be 
used to construct a maximum-margin hyperplane that divides 
the feature space into regions, each corresponding to a 
particular class. The algorithm then searches for the optimal 
hyperplane that maximizes the margin between the classes. 
This hyperplane is then used to classify new data points.  The 
advantage of SVMs is that they can be used to classify data with 
a large number of features and classes, as well as data with non-
linear boundaries. Furthermore, SVMs are robust to outliers and 
can be used to classify data with a high degree of accuracy [19], 
[20]. 
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B. Long Short Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) classifier is a 
powerful deep learning algorithm that can be used to classify 
data. It is a type of recurrent neural network (RNN) that is 
capable of learning long-term dependencies in data. The LSTM 
classifier is a powerful tool for predicting and classifying data, 
and it has been used in a variety of applications, such as natural 
language processing, speech recognition, time series 
forecasting, and classifying sequences of data, such as text, 
audio, and video. As shown in Fig. 4, the LSTM classifier is 
composed of a series of memory cells, each of which contains 
a set of weights and biases. The weights and biases are adjusted 
during the training process to learn the patterns in the data [21]. 
The memory cells are connected in a chain, and each cell is 
connected to the next cell in the chain. This allows the network 
to remember information from previous cells and use it to make 
predictions [22]. The LSTM classifier is trained using a 
supervised learning algorithm. During the training process, the 
network is presented with a set of input data and the desired 
output. The network then adjusts the weights and biases of the 
memory cells to learn the patterns in the data. Once the training 
is complete, the network can be used to make predictions on 
new data [23]. 

 
Fig. 4. LSTM classifier model flowchart [21]. 

Building an LSTM model with Python is a great way to get 
started with deep learning. The first step in building an LSTM 
model with Python is to import the necessary libraries. The 
most popular library for deep learning in Python is TensorFlow, 
which provides a high-level API for building and training 
neural networks. Other popular libraries include Keras, 
PyTorch, and Theano. Once the libraries are imported, the next 
step is to prepare the data. This involves loading the data, 
preprocessing it, and splitting it into training and test sets. It is 
important to ensure that the data is properly normalized and 
scaled before training the model. The next step is to define the 
model architecture. This involves specifying the number of 
layers, the number of neurons in each layer, the type of 
activation functions, and the type of optimizer. It is also 
important to specify the input and output shapes of the model. 
Once the model architecture is defined, the next step is to 
compile the model. This involves specifying the loss function, 

the optimizer, and the metrics to be used for evaluating the 
model. Finally, the model can be trained. This involves 
specifying the number of epochs, the batch size, and the 
validation split. It is important to monitor the training process 
to ensure that the model is not overfitting or underfitting the 
data [22]. 

C. Convolutional Neural Network (CNN) 

A convolutional neural network (CNN) is a type of artificial 
neural network used in deep learning that is specifically 
designed to process data that has a grid-like structure, such as 
tabular and images datasets. CNNs are composed of multiple 
layers of neurons that each perform a specific task as shown in 
Fig. 5. The first layer of neurons is responsible for detecting 
edges and other basic features in the input image. The second 
layer of neurons is responsible for detecting more complex 
features, such as shapes and patterns. The third layer of neurons 
is responsible for recognizing objects in the image. The fourth 
layer of neurons is responsible for recognizing more complex 
objects, such as faces or animals [24]. 

CNNs are particularly useful in robotics because they are 
able to process large amounts of data quickly and accurately. 
For example, a CNN can be used to identify objects in an image 
or video feed. It can also be used to analyze cognitive data 
represented in a database that enables robots to understand the 
surrounding environment and also understand the commands 
stored within it and classify them according to the event the 
robot is exposed to. This is useful for robots that need to identify 
objects in their environment in order to navigate or interact with 
them. CNNs can also be used to classify objects in a scene, 
which is useful for robots that need to recognize and interact 
with objects in their environment [25]. 

 
Fig. 5. Convolutional Neural Network (CNN) architecture. 

