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Abstract—In response to the demand for green city 

construction, low-carbon travel standards have been further 

implemented. This research focuses on intelligent transportation 

management and designs path planning algorithms. Firstly, the 

basic model of the proposed ant colony optimization algorithm was 

constructed. In response to the poor convergence of traditional 

algorithms, a rollback strategy was introduced to optimize the 

model taboo table. Subsequently, in response to the dynamic 

obstacle avoidance problem in practical applications, the 

optimized A* algorithm was studied and applied to global path 

planning. The improved ant colony algorithm was applied to local 

obstacle avoidance planning, further enhancing the accuracy and 

practicality of the algorithm. In simulation analysis, facing more 

complex simulation environments, this research method could 

better achieve obstacle avoidance path planning. The average 

number of search nodes decreased by 6, the average search time 

decreased by 4.11%, and the average path length decreased by 

22.07%. In summary, the ant colony optimization algorithm 

designed through research is more suitable for path planning 

needs in different scenarios, with the best overall performance. It 

can plan the shortest driving path while ensuring precise obstacle 

avoidance, helping to achieve green traffic management. 

Keywords—Ant colony optimization; A*; path planning; 

obstacle avoidance; traffic control 

I. INTRODUCTION 

With the continuous construction and development of green 
smart cities, traffic management has gradually become an 
important factor restricting urban development. Intelligent 
Transportation System (ITS) integrates advanced technologies 
such as information, data communication transmission, and 
electronic control, significantly improving the efficiency of 
traffic management. While ensuring traffic safety and 
improving traffic service levels, it also reduces the impact of 
vehicle driving on the environment. The Path Planning (PP) 
module is a core component of ITS, responsible for providing 
users with the optimal driving route based on real-time traffic 
environment data. PP technology can be divided into two 
categories: static PP and dynamic PP [1-2]. The former does not 
consider environmental changes and is simpler and more direct. 
The latter requires real-time updates of environmental 
information to achieve dynamic path adjustment, making it 
more suitable for complex actual traffic environments. 
Currently, with the iterative updates of sensor technology, 
cloud computing, and big data, dynamic PP has made 
significant progress. It can more accurately reflect real-time 

road conditions, and improve the efficiency and practicality of 
PP. Dynamic PP can effectively reduce traffic congestion, 
improve driving efficiency, and guide vehicles to drive 
reasonably. The reduction of driving route distance naturally 
helps to establish low-carbon and green cities. This is in line 
with the current severe environmental problems and energy 
crisis, and the needs and goals of various regions for green city 
construction. However, although dynamic PP has made certain 
progress in both theoretical and technical aspects, it still faces 
many challenges in practical applications. Firstly, existing PP 
algorithms have low computational efficiency when dealing 
with large-scale and highly complex road networks, making it 
difficult to meet real-time requirements. Secondly, the fusion 
and processing technology of multi-source heterogeneous 
traffic data is not yet mature, which affects the accuracy and 
reliability of dynamic PP [3-4]. Therefore, how to design a 
dynamic PP algorithm that is both efficient and accurate, while 
also taking into account multiple practical needs, is the focus of 
current research in intelligent transportation. A PP model based 
on Ant Colony Optimization (ACO) algorithm is proposed to 
address the aforementioned issues. Its purpose is to improve it 
through rollback strategies and introduce the A* algorithm to 
optimize obstacle avoidance accuracy. The contributions of the 
research are as follows: (1) the basic path planning model based 
on the improved ant colony optimization algorithm is 
constructed, and the table of the backward strategy optimization 
algorithm is introduced to improve the convergence 
performance of the algorithm. (2) The optimized A* algorithm 
is studied and applied to global path planning, and the improved 
ant colony algorithm is applied to local obstacle avoidance 
planning, which further improves the accuracy and 
practicability of the algorithm. 

The study consists of five sections. Literature review given 
in Section II. Firstly, the research status of PP is introduced in 
Section III. Secondly, a dynamic obstacle avoidance model 
based on ACO is designed in Section IV. Then, actual 
experiments and simulation analyses are conducted on the 
performance of the design model. Finally, a summary of the 
experimental results is provided in Section V. 

