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Abstract—Controlling the spread of Coronavirus Disease 2019 

(COVID-19) and reducing its impact on public health need 

prompt identification and treatment. To improve diagnostic 

accuracy, this study attempts to create and assess a Multi-

Modality COVID-19 Diagnosis System that integrates X-ray, 

Electrocardiogram (ECG), and Computed Tomography (CT) 

images utilizing Convolutional Neural Network (CNN) 

algorithms. To increase the accuracy of COVID-19 diagnosis, the 

suggested system incorporates data from many imaging modalities 

in a novel way, including cardiac symptoms identified by ECG 

data. This approach has not been thoroughly studied in the 

literature to date. The system analyses CT, ECG, and X-ray 

images using CNN algorithms, including Visual Geometry Group 

19 (VGG19) and Deep Convolutional Networks (DCNN). While 

ECG data helps detect related cardiac symptoms, CT and X-ray 

images offer precise insights into lung abnormalities indicative of 

COVID-19 pneumonia.  Noise reduction and image smoothing are 

accomplished through the implementation of Gaussian filtering 

algorithms. After extracting characteristics suggestive of either 

bacterial or viral pneumonia, a deep neural network refines them 

for accurate COVID-19 identification. Python software is 

employed throughout the system's implementation. A thorough 

evaluation of the trained CNN model using separate datasets 

revealed an amazing 99.12% accuracy rate in COVID-19 

detection from chest imaging data.  The diagnostic accuracy of the 

suggested DCNN model was much higher than that of the current 

models, including Random Forest and Linear Ridge. The Multi-

Modality COVID-19 Diagnosis System uses cutting-edge CNN 

algorithms to seamlessly combine ECG, X-ray, and CT imaging 

data to provide a highly accurate diagnosis tool. With the 

implementation of this approach, medical personnel could 

potentially be able to diagnose COVID-19 more quickly and 

accurately, which would improve the disease's treatment and 

control. 
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I. INTRODUCTION 

COVID 19 has led to an advancement, in technologies, for 
the prompt and precise detection of the virus. One notable 
development is the emergence of faceted diagnostic systems, 
which offer a comprehensive understanding of the illness [1]. In 
the world of medical research, the application of CNNs to 
analyze CT and MRI images has demonstrated tremendous 
promise for COVID-19 identification [2]. These sophisticated 
machine learning algorithms are very adept at interpreting 
complex patterns and traits seen in medical imaging data, which 

makes it easier to identify critical markers of COVID-19 
infection in patients [3]. An imaging method for respiratory 
disorders, computed tomography (CT) scans provide precise 
three-dimensional pictures of the lungs, which are essential for 
determining the kind of pulmonary abnormalities [4]. These 
images may be precisely examined to determine certain 
characteristics linked to COVID-19, including the existence of 
ground-glass transparency, by employing CNN technology. 
Additionally, magnetic resonance imaging (MRI) has shown to 
be a useful diagnostic and evaluation technique for pathology 
due to COVID-19 [5]. An understanding of pulmonary and 
cardiovascular health—both of which are greatly influenced by 
COVID-19 infection—can be gained through magnetic 
resonance imaging (MRI), which is well-known for its capacity 
to provide high-resolution images of soft tissues and organs. 
When CNNs are used on MRI scans, they can detect certain 
signs of COVID-19-related pathology, such as cardiac damage, 
lung inflammation, and vascular alterations. This helps with the 
thorough assessment of individuals who are impacted [6]. 

To analyze CT and MRI images for COVID-19 
identification by CNN has great potential for enhancing 
diagnostic accuracy and speed in clinical practice [7]. 
Healthcare professionals can quickly and reliably detect 
COVID-19 patients based on imaging results by utilizing deep 
learning algorithms [8]. It is imperative to acknowledge that the 
efficacious utilization of CNNs for COVID-19 identification is 
contingent upon many aspects, such as the quality and amount 
of accessible imaging data, the resilience of deep learning 
algorithms, and the validation of outcomes via meticulous 
clinical investigations [9]. To guarantee the accuracy and 
applicability of CNN-based techniques in actual healthcare 
settings, issues including data fluctuation, imaging artifacts, and 
model understanding must also be resolved. Notwithstanding 
these obstacles, there are many intriguing prospects for more 
innovation and enhancement in COVID-19 diagnosis and 
patient care because of the continuous developments in medical 
imaging technology and machine learning algorithms [10]. 
CNNs with their ability to automatically learn and extract 
intricate patterns from images, have been employed to interpret 
these CT images for the presence of COVID-19-related features. 
By training on datasets of CT images from both COVID-19 
positive and negative cases, CNNs can distinguish between 
healthy and infected individuals, aiding in rapid and accurate 
diagnosis [11], [12]. 

