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Abstract—For the motion capture driving technology of three-

dimensional animation, this study combines skeleton extraction 

methods and human motion pose data to construct the human 

skeleton of three-dimensional animated characters. Combining 

matching algorithms and action recognition techniques, the 

postures of the human three-dimensional model were tested and 

analyzed. The experimental results showed that the level-set 

central clustering method extracted shoulder joint position values 

of 0.26, 0.24, 0.28, and 0.21 in the four models, respectively. The 

error value was the smallest among the skeleton extraction 

algorithms, indicating that this skeleton extraction algorithm had 

high accuracy in extracting human skeleton information. In 

addition, the depth information of human joint points was 

compared using the parallax ranging method, and the highest 

error was 1.57%. This further demonstrated that the coordinate 

error of the three-dimensional joints was relatively accurate, 

which also proved the effectiveness of the binocular stereo vision 

system. The system had an accuracy of over 80% in recognizing 

joint rotation information and dynamic movements in the human 

three-dimensional model. Finally, the highest accuracy of inertial 

sensors in capturing human movements was 97%, indicating the 

superiority of digital media in capturing three-dimensional 

animation technology. This also provides a theoretical basis and 

technical reference for animation production and other aspects. 

Keywords—3D animation; computer vision; motion matching 

algorithm; human 3D skeletal model; motion capture technology 

I. INTRODUCTION 

With the rapid development of digital media technology and 
virtual reality technology, animation and film production 
require increasingly precise character models [1]. However, the 
three-dimensional (3D) animated character models still requires 
professional production software and generation systems. 
Therefore, regarding specific character modeling and motion 
driving, computer vision and human motion simulation 
techniques are used to match human 3D skeleton model data, 
thereby achieving smooth animation effects [3]. Digital media 
technology mainly processes, stores, and transmits information 
through computers and digital devices. The application of 3D 
modeling and rendering functions in digital media in animation 
production makes it more accurate and realistic, thereby 
enriching the visual experience [5]. The innovation of digital 
media technology has also provided new technological 
platforms and experiential conditions for the cycle and cost of 
animation production. In addition, regarding the design of 
motion postures for animated characters, computer vision and 
computer graphics are used. Combining wearable devices to 
collect data on human body movements and postures, it has 
been applied in practical applications such as robot gait 

rehabilitation, motion analysis, and film and television 
animation [6]. Finally, based on techniques such as image 
processing and pattern recognition, human motion analysis is 
performed on the collected motion data to complete the 
animation driving of the computer interface. However, for the 
collection of human motion data, auxiliary tools of wearable 
devices cannot meet the requirements of 3D animation display 
and accurate joint position matching. Therefore, the study first 
combines the skeleton extraction algorithm to build the human 
3D skeleton model. Skin technology is used to achieve topology 
matching of animation models. Secondly, a binocular vision 
camera system is used to recognize human motion fonts to 
precisely match human posture movements and joint positions. 
This research method effectively combines the human 3D 
skeleton model with posture motion matching, fully utilizing 
the joint depth information of the skeleton model, and providing 
accurate data matching for human motion trajectory and 3D 
animation simulation. Finally, the research combines computer 
vision and artificial intelligence technology to test and verify 
motion capture devices, aiming to prove the effectiveness of 3D 
animation capture driving technology and provide technical 
means and realistic 3D visual effects for the smooth movements 
and behavioral postures of character models, thereby promoting 
the high-quality development of film and television animation 
production. 

The research is mainly divided into six sections. Section II 
elaborates on the current research results. Section III conducts 
algorithm analysis on the constructed 3D animated human 
model to promote skeleton extraction and matching of motion 
postures. Section IV is to verify and analyze the motion 
recognition and capture equipment. Results and discussion is 
given in Section V and finally, Section VI concludes the paper. 