Building a Convolutional Neural Network (CNN) model is 
a complex process that requires a lot of knowledge and 
experience. However, with the right guidance, it can be done 
relatively easily. The following steps outline the process of 
building a CNN model as described in Algorithm 2 [26]: 

 Data Preparation: The first step in building a CNN 
model is to prepare the data. This includes gathering the 
data, cleaning it, and formatting it into a suitable format 
for the model. This step is important as it ensures that 
the model is trained on the most accurate and up-to-date 
data. 

 Model Architecture: The next step is to decide on the 
model architecture. This includes deciding on the 
number of layers, the type of layers, and the number of 
neurons in each layer. This step is important as it 
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determines the complexity of the model and how well it 
will perform. 

 Training: Once the model architecture is decided, the 
next step is to train the model. This involves feeding the 
data into the model and adjusting the weights and biases 
of the neurons in order to minimize the error. This step 
is important as it ensures that the model is able to 
accurately predict the output given the input. 

 Evaluation: After the model is trained, the next step is to 
evaluate the model. This involves testing the model on 
unseen data and measuring its performance. This step is 
important as it allows us to determine how well the 
model is performing and if it needs to be improved. 

 Deployment: The final step is to deploy the model. This 
involves making the model available to users so that 
they can use it to make predictions. This step is 
important as it allows the model to be used in real-world 
applications. 

These are the basic steps for building a CNN model. 
However, there are many other steps that can be taken to 
improve the model, such as hyperparameter tuning, 
regularization, and data augmentation. With the right guidance 
and experience, building a CNN model can be a relatively 
straightforward process. 

Algorithm 2: CNN model 

Input: tabular EEG emotional brain signal dataset 

Output: confusion matrix and model testing accuracy 

1. Import necessary libraries 

(Numpy as np, pandas as pd, tensorflow as tf, Sequential, Dense, 

Conv1D, MaxPooling1D, and Flatten) 

2. Load the emotional dataset 

dataset = pd read _ datatype ('dataset . datatype') 

3. Analysis the dataset 

Input signals = dataset drop (columns = ['target columns']) 

Labels = dataset ['last column'] 

4. Split the dataset into training and testing sets 

data train, data test, labels train, labels test = train test split (data, 

labels, test size = test ratio to complete dataset, random state = no. of 

states) 

5. Build the CNN model 

model = Sequential ([ 

    Conv1D parameter definition (filters, kernel size, activation 

functions) 

       Input shape = X train shape. 

       MaxPooling1D size. 

       Dense (output layer count, output activation function 

6. Train the model 

Training history = model fit (data train, labels train, epochs number, 

batch size, validation data (data test, labels test)) 

7. Evaluate the model 

loss accuracy = model evaluate (data test, labels test) 

print Test Loss 

print Test Accuracy 

print confusion matrix 

D. CNN-LSTM Hybrid Model 

The CNN-LSTM model, which combines Convolutional 
Neural Networks (CNNs) with Long Short-Term Memory 
(LSTM) networks, excels at modeling the interdependence of 

spatial and temporal data. This powerful combination leverages 
CNNs' ability to extract spatial features and LSTMs' strength in 
temporal modeling, leading to high effectiveness across various 
domains. 

This hybrid model finds applications in tasks involving 
complex sequential data. It utilizes CNNs for spatial analysis 
and LSTMs for understanding temporal sequences. The CNN-
LSTM model processes input data through one or more 
convolutional layers to identify spatial patterns. The output 
from these layers then feeds into LSTM layers to capture 
temporal dependencies and sequential patterns. Finally, dense 
layers are often used for classification or regression tasks. 
Algorithm 3 lists the whole process of proposed model. 