The integration of CNNs in COVID-19 detection through 
CT and MRI images brings several potential advantages. These 
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algorithms can assist healthcare professionals in identifying 
COVID-19 cases swiftly, facilitating timely interventions and 
patient management. Moreover, the automated nature of CNNs 
can help alleviate the burden on radiologists and healthcare 
systems, especially during surges in COVID-19 cases [13]. 
MRI, another sophisticated imaging modality, offers a different 
perspective on pulmonary and cardiovascular health. The 
utilization of CNN algorithms across the Multi-Modality 
COVID-19 Diagnosis System to leverage the unique strengths 
of each imaging technique. The paper presents Multi-Modality 
COVID 19 Diagnosis System that utilizes CNN algorithms to 
analyze information from three perspectives; ECG, X ray and 
CT images. 

The proposed method is chosen for its ability to integrate 
multi-modal data such as chest X-ray (CXR), CT scans, and 
clinical data, enhancing COVID-19 diagnosis and prognosis 
accuracy. Leveraging the deep learning capabilities of CNNs 
and RNNs, it effectively learns intricate patterns from large-
scale medical datasets. Feature fusion techniques combine 
radiomic and clinical features to provide robust predictions, 
while rigorous data augmentation and preprocessing mitigate 
dataset challenges. Model interpretability through explainable 
AI ensures transparency in predictions, fostering clinical trust. 
Designed for scalability and seamless integration into healthcare 
workflows, the method continuously adapts to evolving 
COVID-19 trends, ensuring ongoing efficacy and relevance in 
clinical settings. 

The key contributions are as follows: 

 This work provides an innovative method of diagnosing 
COVID-19 by combining CT, X-ray, and ECG data. A 
comprehensive evaluation of the condition is made 
possible by this multi-modal integration, which records 
its symptoms from several angles and offers a full picture 
of the patient's health. 

 The study effectively analyses a variety of data types by 
utilising the capabilities of sophisticated Convolutional 
Neural Network (CNN) algorithms, such as VGG19 and 
Deep Convolutional Networks (DCNN). This advanced 
technique improves the system's diagnostic capabilities 
by enabling the discovery of complex patterns that are 
essential for an effective diagnosis. 

 The suggested diagnosis approach significantly improves 
the accuracy of recognising COVID-19 instances by 
utilizing cutting-edge CNN algorithms and merging data 
from many imaging modalities. Enhancing patient 
outcomes, this increased accuracy helps medical 
practitioners make prompt accurate decisions. 

 With its capacity to smooth and reduce noise, Gaussian 
filtering improves picture quality. This helps the 
diagnostic system get clear and accurate input data, 
which increases dependability and overall performance. 

 The multi-modality COVID-19 diagnosis system is a 
ground-breaking development in medical diagnostics 
that combines a variety of imaging modalities with state-
of-the-art CNN algorithms to provide a reliable, 

accurate, and efficient diagnostic tool that aids medical 
professionals in fighting the pandemic. 

Structure of the study is given as follows: Existing literature 
reviews and its challenges are given in Section II. Identified 
problem from the related studies are given in Section III. Section 
IV presents the proposed method to overcome the challenges in 
the existing study. Findings derived from the proposed work is 
given in Section V. Conclusion of the study and future directions 
are given in Section VI. 

II. RELATED WORKS 

Wu et al. [14] present DeepCOVID-Fuse, a unique neural 
network fused model intended to forecast risk categories for 
COVID-19 patients. DeepCOVID-Fuse attempts to deliver 
more precise risk evaluations by combining medical data 
obtained at the period of beginning hospital admission with 
chest radiographs (CXRs). To ascertain risk levels, the study 
made use of information gathered from February to April 2020, 
which included CXRs, clinical factors, and outcomes including 
death, the intubation procedure hospitalized duration of the stay, 
and admission to the ICU. The fusion model was evaluated on 
439 individuals from distinct holdout healthcare and examined 
on 428 individuals from the local healthcare system. The 
training dataset for the fusion model included 1657 individuals 
Using the DeLong and McNemar examinations, performance 
comparisons were made between DeepCOVID-Fuse and 
systems training on CT scans or medical parameters. Results 
showed that DeepCOVID-Fuse, with an accuracy around 0.650 
and a region according to the ROC curve (AUC) of 0.842, 
performed significantly better than these separate models. The 
research highlights the potential benefits of fusion algorithms for 
hospital triage facilities and highlights their effectiveness in 
improving risk estimation for COVID-19 patients. Still, several 
restrictions should be noted. Firstly, model robustness could 
have been damaged by incomplete or missing medical 
information in the training dataset. The investigation failed to 
establish a direct comparison between DeepCOVID-Fuse's 
efficiency and radiologist' since risk prediction is a difficult and 
subjective process that depends on expert evaluation of both 
clinical and radiological information. 