II. LITERATURE REVIEW 

Due to the advancement of 3D animation and virtual 
animation technology, motion capture techniques for animation 
models have been extensively studied. In recent years, domestic 
and foreign scholars have conducted a lot of research on digital 
media technologies such as virtual acquisition methods and 
computer vision in 3D animation production. Jiao L et al. 
proposed a node encoding classification for graph learning and 
computer vision applications, focusing on the development of 
graphic structures and computer vision. The applications of 
visual tasks based on neural network methods were also 
summarized [8]. Wang Y et al. used Kinect fusion algorithm 
and function to evaluate the tracking confidence of virtual 
reality simulation technology. 

Then a prototype system was established to evaluate the 
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tracking skeleton of moving objects, thereby proving the good 
fusion performance [9]. Gao P proposed a multi-dimensional 
data model for video image motion recognition and motion 
capture based on a deep learning framework. It combined deep 
learning features and datasets to achieve high recognition 
accuracy for gesture actions [10]. For the 3D modeling of film 
and television animation, Xu L combined local binary fitting 
algorithm and convolutional neural network to construct a 
single perspective 3D face model. The results showed that it 
was feasible in film and television animation and human-
computer interaction [11]. Wang X P et al. extended the 
corresponding relationships to functions using the balanced 
function map algorithm for 3D shape registration. Experimental 
analysis was conducted on the character animation dataset in 
function space, demonstrating the superiority of the algorithm 
[12]. For the application of computer vision and graphic vision, 
different algorithms have various effectiveness and feasibility 
in action recognition technology. 

Regarding the human 3D skeleton model, researchers from 
different fields have achieved many results. Bhogal R K et al. 
used convolutional neural networks to search for optimal 
features for action recognition in multi-view skeletal 3D data. 
The long and short-term memory layering was used to achieve 
model accuracy, thereby proving the high accuracy of the model 
on the human dataset [13]. Setiawan F et al. used graph 
convolutional neural networks to simulate human skeleton for 
action recognition. The Laplace matrix was used to encode 
graph attributes, thereby achieving high recognition accuracy 
on human datasets [14]. Mao W S et al. used radio frequency 
identification technology and bicycle motion networks to label 
human posture data for 3D human posture tracking, which 
improved tracking accuracy [15]. Lin Y et al. used velocity 
threshold correction method to adjust joint data for human 3D 
posture detection. The camera was used to detect the depth 
value of posture data, thereby improving the accuracy of human 
3D posture detection [16]. Ahad M A R et al. proposed a 
method for extracting motion posture features based on 
skeleton data for 3D skeleton joint position recognition. The 
high accuracy of its method was validated in the benchmark 
dataset [17]. 

In summary, researchers have conducted many model 
constructions and algorithm applications on animation 
production technology and human motion recognition methods. 
However, there is a lack of testing for the construction and 
simulation of internal skeletons in human 3D posture 
recognition. The research on the application and production 
effects of 3D animated characters is also limited, resulting in 
limited research on character simulation and motion posture in 
film and television animation. Therefore, the study utilizes 
motion-matching algorithms and skin animation algorithms to 
construct 3D skeleton models of animated characters. The 
binocular stereo vision system has high advantages in 3D 
animation motion capture technology. 

III. 3D ANIMATION HUMAN MOTION CAPTURE SYSTEM 

CONSTRUCTION 

This section combines matching algorithms and skin 
techniques to connect skeleton motion and 3D data to analyze 
the motion trajectory of the skeleton model. A binocular stereo 

vision system is used to extract features from human joint 
points. A binocular local matching algorithm is combined to 
improve the 3D spatial information of human actions, thereby 
constructing a human 3D skeleton model and action capture 
system. 

A. Motion Matching Algorithm for 3D Animation Model 

3D animation character generation includes extracting 
skeletons, embedding skeletons, matching actions, and skin 
binding. The posture model of animated characters identifies 
joint positions and matches motion data for skeleton extraction 
to generate 3D animated characters. Therefore, the skeleton 
discrete embedding is used to identify the positions of key joints. 
The positions of other joint points are calculated based on the 
standard proportion relationship, thereby obtaining a complete 
character skeleton model [18]. However, skeleton motion 
control in 3D animation requires data that matches with the 
motion data. The skeleton extraction structure based on the 
same topology and the motion data structure of the Bio Vision 
Human Motion Capture (BVH) file are the same. In data 
matching, the BVH file is scaled to fit the same topology. The 
data scaling is shown in Eq. (1). 
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In Eq. (1), destA  represents the motion data of the target 