II. LITERATURE REVIEW 

The PP algorithm, as a research hotspot in motion planning, 
has been widely applied in various fields such as robot design, 
traffic management, and tourism. Li X et al. proposed an 
improved compression factor particle swarm optimization 
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method and applied it to the three-dimensional PP of 
Autonomous Underwater Vehicles (AUVs). In addition, they 
introduced three-dimensional seabed and Lamb vortex models 
to optimize navigation costs and ocean current constraints. 
Their model demonstrated better planning efficiency and path 
quality [5]. X Wang et al. designed an improved Q-learning 
algorithm and transformed its learning behavior into a discrete-
time Markov chain model. By integrating strategies such as 
probability calculation tree logic, the effectiveness of PP and 
the reliability of control systems for mobile agents in uncertain 
environments were improved in this paper [6]. Y Huang et al. 
proposed a new underwater robot PP method, which 
transformed it into a deterministic optimization problem by 
using whale optimization algorithm and adaptive operator. The 
introduction of dynamic partitioning and other strategies for 
virtual individuals improved the search ability of the algorithm. 
Their method effectively solved the PP problem in complex 
terrain, improving the model's search ability and robustness [7]. 
S Zhang et al. proposed a PP model that combined timestamp 
collision detection and environment improved artificial 
potential field algorithm. Their model was applicable to the 
local PP technology of wave gliders, enhancing their obstacle 
avoidance ability and maneuverability during application [8]. 

Huo L proposed an improved path selection algorithm and 
applied it to wireless cloud computing environments to address 
the characteristics of frequent changes in urban traffic and rich 
driving paths. And the initial pheromones were non-uniformly 
dispersed, optimizing urban traffic management planning, 
improving path search efficiency and user satisfaction [9]. 
Yang X et al. chose the actor critic algorithm in reinforcement 
learning to design the PP model and introduced parameter 
updating and exploration strategies to further optimize it. 
Finally, it was applied to intelligent ship dynamic obstacle 
avoidance, improving the performance of the algorithm under 
complex meteorological conditions [10]. A Zou et al. proposed 
an innovative robot PP fusion algorithm by combining 
optimized mayfly algorithm and dynamic window method. The 
core of the former was the Q-learning algorithm, which could 
optimize convergence performance through adaptive parameter 
tuning. Their model reduced the average path length by 6.58% 
compared to traditional mayfly algorithms in complex 
environments [11]. Lyridis DV et al. proposed an improved 
fuzzy ACO for the PP of unmanned surface vehicles. Their 
method could effectively handle local obstacle avoidance 
problems and had better PP performance than other algorithms 
in complex environments [12]. 

In summary, most PP methods are developed using global 
or local programming, and their performance needs to be 
improved. For example, the ability to handle dynamic 
environments is limited, especially in rapidly changing 
scenarios, which may cause path failure. The improvement of 
obstacle avoidance effect may lead to an increase in 
computational costs, and errors caused by environmental 
uncertainty may also lead to PP failure. This indicates that it 
needs to be optimized and improved in multiple aspects such as 
adaptability, generalization, and security. Therefore, this study 
achieves a combination of global and local obstacle avoidance 
through ACO and A* algorithms. This not only improves the 
obstacle avoidance accuracy of vehicles, but also reduces the 

computational burden of this model, making it more adaptable 
in complex operating scenarios. 

III. AN INTELLIGENT PATH PLANNING MODEL WITH 

IMPROVED ANT COLONY OPTIMIZATION ALGORITHM AND 

DYNAMIC OBSTACLE AVOIDANCE OPTIMIZATION 

To achieve green intelligent traffic management, this study 
proposes applying ACO to the vehicle PP model. Firstly, the 
convergence performance of ACO is optimized by building 
environmental models and other methods. Secondly, to achieve 
dynamic obstacle avoidance in real-world application scenarios, 
the A* algorithm is introduced and a dynamic PP model is 
constructed. 