The model's strength lies in the specialized functions of its 
layers. CNNs excel at extracting features from spatial data, 
while LSTMs represent complex temporal connections. This 
combination allows the model to learn both spatial and 
temporal characteristics simultaneously, enabling a 
comprehensive interpretation of the data. However, achieving 
optimal performance requires careful hyperparameter tuning 
for both CNN and LSTM components, and ensuring 
compatibility between the input data shape and both layer types. 
A small code example using the Keras library shows how to 
sequentially add CNN and LSTM layers for spatiotemporal 
modelling [27]. 

Algorithm 3: CNN-LSTM model 

Input: tabular EEG emotional brain signal dataset 

Output: confusion matrix and model testing accuracy 

1. Import necessary libraries 

(Numpy as np, pandas as pd, tensorflow as tf, Sequential, Dense, 

Conv1D, MaxPooling1D, and Flatten) 

2. Load the emotional dataset 

dataset = pd read _ datatype ('dataset . datatype') 

3. Analysis the dataset 

Input signals = dataset drop (columns = ['target columns']) 

Labels = dataset ['last column'] 

4. Split the dataset into training and testing sets 

data train, data test, labels train, labels test = train test split (data, 

labels, test size = test ratio to complete dataset, random state = no. of 

states) 

5. Build the CNN-LSTM model 

model = Sequential ([ 

 Conv1D parameters definition (filters, kernel size, activation 

functions) 

            Input shape = X train shape. 

            MaxPooling1D size. 

 LSTM parameters definition (units’ size, return sequences) 

 Dense (output layer count, output activation function) 

6. Train the model 

Training history = model fit (data train, labels train, epochs number, 

batch size, validation data (data test, labels test)) 

7. Evaluate the model 

loss accuracy = model evaluate (data test, labels test) 

print Test Loss 

print Test Accuracy 

print confusion matrix 

IV. DATASET DESCRIPTION 

Datasets can be used to analyze trends, identify patterns, 
and make predictions. They can also be used to compare 
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different groups of people or different types of data, store 
information about people, places, events, and other topics, and 
create visualizations like charts, graphs, and maps. They can 
even be used to generate reports and presentations. 

Datasets can be used to analyze trends, identify patterns, 
and make predictions. They can also be used to compare 
different groups of people or to compare different types of data. 
They can also be used to store information about people, places, 
events, and other topics. Datasets can be used to create 
visualizations, such as charts, graphs, and maps. They can also 
be used to create reports and presentations. They can also be 
used to store information about people, places, events, and other 
topics [28]. 

The dataset used in this research is a mental emotional 
sentiment dataset that was collected by other researchers using 
a commercial MUSE EEG headband which was used with a 
resolution of four (TP9, AF7, AF8, TP10) electrodes. To collect 
the data, researchers used a widely available MUSE EEG 
headgear with four dry extra-cranial electrodes. As can be seen 
in Fig. 6, micro voltage readings are taken from electrodes TP9, 
AF7, AF8, and TP10. Two individuals (1 male, 1 female, aged 
20-22) each provided 60 seconds of data for each of the 6 film 
segments, for a total of 12 minutes (720 seconds) of brain 
activity data (6 minutes for each emotional state). A total of 36 
minutes of EEG data was obtained from each individual, 
including six minutes of "neutral brainwave" data. The brain's 
waves were captured at a variable frequency and then 
resampled to 150Hz, yielding a collection of 324,000 data 
points. The positive and negative valence descriptors were 
evaluated instead of the emotions themselves to determine 
which activities were most likely to elicit. For a third category, 
representing the subject's baseline emotional state, neutral data 
were also obtained before any data on emotions were gathered 
(to prevent contamination from the latter). We only gathered 
data from each participant for three minutes every day to 
minimize the influence of a baseline emotional state [29]. 

 
Fig. 6. Position of used EEG electrodes on human skull [29]. 