skeleton. srcA  is the motion data of the source animation data 

file. destL  and srcL  represent the length of the target joint 
skeleton and the joint skeleton length of the source skeleton, 
respectively. The ratio of two skeleton lengths can achieve data 
scaling. In addition, a hierarchical structure between skeleton 
joints is established to perform skeleton motion. The motion of 
the parent node affects the child nodes. Then the joint 
coordinate system completes the matrix transformation, as 
shown in Eq. (2). 
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In Eq. (2), a  represents the specified joint point.  1

n

nE t  

is the transformation matrix. 0P  is the reference matrix, which 
is the initial posture. The transformation formula continuously 
converts the root node coordinates to the local coordinates of 
the target node, thereby completing the associated motion 
between skeletons. The skeleton motion data and 3D model are 
independent of each other. To achieve the 3D animation effect, 
the Linear Blending Skinning (LBS) algorithm is used to bind 
or deform skeleton and skin. The LBS algorithm labels human 
motion joints to calculate the vertex changes of the model. The 
vertex is related to the motion state of skeleton. The specific 
joint transition relationship is shown in Eq. (3). 

' 1 i iv E A v       (3) 

In Eq. (3), v  represents the coordinate of a vertex in the 

skeleton. 
'v  is the vertex coordinate that has been converted 

through coordinate transformation. 
1

iA  is the local 
coordinate system that converts the coordinate points in the 
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global state to joint iJ . iE  is its vertex motion control matrix. 
A vertex is affected by the joint motion of multiple skeletons, 
so different vertices are weighted to calculate the motion 
transformation matrix of the vertex. The weight is shown in Eq. 
(4). 

1

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n

ii n
w       (4) 

In Eq. (4), 
iw  represents the weight of a vertex. The sum 

of the weights of its vertices affected by different skeletons is 1. 
To improve skin technology and animation effects, the motion 
trajectories of all joints in the skeleton model are calculated, as 
shown in Eq. (5). 
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In Eq. (5), 
'v  represents the vertex coordinates converted 

by coordinates. 
iE  is its vertex motion control matrix. To 

make the skin effect smoother and more realistic, as well as 
avoid collapse, the vertex weight values are kept in the model 
vertex direction to achieve continuous smooth motion. For the 
skin deformation problem of 3D animation models, the LBS 
algorithm is used to calculate the proportion of skeletons and 
skin at joints, conforming to the same model structure. In 
addition, the structure of the 3D animation model generation 
system is divided using the skin technology, as shown in Fig. 1. 
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Fig. 1. Schematic diagram of the 3D animation model system structure. 

From Fig. 1, the modules of the 3D animation model system 
mainly include data reading, skeleton extraction, data matching, 
skin binding, and interaction processing. The skeleton 
extraction module includes mesh processing, skeleton line 
extraction, and skeleton embedding. Data matching is the 
process of reading animation data from a BVH file and 
redirecting it to an existing model skeleton. In addition, the skin 
binding module utilizes the LBS skin deformation algorithm to 
bind skin and skeletons. By calculating the weight relationship 
between skeletons and model vertices, the motion trajectory of 
model vertices can be calculated. The final interaction 
processing of the system implements a visual display window 
to facilitate data import and parameter settings. 

B. Construction of Human 3D Skeleton and Motion Capture 

System 

Based on 3D animation motion posture, the human 3D 
action skeleton is constructed to meet the animation posture 
needs. The 3D action skeleton requires obtaining joint 
localization and recognition information. The binocular stereo 
vision system extracts features from human joints and combines 

optimization algorithms to obtain 3D information of human 
movements, thereby constructing a 3D skeleton model [19]. To 
accurately obtain 3D information of human motion joints, 
binocular camera calibration and 3D coordinate solution are 
used to ensure that human posture movements are consistent 
with joint positions. The visual distance measurement of the 
binocular camera is obtained by the principle of triangulation. 
The depth information of the target point is shown in Eq. (6). 