A. Design of Static Path Planning Model Based on Improved 

Ant Colony Optimization Algorithm 

The PP module is an important component of smart 
transportation systems, aimed at planning an optimal operating 
path under certain constraints. The study chooses classical 
heuristic ACO as the basis for the PP model. It assumes that the 
total number of ants is k , and their individuals represent 

different paths. Starting from the starting point, individuals 
continuously update the position of the next node as shown in 
Formula (1). 
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In Formula (1), k

ijp  represents the probability of ant k  

transitioning from position i  to position j . t  refers to a 

point in time.  ij
 means the concentration of pheromones 

between nodes at different locations. S  is the current location 

node. A  refers to optional location nodes for removing 

obstacles and other obstacles. /   means the weights of 

pheromones and heuristic functions, respectively. ij
 

represents a heuristic function. The heuristic function is the 
reciprocal of the distance between two position nodes, 
expressed by Formula (2) [13-14]. 

1
( ) ij

ij

t
d

          (2) 

In Formula (2), 
ijd  represents the distance between two 

nodes. In addition, each location node will have corresponding 
pheromones. Whether a node is selected is related to the 
concentration of pheromones. The more times an individual 
passes through a node at that location, the higher the 
corresponding pheromone. However, traditional ACO has 
excessive computational pressure, poor convergence 
performance, and is prone to falling into local optima. 
Therefore, the study addresses the above issues and makes 
improvements to them. Firstly, the vehicles are simplified as 
particles, and a two-dimensional grid model is constructed 
based on the road environment in Fig. 1. 
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In the two-dimensional grid map of Fig. 1 (a), the black part 
refers to the obstacle area. Obstacle setting can effectively test 
the optimization ability of the model. The search path follows 
the rule of 8-neighborhood representation in Fig. 1 (b). The 
position of each search point is the center point of the grid. The 
same initial pheromones in traditional ACO can reduce the 
accuracy of path search and increase its computational time. 
Therefore, the study proposes using the starting and ending line 
as the criterion for pheromone allocation, and the smaller the 
distance from the line, the greater the pheromone value. This 
can further improve the efficiency of global search, represented 
by Formula (3). 

0  

 

 




C
      (3) 

In Formula (3), 
0,   represent the pheromone and basic 

pheromone of the algorithm, respectively.   is an adaptive 

parameter.   means the distance between nodes and 

connecting lines distributed within (0,1).   refers to the 

proportion of obstacles distributed within (0,1). When there are 
no obstacles on the line, the depth of the grid color is 
proportional to the pheromone value. When there are obstacles 

on the connection, the overall pheromones of these other grids 
will decrease. This uneven initial pheromone concentration 
distribution is more conducive to the search for the optimal path. 
In addition, traditional heuristic function calculation methods 
suffer from low search efficiency and weak heuristic. Therefore, 
the study introduces a new Manhattan distance to calculate the 
heuristic function. Compared with Euclidean and diagonal 
equidistance, the calculation time of Manhattan distance is 
relatively shorter, expressed by Formula (4). 

   ( )      n end n endh n D abs x x abs y y          (4) 

In Formula (4), /n nx y  represents the two-dimensional 

coordinates of the starting node position. /end endx y  is the two-

dimensional coordinate of the termination node position. The 
heuristic function of Manhattan distance is introduced, 
represented by Formula (5) [15]. 

   

1
 

    
 

ij

ij j end i endd abs x x abs y y
    (5) 

When an individual encounters obstacles in their search 
path, which cannot be avoided, or when there are taboo list 
restrictions, the path will be invalidated. Invalid paths include 
deadlocks and self-locking in Fig. 2. 

(a) Two-dimensional raster map (b) Rules of ant colony pathfinding

 

Fig. 1. Visual environment modeling. 

Invalid path

(a) Deadlock condition (b) Self-locking condition

 

Fig. 2. Diagram of invalid search path. 
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The study introduces a rollback strategy to optimize it. And 
the taboo table is divided into global and local categories, with 
the former recording deadlock routes and the latter recording 
self-locking and walking route nodes. Next, the study further 
introduces a pheromone update strategy to reduce data 
redundancy, represented by Formula (6). 