V. CLASSIFICATION RESULTS 

Classification results are the outcomes of a classification 
process, which is a type of data mining technique used to 

identify patterns and relationships in data. Classification results 
are used to make predictions about future data points, and can 
be used to make decisions about how to best utilize resources. 
Classification results are typically presented in the form of a 
confusion matrix, which is a table that shows the number of true 
positives, false positives, true negatives, and false negatives 
[30]. The confusion matrix is used to evaluate the accuracy of 
the classification model, and can be used to identify areas where 
the model is performing well or poorly. Classification results 
can also be used to identify important features in the data that 
are driving the model’s predictions. This can be done by 
looking at the feature importance scores, which are calculated 
by the model and indicate how important each feature is in 
making the prediction. This can be used to identify which 
features are most important for making accurate predictions, 
and can be used to inform decisions about which features to 
focus on when building a model [31], [32]. 

 
Fig. 7. Classes appearance analysis. 

Finally, classification results can be used to compare 
different models and determine which one is the best for a given 
task. This can be done by looking at the accuracy scores of each 
model, as well as other metrics such as precision, recall, and F1 
score. Comparing the results of different models can help 
identify which model is best suited for a given task, and can 
help inform decisions about which model to use [32]. 

To classify the dataset, it must first understand its details, 
the resultant classes from each row of input, and the number of 
instances of each class over the whole dataset. As the 
information from the dataset were analyzed, it was discovered 
that there are three separate classes as a consequence of all the 
input rows, which are positive, negative, and neutral, as they 
represent an indicator of the subject's emotional state. After 
each class was counted, it was discovered that the positive case 
occurred 708 times, the negative case appeared 708 times, and 
the neutral case appeared 716 times as shown in Fig. 7. These 
statistics reveal the dataset's balance, from which the difference 
in findings may be precisely calculated. As the last stage in 
studying the dataset, a sample may be obtained for each class 
using a variety of inputs, as illustrated in Fig. 8. 

A. SVM Results 

When implementing the SVM algorithm, the tensorflow 
library was used for deep learning in Python, on the Kaggle 
coding website. And by classifying the studied dataset, and 
specifying each of the training data percentage as 50%, the 
testing data percentage as 25%, the validation data percentage 
as 25%, and 100 epochs to test the algorithm and conclude the 
best classification result. 
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Fig. 8. Classes sample. 

The classification results of the algorithm came with an 
accuracy of 87.5%, after only 15 epochs (early stop), radial 
basis function (RBF) kernel [33], and 39 ms/step running speed. 
When viewing the confusion matrix as shown in Fig. 9, which 
describe matching between actual label and predicted label. It 
can be seen that the results are not mixed up, or in another sense, 
the algorithm is not confused between dataset classes when 
determining the result significantly. 

B. LSTM Results 

The Long Short-Term Memory (LSTM) model was 
developed on the Kaggle coding platform using the Python 
tensorflow deep learning framework. By categorising the 
examined dataset, designating the percentage of each training 
data as 50%, the percentage of test data as 25%, and the 
percentage of validation data as 25%, 100 epochs for model 
testing, and selecting the best classification result. This model 
was built to contain the input layer, and the last layer is 
responsible for the output, and because the dataset contains 
more than two expected results (3 classes), the Softmax 
Activation Function is used [34]. 

The algorithm's classification results showed an accuracy of 
97.35% after just 38 epochs (early stopping) and a running 
speed of 2 s/step, which is an excellent result. This result was 
reached by setting the learning rate to 0.001 and using Adam as 
the model's optimization library. In addition, through Fig. 10, it 
can be noted that the classification model was very sharp in 
showing the results, as it was not confused with the actual result 
of implementing the classification except in very simple cases 
that do not exceed 0.06 for each class confused with other 
classes. 

C. CNN Results 

On the Kaggle coding platform, the tensorflow deep 
learning library in Python was utilized to create the 
convolutional neural network model. By classifying the 
investigated data set, defining the percentage of each training 
data as 50%, the proportion of test data as 25%, and the 
proportion of validation data as 25%, 100 epochs for model 
testing, and identifying the best classification result. 