 
l r

J
Z f

X X
      (6) 

In Eq. (6), J  represents the distance between the center-

line of the left and right optical centers of the binocular camera. 

f  is the camera focal length. The mapping abscissa on the left 

is 
lX , and the imaging abscissa on the right is 

rX . The 

disparity value of the left and right mapping points is shown in 
Eq. (7). 

 l rd X X      (7) 

In Eq. (7), d  represents the disparity value between the 
left and right image points. Therefore, the depth information 
conversion of the target point is shown in Eq. (8). 
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In Eq. (8), Z  represents the depth value of the target point 
in the physical world. To accurately obtain the 3D coordinates 
of human motion joints, this study combines the least squares 
method and the inner and outer parameter matrices of binocular 
cameras. Then, combined with the binocular local matching 
algorithm, the joint depth of human motion skeletons is 
calculated, as shown in Fig. 2. 
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Fig. 2. Structure of binocular stereo matching algorithm. 

From Fig. 2, feature constraints are an important step in 
matching algorithms, which can be used for edge extraction of 
left and right images, thereby reducing the matching range and 
obtaining gradient information of the image. In addition, joint 
disparity mainly includes feature constraints and matching cost 
calculation, cost aggregation, and algorithm optimization. The 
disparity value and camera parameters are combined to obtain 
the 3D coordinates of the joint points. Finally, by calculating 
the parallax value of human motion joints and accumulating the 
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relevant state equations, the two-dimensional skeleton joints of 
human motion can be corrected. Then, based on the coordinate 
transformation formula, the 3D joint coordinates can be 
calculated to construct the 3D skeleton of human actions. Based 
on the constructed 3D skeleton, the model is used to transform 
the 3D skeleton into a human 3D action that is consistent with 
the action posture. The motion capture and model error analysis 
are performed. The structure of the motion capture system is 
shown in Fig. 3. 
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Fig. 3. System structure and model diagram of a 3D motion capture 

system. 

From Fig. 3, the binocular stereo vision camera system used 
in the study includes a camera, a miniature tripod, and a base 
for easy portability and camera parameter adjustment. To 
improve the running speed of the system, platforms such as 
Windows and Linux are combined with high-performance 
processors to synchronously obtain images from left and right 
cameras. Finally, the images are transmitted to the computer 
through an interface for data processing. Due to the camera 
system saving data on the 3D skeleton model, the 3D coordinate 
information of joint points is input into the software to construct 
the human body skeleton, thereby obtaining action posture 
spatial information. 

C. 3D Animation Model Technology Driven by Action 

Posture 

The human posture and expression behavior unit data of 3D 
animation are synchronously captured by a dual camera system, 
which in turn generates the human animation model. The 
motion posture capture data is mainly controlled through key-
frame interpolation and inverse kinematics to control model 
motion. Key-frame interpolation is generated through 
interpolation algorithms to generate intermediate transition 
frames to simulate real motion effects. To ensure that key-frame 
interpolation methods generate realistic and motion-compliant 
animations, quaternions are used to represent the rotation 
information of human joints. The interpolation algorithm is 
combined to compensate for missing frames in the rotation 
information. The Spherical Linear Interpolation (SLERP) 
method in quaternion interpolation can facilitate smooth 
interpolation of joint information. The ordinary linear 
interpolation function is shown in Eq. (9). 

 0 1 0  d d t d d       (9) 

In Eq. (9), 0d  and 1d  represent vectors in two directions, 

and the angle between them is  . d  represents the joint 
rotation information by taking two quaternions from the median 

vector of two directional vectors, as shown in Eq. (10). 
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In Eq. (10), 0q  and 1q  are the direction vectors of two 
quaternions, respectively. The surface interpolation between 
two quaternions is shown in Eq. (11). 
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In Eq. (11),  1  t  is the angle between d  and 1d . 

t  is the angle between d  and 0d . Therefore, the spherical 
interpolation is shown in Eq. (12). 
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In Eq. (12), the angle between d  and 1d  is  1  t . 