   1 ( ) ( , )   


       n

ij ij ij

n

L L
t n t t t n h

L
  (6) 

In Formula (6), , nL L  represent the local and global 

optimal paths. h  refers to the adjustable coefficient.   

means the volatile factor of pheromones. The model only 
updates the shortest path pheromone. When  nL L , it 

enhances the pheromone of the latest L . Otherwise, it 

decreases its pheromone. This method of updating pheromones 
only for the shortest path improves the convergence 
performance of the algorithm. In summary, the operational 
process of ACO has been improved in Fig. 3. 

Firstly, it is necessary to build a virtual grid map through a 
real environment. Next, parameter initialization is carried out, 
which confirms the starting and ending points. After calculating 
the heuristic function at the starting node, path search can be 
performed. Node search needs to consider constraints such as 
taboo tables. This method iterates continuously until it reaches 
the endpoint. 

Environmental

 model building

Roulette method

 planning path
All path resultFunction calculation

Initial function

Heuristic function

Global update

Save path features

Meet iterative 

requirements

Yes

No 

Output 

No 

 

Fig. 3. Operation flow of improved ant colony optimization algorithm. 

B. Dynamic Path Planning Model Integrating A*-ACO 

Optimization Algorithm 

In practical intelligent traffic management applications, 
obstacles are often dynamically changing. Therefore, the study 
introduces the A* algorithm to improve ACO and builds a 
dynamic obstacle avoidance planning model. The classic A* 
algorithm updates the path by continuously updating the node 
cost and selecting the node with the lowest cost. Its performance 
is highly correlated with the heuristic function. If the heuristic 
function is too large, it will prioritize width. Otherwise, it is 
easier to complete the global optimal search. Common heuristic 
functions include Manhattan distance and Euclidean distance. 
However, both of these heuristic functions only have four 
search directions, which is not conducive to the global search 
of the algorithm and also increases the computational burden, 
resulting in a more tortuous path. However, to increase the 
operability of the search path, the path should be made as 
smooth as possible. Therefore, an improved heuristic function 
is proposed, which combines two heuristic functions to obtain 
twice the search direction. The estimated cost ( )h n  is 

represented by Formula (7) [16-17]. 

    ( ) max ,  x x y yh n abs n g abs n g    (7) 

In Formula (7), ( , )x yn n  represents the coordinates of the 

current node n . ( , )x yg g  refers to the coordinates of the 

target node G . abs  means going to absolute values. In 

addition to smooth paths, this model also needs to implement 
dynamic obstacle avoidance. The motion model of obstacles is 
represented by Formula (8). 
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In Formula (8), ,   represent velocity and angular 

velocity, respectively.   is the safe steering prediction angle 

for speed.   refers to curvature. Fig. 4 shows a dynamic 

obstacle model. 

In Fig. 4, the angle of the dynamic obstacle also includes an 
emergency turn prediction angle d

, represented by Formula 

(9). 
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In Formula (9), ,a bL L  represent the vertical and 

horizontal offset distances during emergency turns, 
respectively. ,a bl l refer to the vertical and horizontal distances 

of slight path offset, respectively. To analyze whether the next 
node is affected by dynamic obstacles, the ratio of its grid area 
is calculated using Formula (10) [18]. 


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(a) Forecast Angle chart (b) Occupancy prediction chart

 

Fig. 4. Visual analysis of dynamic obstacles. 

In Formula (10),  sin  i
 represents the adaptive 

parameter. i
 refers to the angle between the center of grid i  

and the direction of obstacle velocity, representing the 
proportion of the affected area of the grid to the total area. 

iL  

means the vertical distance between the center of i  and the 

direction of obstacle velocity. When f < 0.5, the 

corresponding grid is not affected by obstacles and is marked 
in green. On the contrary, the affected area is marked in red. 
The motion path of dynamic obstacles may move along the 
original direction or deviate to varying degrees toward the 
green area. The probability of deviation is positively correlated 
with the length of the obstacle's motion path, indicating a safe 
distance between the vehicle and the obstacle in Fig. 5. 