This model was built to contain the input layer, five hidden 
layers all of which contain an activation function of the type 
Rectified Linear Unit (ReLU) [35], and this function is 
considered one of the best choices in the selection of the 
activation. The last layer is responsible for the output, and 

because the dataset contains more than two expected results (3 
classes), the Softmax Activation Function is used. 

 
Fig. 9. Confusion Matrix of SVM model result. 

 
Fig. 10. Confusion matrix for LSTM model results. 

The algorithm's classification results came with an accuracy 
of 98.03 % after only 38 epochs (early stopping) and 58 ms/step 
running speed, which is a great result. This result was obtained 
as a result of setting the learning rate to 0.001 and using 
Adamax as the optimization library on the model. Moreover, it 
can be shown in Fig. 11 that the classification model was 
extremely crisp in displaying the results, as it was not confused 
with the real result of implementing the classification except in 
very basic examples where 0.03 for each class confused with 
other classes was not exceeded. 

D. CNN-LSTM Results 

The CNN-LSTM model was implemented on the Kaggle 
coding platform using the Python tensorflow deep learning 
framework. By classifying the dataset, allocating 50% of the 
data for training, 25% for testing, and 25% for validation, 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

1052 | P a g e  

www.ijacsa.thesai.org 

conducting 50 epochs for model evaluation, and choosing the 
optimal classification outcome. This model was constructed 
with an input layer, three CNN layers utilizing the ReLU 
activation function and progressively increasing filter sizes 
starting from 64 bits. It also includes LSTM layers and a final 
output layer. Since the dataset consists of three distinct classes, 
the Softmax Activation Function is employed. 

 
Fig. 11. Confusion matrix for CNN model results. 

 
Fig. 12. CNN-LSTM confusion matrix. 

The algorithm achieved a classification accuracy of 98.50% 
after completing 100 epochs without early stopping. 
Additionally, it demonstrated a running speed of 244 ms/step, 
which is considered an outstanding outcome. The attainment of 
this outcome was accomplished by configuring the learning rate 
to 0.001 and employing Adam as the optimization library for 
the model. Furthermore, Fig.12 demonstrates that the 
classification model exhibited a high level of accuracy in 
presenting the findings, as it only encountered confusion with 
the actual outcome of the classification in rare instances that did 
not surpass 0.06 for each misclassified class. 

VI. RESULT AND DISCUSSION 

When comparing the results of different models to classify 
the studied dataset (SVM, LSTM, CNN, and CNN-LSTM), 
more than one aspect can be relied on for comparison, the first 
and most important of which is the accuracy of the 
classification when implementing the model, the second is the 
confusion matrix, which is related in one way or another to the 
first factor in the comparison, and the third factor that was taken 
into account when comparing is speed of implementation of the 
model, as measured by the speed of the test steps and also the 
speed of early stopping when testing the model. Table I 
compiles these features for all models utilized in the paper. 

TABLE I.  COMPARISION FACTOR CONCLUSION 

Model 
Comparison factors 

Accuracy Test speed Early stop 

SVM 87.5 % 39 ms/step 15 epochs 

LSTM 97.35 % 2 sec/step 15 epochs 

CNN 98.03 % 58 ms/step 38 epochs 

CNN-LSTM 98.50 % 244 ms/step No 

With regard to the first factor in the comparison, which is 
the accuracy of the model in implementation, it came in the 
foreground, and it is considered one of the best classification 
results applied to the studied data set. It is the result of 
classification using CNN-LSTM with an accuracy of 98.50%. 
Then it comes in second place, and not by a large difference, is 
the result of classification using CNN, with an accuracy of 98 
%, while in third place was the LSTM model with 97.35 % 
accuracy, finally SVM where the classification accuracy was 
not good enough compared to the previous three models with 
an accuracy of 87.5 %. 

As mentioned previously, the confusion matrix is linked to 
the accuracy of the classification, or in other words, this matrix 
is a breakdown of the characteristics of the classification result 
that lead to its accuracy. The order of the models when 
comparing the results based on the quality of the matrix came 
in the same order as the models in terms of accuracy. 