The angle between d  and 0d  is t . The dot product 
between two directional vectors is calculated to determine the 
angle between them, as shown in Eq. (13). 

0 1 0 1 0 1 0 1 0 1cos     q q x x y y z z w w     (13) 

In Eq. (13), the angle between the two directional vectors is 

 .  1  t  is the angle between d  and 1d . t  is the 

angle between d  and 0d . When the dot product result is 
negative, the interpolation will move the longest path around 
the sphere. When the angle between two directional vectors is 
too small, the denominator results tend to approach 0, and linear 
interpolation is used to replace the minimum angle. The 
spherical interpolation method is used to obtain key-frame 
sequences of uniform motion, but there are still some motion 
sequences that do not meet the laws of human motion. 
Therefore, it is necessary to combine the kinematic method to 
correct parameters and obtain more suitable control parameters 
for human motion laws. The human motion state is usually 
based on posture initialization, adding time and parameter 
changes in kinematics, including forward kinematics and 
inverse kinematics. In inverse kinematics, the intermediate joint 
points are calculated based on the position of the end node. The 
child nodes drive all parent nodes to achieve motion constraints 
layer by layer, specifically, as shown in Eq. (14). 

 1R f W        (14) 

In Eq. (14), R  represents the joint rotation angle. W  
represents the end node position. The inverse kinematics 
analysis method reduces the complexity of node calculation, 
but it is only suitable for solving nodes with fewer degrees of 
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freedom. In addition, the inverse kinematics numerical method 
can solve the nodes with larger degrees of freedom to obtain 
complex human postures. Finally, combined with the joint limit 
state of the human skeleton model, the rotation information of 
all nodes is continuously adjusted. The standard range of human 
joint angle motion is shown in Fig. 4. 
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Fig. 4. Schematic diagram of the motion units of some joints in the 

human body. 

From Fig. 4, the range of joint points through extreme 
motion is maximized when setting the action state of the 3D 
animation model. According to the constraint conditions, the 
motion constraint for the rotation angle of the joint point is 
shown in Eq. (15). 
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In Eq. (15), i  represents the rotation angle of a certain 

joint point, and its motion range is  , axis axis . To improve the 
motion and posture control of the 3D animated human body, a 
method combining key-frame interpolation and inverse 
kinematics is used to drive the 3D model, as shown in Fig. 5. 

In Fig. 5, the human 3D skeleton model is mapped after 
importing data. Based on the corresponding skeleton posture 
data, the structure of the human model is set up to improve the 
human 3D skeleton model. The key-frame interpolation method 
involves interpolating the 3D estimation data to ensure smooth, 
stable, and continuous model motion. Finally, the skeleton data 
is bound and refreshed at the sent frame rate to obtain 3D 

animation effects. 
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Fig. 5. The action and posture driving process of the 3D animation 

model. 

IV. HUMAN MOTION CAPTURE AND 3D ANIMATION 

DRIVING ANALYSIS 

The 3D animation generation system and the motion capture 
system of the human skeleton model are interactively validated 
on the system platform to compare the motion posture and data 
errors of the 3D animation. Compared with other motion 
capture devices, it obtains smoother and more continuous data 
information in 3D animation information. The interactive 3D 
animation model is combined with the Microsoft Basic Class 
Library to establish a system interaction interface for importing 
BVH files and playback control. The hardware environment of 
the platform and the software system of the human 3D skeleton 
are shown in Table I.  

In Table I, the interactive interface of the 3D animation 
model was used to open the BVH file and performed data 
processing on the 3D model. The motion posture and joint 
points of the human 3D skeleton were extracted through a 
camera. Combined with the software platform, image 
processing and 3D skeleton extraction were completed to 
construct 3D actions. 3D animation models were combined 
with skeleton extraction algorithms to conduct comparative 
experiments on four models. A-D was used to represent them. 
The number of vertices and polygons in model A was 2541 and 
5078, respectively, while the number of information in models 
B, C, and D was the same, which was 13336 and 26668. The 
skeleton extraction algorithm adopted the level set central 
clustering method and distance transformation method. The 
accuracy of the arms and legs of the four models was compared, 
as well as the displacement of the shoulder joints, as shown in 
Fig. 6. 