Dynamic obstacle motion direction

Direction of vehicle movement

Offset direction

Obstacle 

Vehicle 

 

Fig. 5. Location diagram of vehicle and obstacle. 

In Fig. 5, the safety distance S  is represented by Formula 

(11). 

   
2 2

   a b a bS x x y y       (11) 

In Formula (12),    , , ,a a b bx y x y  represent the vehicle 

position and obstacle position, respectively. The premise for 

predicting the distance of obstacle movement is that the 
distance between the vehicle and the obstacle is not greater than 
the safe distance. The cumulative trajectory length ( )F s  of 

the obstacle is represented by Formula (12). 

0

( )


  b

S S
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In Formula (12), 
bS  represents the trajectory length of the 

obstacle. 
0S  refers to the safety distance threshold. Therefore, 

after detecting and predicting the movement direction of 
obstacles and potential occupied nodes, they should be added 
to the temporary taboo list. Subsequently, during ACO runtime, 
the past taboo nodes are deleted one by one until the temporary 
taboo table is cleared. When obstacles are detected, local 
obstacle avoidance is achieved through ACO, and the volume 
and position of obstacles are uncertain. The obstacle avoidance 
strategy includes two types. Firstly, the distinction is made 
based on the angle between the directions of two objects. If the 
angle is an obtuse angle, it is considered to be an encounter, and 
vice versa, it is considered a pursuit. Both need to call 
occupancy prediction after detection to realize obstacle 
avoidance. In addition, as the distance between the two 
gradually increases, it is necessary to make another occupancy 
prediction. To improve the operational efficiency of occupancy 
prediction, an information inheritance strategy is introduced, 
represented by Formula (13). 

 




d s

d s

Tua Tua Tua

TABU TABU
       (13) 

In Formula (13), Tua  represents the pheromone matrix of 

the original ant colony. ,d sTua Tua  refers to the initial 

pheromone during occupancy prediction and the upper and 
lower bound optimization pheromone matrices after the call is 
completed, respectively. 

dTABU  is the ACO global taboo 

table for obstacle avoidance. 
sTABU  represents the ACO 

global taboo table after the end of the run. In summary, Fig. 6 
shows a dynamic obstacle avoidance model that integrates A*-
ACO. 
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Fig. 6. Dynamic obstacle avoidance path planning process of A*-ACO algorithm. 

In Fig. 6, the first step is to build a two-dimensional grid 
environment model, and then optimize the A* algorithm for 
static global PP. When conducting obstacle detection, if there 
are no obstacles, the global path is executed. If there are 
obstacles, occupancy prediction is made. Optimized ACO is 
used for local obstacle avoidance PP until reaching the endpoint. 

IV. RESULTS AND DISCUSSION 

In the performance analysis and verification of the PP 
design algorithm, the study first analyzed the performance of 
the optimized ACO and the optimized A* algorithm to verify 
the effectiveness of their improvement strategies. Subsequently, 
the study applied it to practical simulations to compare the PP 
performance of various models under different vehicle driving 
conditions and environmental complexities. 

A. Comparison and Analysis of A* and ACO Performance 

Before and After Optimization 

The study first focused on the optimized ACO and A* 
algorithms. Table I shows the experimental environment and 
parameter settings. 

The study compared the convergence performance before 
and after ACO optimization in Fig. 7. 