As for the third factor in the comparison, it is actually 
divided into two different factors, which are the speed of 
implementation by step and the speed of implementation in 
early stopping when testing the model. In view of the speed of 
execution by step, the SVM model came in first place with a 
speed of 39 ms/step, and in second place came the CNN model 
with 58 ms/step, and the CNN-LSTM model came in third place 
with a large difference from its predecessors with 244 ms/step. 
and in last place LSTM with extreme test step speed time with 
2 sec/step However, when looking at the speed of early 
stopping, the order can differ relatively, as the SVM model 
comes in first place equally with the LSTM model by stopping 
after only 15 epochs out of 100 epochs that were specified for 
implementation, and the CNN-LSTM model remains in last 
place with no early stop out of 100 epochs also for 
implementation. 

As a result of this comparison, it can be concluded that 
although the classification of the CNN-LSTM is the best as a 
model for classification, it must be taken into account that the 
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previous results are dependent on the input factors of each 
model, which were fixed in all cases, so that comparison can be 
made based on the equality of classification characteristics. 

The CNN-LSTM was the best of them, as it has the highest 
accuracy, which is the most important factor in the comparison. 
In addition, the execution speed (step speed) was not bad 
(between the other models), but despite that, it was the most in 
the number of epochs that the model needed to infer the best 
classification result (training the model) but this did not 
significantly affect the outcome of the total execution time of 
the model. 

And if we exclude the factor of execution speed, then CNN-
LSTM, CNN and LSTM are very close in the result of 
classification accuracy, then these models can be equally 
reliable on the classification of the data set. In contrast, if the 
accuracy factor is excluded, the SVM model is the fastest in 
step speed and the least in the number of epochs required to 
train the model equally with the LSTM model, so SVM can be 
said that it is the best in the speed factor. 

Considering that the CNN-LSTM result is the best model 
studied in this paper in terms of accuracy, which is the most 
reliable factor in the comparison. In the end, this model can also 
be compared with the similar models previously published on a 
similar database and with the different models. Through the 
previous literature study during previous years, published 
research showed limited accuracy of the techniques used, as K-
nearest neighbor recorded an accuracy of 86.46% in Z-T. Liu. 
et al.'s 2019 research. T. Song et al. also recorded in their 
research published in 2020, an accuracy of 90.4% using 
DGCNN. Also, it was followed by the accuracy of the research 
of S.K. Khare et al. 2020, which reached 95.7% using the 
LSSVM, and then the RNN, LSTM, and GRU models obtained 
an accuracy of 95%, 97%, and 96% respectively in the research 
of Chowdary MK et al. 2022. Finally, Chen J. et al. 2024 are 
achieved 75.26% multi-classification accuracy by using GNN 
model in their published study. On the other hand, expectations 
were raised for an impressive result using the studied model 
(CNN-LSTM), where a classification accuracy was obtained 
that achieved a gorgeous mark in prediction. A summary of the 
results of the reviewed researches appears in Table II, where 
each row indicates the research person, the model used in it, and 
the model’s accuracy result during testing. 

TABLE II.  LITERATURE RESULTS SUMMARY COMPARED WITH PROPOSED 

MODEL 

Author 
Comparison 

Model Accuracy 

Z-T. Liu et al. (2019) [9] K-NN 86.46 % 

T. Song et al. (2020) [10] DGCNN 90.40 % 

S.K. Khare et al. (2020) [11] LSSVM 95.70 % 

Chowdary MK et al. (2022) [12] 

RNN 95.00 % 

LSTM 97.00 % 

GRU 96.00 % 

Chen J. et al. (2024) [13] GNN 75.26 % 

Proposed model CNN-LSTM 98.50 % 

VII. APPLICATIONS 

Brain Computer Interfacing (BCI) is a technology, which 
enables communication between humans and machines through 
the direct interpretation of brain activities. This technology has 
a wide range of potential applications as shown in Fig. 13 and 
has been explored by researchers in fields such as medical 
diagnostics, prosthetics, human-machine interaction, and 
communication aids [36]. 