TABLE I. BASIC INFORMATION OF SYSTEM HARDWARE ENVIRONMENT AND SOFTWARE PLATFORM 

Hardware Environment for 3D Animation Models Software platform for human 3D skeleton models 

CPU Intel(R)Core(TM)i5-3230M CPU @2.60GHz Windows10 system MATLAB platform 

Memory 8G Binocular camera calibration Visual Sudio 

Graphics card NVIDIA GeForce GT 750M Nvidia GeForce GTX1080 16G DDR4 2333MHz 

Processing models and analysis results Image processing and skeleton information extraction 
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Fig. 6. Comparison of two skeleton extraction algorithms in human 3D models. 

In Fig. 6 (a), the arm accuracy of the four models in the level 
set central clustering method was 5.20%, 5.71%, 7.42%, and -
4.28%, respectively. The values in the distance transformation 
method were 8.12%, 6.19%, -6.44%, and -5.31%. The overall 
value of the level set central clustering method was low, with 
relatively high accuracy. In Fig. 6 (b), the leg accuracy of the 
human 3D model in the level set central clustering method was 
-5.44%, -6.63%, -3.26%, and -8.45%, respectively. The values 
of the distance transformation method were -4.82%, -6.91%, -
9.80%, and 19.71%, with an overall difference greater than the 
former. Fig. 6 (c) shows the shoulder joint displacement in a 
human model. The level set central clustering method was 
relatively balanced with small differences, with values of 0.26, 

0.24, 0.28, and 0.21, respectively. Therefore, it indicated that 
the level-set central clustering method had higher accuracy in 
extracting human skeletons. Afterwards, combining skin 
binding promoted superior smoothing effects in 3D animation, 
thereby extracting motion data.  

Based on the software platform of the binocular camera 
system and the constructed human 3D skeleton, the error 
analysis of joint depth values for human motion posture is 
carried out to achieve motion capture. The error comparison 
between the parallax ranging method and the real measurement 
is conducted using the human skeleton and its joint point model. 
The results are shown in Fig. 7. 
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Fig. 8. Comparison of results of action capture methods. 

The action depth of the human 3D skeleton model is 
validated. The system calculation and actual measurement 
values are compared. The highest error was 1.14%, while the 
lowest was 0.02%. From Fig. 7 (b), the depth information error 
value for another set of actions was the lowest at 0.20% and the 
highest at 1.57%. Therefore, the 3D coordinate error of human 
joints was relatively accurate, which also proved the 
effectiveness of the binocular stereo vision camera system. 
Afterwards, joint movements of different human models are 
compared. Different binocular camera systems are used to 
capture 3D movements. The measurement length of the motion 
frame rate is shown in Fig. 8. 

In Fig. 8 (a), the length of the limbs captured by the Kinect 
device remained basically unchanged, which was between 
200mm and 400mm. In Fig. 8 (b), the weight optimization of 
Openpose multi-camera had a lower length fluctuation in the 

number of frames compared with Kinect devices. Therefore, it 
indicated the accuracy and superiority of the binocular stereo 
vision camera system in capturing motion. Finally, regarding 
the driving system of 3D animation, to simulate real-time 
human body movements and human-computer interaction 
movements, the image data of human body movements and 
postures is captured, as shown in Table II. 

According to Table II, the binocular camera system used a 
Logitech C525 camera with a resolution of 1280×720. The 
maximum acquisition frame rate was 30fps. The Unity 
development platform has flexibility and convenience in 
constructing 3D animation models and their driver programs. It 
is feasible to solve joint rotation information of human body 
posture. Therefore, this study selects 3D human postures with 
static movements to compare the performance of different 
methods. The results are shown in Fig. 9. 