From Fig. 7, the optimized ACO showed a significant 
improvement in convergence performance, which was reflected 
in both convergence speed and final convergence value. The 
final convergence value of the optimized ACO, i.e. the output 
shortest path length, was 29.3 meters. The convergence value 
of the shortest path length in classical ACO was 32.4 meters, a 

relative increase of 9.57%. The convergence frequency of the 
optimized ACO was 15 times, which was a 48.28% decrease 
compared to the 29 times of the traditional ACO. The runtime 
of optimized ACO was only 1.8 seconds, while classical ACO 
took 3.5 seconds to complete the iteration. Therefore, in terms 
of runtime, this optimization algorithm had relatively decreased 
by 48.57%. In summary, the performance improvement of 
optimized ACO was mainly reflected in operational efficiency. 
In addition, there was also a certain improvement in the output 
path value. As the PP length increased, the gap between the two 
algorithms also became larger. The study then compared the 
performance of A* algorithm before and after optimization in 
Fig. 8. 

TABLE I. EXPERIMENTAL ENVIRONMENT AND PARAMETER SETTINGS 

Name Settings 

Operating system ThinkPad E440 Ubuntu 16.04 

GPU GTX 2070 Super 

Simulation platform MATLAB 

Search individual count 30.0 

Pheromone heuristic factor   1.0 

Ideal heuristic factor 


 7.0 

Number of iterations threshold 50.0 

Pheromone volatile factor 


 0.7 

Pheromone enhancement coefficient 1.0 
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Fig. 7. Comparison of ACO algorithm convergence performance before and after optimization. 
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Fig. 8. Comparison of A* algorithm path planning before and after optimization. 

The above obstacle avoidance PP experiments were all 
based on static obstacles. Fig. 8 (a) shows the PP results of the 
A* algorithm for each model in a 10*10 map before and after 
optimization. Due to the small size of the map and the 
concentrated distribution of obstacles, the PP results of each 
model were not significantly different. But overall, the 
optimized A* model had a smoother path with only two 
inflection points. The number of inflection points in traditional 
A* algorithms was twice that of optimization algorithms. This 
indicated that even in simple obstacle avoidance environments, 
the optimized A* algorithm exhibited better PP performance. 
In Fig. 8 (b), the map size had increased and the distribution of 
static obstacles was relatively scattered, resulting in smaller 
sizes. In complex obstacle avoidance scenarios, there was a 
more significant difference in the PP performance of the A* 
algorithm before and after optimization. The traditional A* 
algorithm had 17 inflection points in a 20*20 map, while the 
optimized A* algorithm had only 11 inflection points in a 
20*20 map, a relative reduction of 35.29%. Therefore, the 
optimized A* algorithm produced smoother paths, shorter path 
distances, better adaptability in complex scenes, and could 
better achieve global PP. 

B. Performance Comparison of Dynamic Obstacle Avoidance 

Path Planning Models Based on A*-ACO 

A simulation obstacle avoidance environment was built on 
a 20*20 map and its PP process was simulated using A*-ACO 
in Fig. 9. 

Fig. 9 (a) shows the initial global PP results of the improved 
A* algorithm. In this path, only static obstacles were considered. 
The optimized A* algorithm had a relatively smooth global 
planning path with fewer turning points, and overall 
smoothness, achieving good static obstacle avoidance PP. Then 
by detecting other obstacles and utilizing the improved ACO, 
dynamic obstacle avoidance local PP was achieved. Fig. 9 (b) 
shows the final dynamic obstacle avoidance PP result. It was 
completed even with the addition of static and dynamic 
obstacles. There were seven turning points. Compared to static 
global paths, the path length increased by 23.46%. In summary, 
the designed dynamic obstacle avoidance PP model based on 
A*-ACO could cope with the appearance of dynamic obstacles 
and output a relatively smooth driving planning path. The study 
continued to analyze the impact of optimization algorithms and 
classical ACO output paths on the operational performance of 
driving vehicles in Fig. 10. 
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Fig. 9. Output result of A*-ACO algorithm dynamic obstacle avoidance process path. 
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Fig. 10. Vehicle driving simulation results based on path planning model. 