 
Fig. 13. BCI applications. 

After classifying the data set, the classification model may 
be used to connect the model's inputs, which are brain signals, 
and any application that can be controlled by the dataset's 
distinct classifications. When looking at the field of medical 
industries, it is possible to coordinate between commands to 
control prosthetic limbs through brain signals directly, through 
three different commands linked to the three groups of the data 
set, for patients with paraplegia or total paralysis who are 
unable to move their natural organs, or move the muscles to 
control the Industrial limb [37]–[39]. Among the applications 
is Brain control in industrial robots in smart industries. It is also 
possible to link the results of classification (one of the classes 
for the data set) and a set of successive commands that include 
a path for a complete industrial process, so that the controller 
has the ability to control the brain in three separate industrial 
processes [40]. In addition, brain control technology can be 
used to control laboratory robots, and this can be used in 
research and scientific projects that allow the formation of 
innovative systems of intelligent control [41]. 

One of the most exciting applications of BCI in gaming and 
entertainment is the ability to control game characters and 
objects with your thoughts. This could allow players to control 
their characters in a more natural and intuitive way, as well as 
allowing for more complex interactions with the game world. 
For example, a player could use their thoughts to control a 
character’s movements, or to manipulate objects in the game 
world. This could open up a completely new level of immersion 
and interaction with games [42]. 

Brain-Computer Interface (BCI) technology might change 
how individuals see themselves and their surroundings. BCI 
technology raises ethical and legal issues. BCI technology may 
enhance quality of life and give therapeutic advantages, but also 
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presents privacy, autonomy, and informed consent problems 
[43]. 

VIII. CONCLUSION  AND FUTURE WORK 

The domain of Brain-Computer Interface (BCI) stands as an 
exceptionally captivating realm of scientific inquiry due to its 
potential intersections with diverse industries, particularly 
those requiring intelligent control, such as industry and 
medicine. Various methodologies are employed to assemble 
datasets of cerebral signals for the comprehensive 
understanding of the intricate signals emanating from the brain. 
Among these methodologies, the non-invasive 
Electroencephalogram (EEG) method holds particular 
significance. The acquired dataset necessitates meticulous 
categorization, wherein the identification of influential 
characteristics responsible for inducing changes becomes 
imperative for its applicability across diverse control 
modalities. 

Furthermore, the demand for precision and expeditious 
processing in BCI applications, especially in alignment with 
dynamic environmental motion sequences, prompted a 
comparative evaluation of four alternative classification 
models, namely Support Vector Machine (SVM), Long Short-
Term Memory (LSTM), Convolutional Neural Network 
(CNN), and the hybrid CNN-LSTM model. The findings of this 
comparative analysis underscore the notable efficacy of the 
CNN-LSTM model, manifesting an accuracy of 98.5% 
alongside an operational speed of 244 milliseconds per step. 
Following suit, the CNN model secured the second position, 
achieving an accuracy of 98% with a step speed of 58 
milliseconds per step. Occupying the third position, the LSTM 
model demonstrated an accuracy of 97.35%, albeit at a 
comparatively slower step speed of 2 seconds per step. 
Conclusively, the SVM model finalized the comparison, 
registering an accuracy of 87.5% and a step speed of 39 
milliseconds per step. These findings accentuate the CNN-
LSTM model's prowess in BCI applications, positioning it as 
the preeminent choice for striking a commendable equilibrium 
between accuracy and processing speed within dynamic 
environmental contexts. 

Future work can involve two avenues: exploring the 
accuracy of other classification models and developing entirely 
new ones to advance the field. Additionally, we can investigate 
the creation of an integrated system utilizing brain signals for 
control and evaluate its overall performance in accurately 
executing commands based on the underlying classification 
accuracy. 
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