TABLE II. CONFIGURATION OF BINOCULAR STEREOSCOPIC CAMERA SYSTEM PLATFORM 

Driving system Dual camera system 

CPU parameters Intel(R)Core(TM)i7-8700K CPU 

Memory NVIDIA GeForce GTX 1080 

Operating system Ubuntu 16.04 

Development platform Unity/Visual Studio2017 
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Fig. 9. Action test results of human 3D model. 
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Fig. 9 (a) displays the static actions of the human 3D model 
in Fig. 1. Its accuracy was above 70%, and the static classifier 
was more accurate in recognizing human movements. Fig. 9 (b) 
shows the recognition accuracy of dynamic movements in Fig. 
2. The results were all above 80%, with a recall rate of over 
74%, proving that the action testing of human 3D models was 
superior. Afterwards, the motion capture is performed, as 
shown in Fig. 10. 
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Fig. 10. Test results of different methods for human motion recognition. 

In Fig. 10, the accuracy of motion capture improved with 
the increase in the number of motion images. The monocular 
camera system method had the lowest accuracy in recognizing 
human movements, with a maximum value of 84%. The highest 
accuracy of the action feature extraction method using 
electromyographic signals was 94%. The action capture 
accuracy using inertial sensors was as high as 97%. According 
to the motion capture method, the driving technology of 3D 
animation is continuously improving, and the motion capture of 
human 3D models is more accurate, thereby satisfying smooth 
animation effects. 

V. RESULTS AND DISCUSSION 

As one of the key technologies in 3D animation production, 
computer vision and human motion simulation technology are 
important research directions for human 3D models. In the 
construction of a 3D skeleton model, the skin technology and 
matching algorithm were used to analyze the trajectory of the 
3D data and motion features of the human skeleton. Among 
them, for the displacement test of the shoulder joints, the 
difference between the level set center clustering method was 
small, with specific results of 0.26, 0.24, 0.28, and 0.21. 
Afterwards, the binocular stereo vision system combined with 
the binocular matching algorithm to calculate the joint depth of 
the human action skeleton. The highest error of the skeleton 
model was 1.57%, which met the accuracy requirements of the 
3D skeletal model of human movements. The highest motion 
capture accuracy for obtaining posture features of the binocular 
vision camera combined with the 3D skeleton model was 97%.  

Based on the above results, it indicates that this study 
effectively improves the smoothness of 3D animation using 
matching algorithms and computer vision technologies, while 
enriching the visual effects and motion smoothness in 
animation character production. However, the motion 
recognition and posture data of human joints in this research 
system are still not complete enough, which affects the detailed 
effect of animated character models. At the same time, the 
motion capture driving technology lacks specific parameter 

moduli for joint points and posture that target the human 3D 
motion characteristics. In the future, the development and 
design of motion driving systems for 3D animation still need to 
continue exploring computer vision and motion capture driving 
technology to achieve innovative design in film and television 
animation and game production. 

VI. CONCLUSION 

To address the driving technology for 3D animation capture, 
the motion matching algorithm and human 3D skeleton model 
were used for data analysis of the 3D animation capture system. 
Firstly, the generation process of 3D animated characters was 
used to analyze the motion posture of the skeleton model, and 
then to match and partition its motion data. The LBS algorithm 
was used to set up and interact with the skeleton and skin at the 
joints of the model. Secondly, the human 3D skeleton model 
was constructed. Combined with a dual camera system to 
synchronously capture human movements, the depth 
information of 3D joints was obtained. According to the 
skeleton extraction algorithm, the accuracy of the arm joints for 
the four models was 5.20%, 5.71%, 7.42%, and -4.28%, 
respectively. The depth information verification of the human 
3D skeleton movement showed that the lowest error values 
were 0.02% and 0.20%, respectively, indicating that the 
binocular stereo-vision camera system had high accuracy in 
joint recognition of the human 3D skeleton model. Finally, the 
motion capture system was validated and analyzed based on the 
captured data of the joint motion posture. The accuracy of 
human motion recognition was high, all above 80%. Therefore, 
the capture system platform for 3D animation satisfies the 
smoothness effect of 3D animation. However, the system's 
motion recognition animation for human joints is still not 
complete enough. The impact of additional effects on animation 
lacks quantitative analysis. Therefore, further research and 
improvement should be conducted on the development and 
application of the 3D animation capture driver system. 
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