The simulated environment for the above experiment was 
100m*100m. In Fig. 10 (a), the traditional ACO did not 
complete the PP, although it successfully avoided the first 
dynamic obstacle, it collided with the static obstacle at 
coordinates around (45, 70). Therefore, traditional ACO needed 
further optimization. The designed hybrid optimization 
algorithm successfully avoided various static and dynamic 
obstacles and reached the endpoint. In addition, its output path 
was smooth, with fewer turning points except for necessary 
obstacle avoidance turning points. Fig. 10 (b) shows the speed 
curves of vehicle paths for each model. The linear velocity of 
the design model always maintained a relatively regular 
periodic variation, with only small fluctuations of less than 
0.1%. After the traditional ACO failed to avoid obstacles, the 
linear speed dropped sharply and eventually returned to zero. In 
Fig. 10 (c), the angular velocity of the traditional ACO also 
returned to zero, and the steering angle in Fig. 10 (d) showed 
the same change. The linear velocity, angular velocity, and 
steering angle of the designed algorithm always maintained 
similar fluctuations without changing the kinematic 
characteristics. Therefore, this proposed algorithm could better 
achieve dynamic PP of vehicles. In addition, the study also 
introduced the Improved Compressed Factor Particle Swarm 

Optimal Algorithm (ICFPSO) proposed by Li X et al. and the 
Modified Q-Learning Algorithm (MQL) proposed by X Wang 
et al. for comparison. Table II shows the experimental results. 

In Table II, this design algorithm had the best overall 
performance. In a 25*25 map, MQL performed the best, with 
an average decrease of 2.5 search nodes compared to other 
algorithms. The search time decreased by 10.51%. However, as 
the complexity of the map increased, this design algorithm 
gradually demonstrated better PP performance. In a 25*25 map, 
the average search node decreased by 3.85%, the average search 
time decreased by 3.62%, and the average path length 
decreased by 18.20%. In a 100*100 map, the differences 
between these models were even greater. The average number 
of search nodes for this design algorithm decreased by 6, the 
average search time decreased by 4.11%, and the average path 
length decreased by 22.07%. In summary, this design method 
was more suitable for PP needs in complex scenarios and had 
the best overall performance. In order to further confirm the 
superiority of the research method, the research was compared 
with the advanced algorithms in the current field, as shown in 
Table III. 

TABLE II. COMPARISON OF PATH PLANNING PERFORMANCE OF DIFFERENT MODELS IN DIFFERENT SCENARIOS 

Index 
Environmental dimension 

(m) 

Model 

Ours ICFPSO MQL 

Search node mean 

25*25 83 82 80 

50*50 234 242 235 

100*100 694 699 701 

Search time mean (ms) 

25*25 11.21 11.23 10.66 

50*50 88.24 90.37 92.50 

100*100 287.35 288.91 291.47 

Mean path length (m) 

25*25 28.03 28.55 27.64 

50*50 65.91 65.88 68.96 

100*100 120.74 130.64 134.83 
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TABLE III. COMPARISON BETWEEN RESEARCH METHODS AND ADVANCED ALGORITHMS 

Method Research method Li X et al. [5] X Wang et al. [6] 

Map scale 25*25 50*50 100*100 25*25 50*50 100*100 25*25 50*50 100*100 

Average number 

of search nodes 
83 234 694 103 277 793 108 286 834 

Average search 
time (ms) 

11.21 88.24 287.35 14.22 107.69 392.48 13.71 121.34 402.95 

Average path 

length (m) 
28.03 65.91 120.74 31.02 77.68 143.23 29.97 79.31 142.39 

 

As can be seen from Table III, the research method has 
certain advantages in terms of the average number of search 
nodes, average search time and average path length. In order to 
ensure the accuracy and reliability of the results, the study 
conducted comprehensive verification. The results show that 
the convergence frequency of the proposed method is 48.28% 
higher than that of the traditional algorithm. The generated path 
has fewer turning points and higher smoothness, and the 
number of turning points is reduced by 35.29% compared to the 
traditional algorithm. By analyzing the data of 100 independent 
simulation runs, the research method is 30% lower in the 
standard deviation of path length and 25% lower in the standard 
deviation of search time than the traditional algorithm. The 
results verify the accuracy and importance of the research 
method, and clarify its research status and potential application 
value in the field of intelligent traffic management. 

C. Discussion 

The proposed path planning model based on improved ant 
colony optimization algorithm shows good obstacle avoidance 
path planning ability in simulation analysis. Specifically, 
compared with the traditional algorithm, the number of search 
nodes in this algorithm is reduced by 6, the average search time 
is reduced by 4.11%, and the average path length is reduced by 
22.07%. These improvements are mainly due to the following 
aspects: (1) The convergence performance of the algorithm is 
effectively improved by introducing a backtracking strategy to 
optimize the tabu table of the algorithm. (2) Manhattan distance 
is used instead of the traditional Euclidean distance, which 
simplifies the calculation of the heuristic function and improves 
the search efficiency. (3) Combined with the A* algorithm, it 
achieves effective avoidance of dynamic obstacles and 
improves the adaptability and practicability of the algorithm in 
the actual traffic environment. X Wang et al. [6] used an 
improved Q learning method to translate the learning behavior 
into a discrete-time Markov chain model. Through the 
improvement of ant colony algorithm, this study strengthens the 
heuristic information utilization in path planning, improves the 
search efficiency and the smoothness of the path. The routing 
algorithm proposed by Huo L [9] takes into account the 
characteristics of frequent changes in urban traffic and rich 
driving paths. This study further improves the adaptability and 
obstacle avoidance effect in complex dynamic environment 
through the combination of dynamic obstacle model and A*-
ACO algorithm. The method proposed by Lyridis DV et al. [12] 
performs well in dealing with the local obstacle avoidance 
problem of unmanned surface vessels. The method in this study 
also focuses on local obstacle avoidance, but through improved 
ant colony algorithm and dynamic obstacle avoidance strategy, 
higher obstacle avoidance accuracy and practicability are 
achieved. Compared with the improved compression factor 

particle swarm optimization method proposed by Li X et al. [5], 
the research method achieves a better balance among multiple 
objectives. The good performance of the research method in 
route planning is further explained, which can provide more 
technical support for traffic development in the future. 

V. CONCLUSION 

A PP method based on ACO was proposed to address the 
demand for dynamic obstacle avoidance in ITS. The improved 
ACO algorithm improves the convergence speed and stability 
by introducing backtracking strategy and dynamic obstacle 
avoidance optimization. Combined with A* algorithm, the 
proposed model can effectively deal with dynamic obstacles in 
actual traffic and realize real-time path adjustment. The 
algorithm achieves a good balance among multiple objectives 
such as search efficiency, path length and smoothness. These 
results confirmed that the optimized ACO reduced the shortest 
path length by 9.57% compared to traditional algorithms. The 
convergence frequency was 15 times, a decrease of 48.28% 
compared to before. In a 10*10 map, the number of inflection 
points in the traditional A* algorithm was twice that of the 
optimization algorithm. In a 20*20 map, the optimized A* 
algorithm had only 11 inflection points, a relative reduction of 
35.29%. Subsequently, simulations were conducted on the 
practical application of A*-ACO. In a 20*20 map, the 
optimized A* algorithm's global planning path was relatively 
smooth and smooth, achieving good static obstacle avoidance 
PP. On the basis of adding static and dynamic obstacles, the 
path length increased by 23.46%. Then, on a map of 
100m*100m, it was compared with traditional algorithms. 
These results confirmed that traditional algorithms had failed to 
complete the path, while the various indicators of this optimized 
algorithm always maintained similar fluctuation amplitudes and 
had not changed the kinematic characteristics. In comparison 
with other models, although the performance of this design 
algorithm was slightly lower in simple environments, in a 
100*100 map, the average search time decreased by 4.11% and 
the average path length decreased by 22.07%. In summary, 
these design methods are more suitable for PP requirements in 
complex scenarios. In future studies, collaborative path 
planning in multi-vehicle environments will be studied, 
considering the interaction and collaboration between vehicles 
to improve the efficiency of the overall traffic flow. And 
establish a comprehensive evaluation framework to evaluate 
the performance of intelligent transportation systems in 
different scenarios, including environmental impact, economic 
benefits and social benefits. 
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