Fathima et al. [15] uses deep neural networks to provide a 
unique multimodality-based and featured fusion-based (MMFF) 
COVID-19 identification method. There are several essential 
phases in the building of the MMFF method. In the beginning, a 
multi-modality dataset is used to detect COVID-19. After that, 
non-discriminative information is removed from audio signals 
using a variety of speech preparation techniques. The process 
then proceeds to extract discriminative features from each 
medium, resulting in the master featured vector (MFV) being 
created. The LSTM (Long Short-Term Memory) recurrent 
neural networks approach is then used to classify COVID-19 
cases using MFV. Due to the dataset's imbalance, audio 
augmentation methods are used to rectify the class imbalance. 
MMFF uses multi-modality audio samples taken from the 
COSWARA database to efficiently discriminate between 
healthy persons and COVID-19 sufferers. Utilizing LSTM 
classifiers to combine information from nine distinct 
approaches, the suggested method outperforms baseline 
approaches by 17 to 20% and achieves an impressive 96% 
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accuracy. Additionally, using audio augmenting approaches 
improves performance on datasets that are unbalanced as well as 
those that are balanced. In addition to helping with COVID-19 
diagnosis without working against social distancing protocols, 
the suggested approach has potential applications in sentiment 
evaluation, sexuality categorization, and identification of 
speakers, among other audio analysis and classification issues. 
Subsequent efforts will be directed at developing an automated 
COVID-19 diagnostic tool with spectrogram data and methods 
like the CycleGAN system and Transfer Learning will be 
employed. 

Abdar et al. [16] framed UncertaintyFuseNet, a deep neural 
fusion of features network accurately detect COVID-19 utilizing 
CT scan and X-ray data. The Ensemble Monte Carlo (MC) 
Dropout (EMCD) approach is integrated to evaluate uncertainty, 
highlighting the necessity of taking uncertainty about 
predictions during the learning process. The two fundamental 
deep learning models are presented in which Deep 1 consists of 
three feature extraction layers that are layers of convolution with 
MC failure, followed by three classification-focused layers that 
are dense. On the other hand, Deep 2 is made up of three primary 
units that operate as features extraction methods, each of which 
is followed by a layer for classification and a fusion layer. A 
comprehensive view from the third convolutional block, in-
depth data from the last and final blocks of data, and the 
characteristics of the VGG16 transferred learning network are 
all combined in the suggested feature combination architecture. 
It also contains ROC plots for model assessment and graphical 
illustrations of the X-ray and CT imaging datasets. 
UncertaintyFuseNet's performance is compared to other 
methods using a thorough simulation analysis, with a focus on 
the terms precision, recall, the F measure, accuracy, and ROC 
curves. the model addresses uncertainty quantification through 
techniques like Ensemble Monte Carlo Dropout (EMCD), there 
may still be scenarios where uncertainty estimation is not 
sufficiently accurate or reliable. 

Alazab et al. [17] work uses data from the real world, mainly 
X-ray chest images, to offer an AI-driven method for COVID-
19 diagnosis and forecasting. Using an enhanced dataset, a Deep 
CNN, namely the VGG16 model is used for diagnosis in order 
to quickly and accurately discover COVID-19 patients, with an 
excellent the F-value of 99%. Also, the number of COVID-19 
confirmations, recovery efforts, and mortality over the following 
week are predicted using three forecasting techniques: the 
prophetic algorithms (PA), the ARIMA method, and LSTM. 
With forecasting accuracy levels that vary from 79.3% to 99.9%, 
PA outperforms other models in the task of predicting these 
parameters for Australia and Jordan. Additionally, this research 
analyzes the worldwide geographically distribution for COVID-
19 dissemination, emphasizing the features of severely affected 
places being comparable to one another and the much more 
widespread in coastal regions relative to non-coastal parts. 
These results highlight the significance of preventative actions, 
particularly in coastal areas, such as routine examinations and 
focused therapies. The report also suggests more research be 
done to determine how environmental variables like humidity 
and temperature affect the transmission of COVID-19. All 
things considered, this study advances AI-based methods for 
COVID-19 identification and forecasting and offers insightful 

information for successfully containing the pandemic. The 
model's performance may be limited by the specificity and 
sensitivity of chest X-ray imaging in detecting COVID-19. 

Jian et al. [18] proposed an alternate diagnosis method that 
applies the latest algorithms in deep learning to chest X-ray 
scans in order to identify COVID-19 instances. The 
preprocessing phase data augmentation, and two stages of deep 
neural network modelling comprise the technique's four major 
phases. The study uses 1215 imagery at first, increased to 1832 
images to improve model generalization and avoid overfitting 
by utilizing web resources. Based on chest X-ray images, the 
two-phase deep network structure seeks to distinguish COVID-
19-induced influenza with pneumonia caused by bacteria, 
pneumonia caused by viral infections, and normal people. The 
two-stage approach performs well; the initial stage can 
discriminate between various forms of the illness and healthy 
persons, and the second step is particularly effective at 
accurately identifying COVID-19. For accurate identification of 
COVID-19 pneumonia, which is the suggested strategy provides 
efficiency, accuracy, and dependability while demanding the 
least amount of computing resources. According to the method, 
employing this strategy for parallel testing might reduce the risk 
of infection for frontline staff members and speed up initial 
diagnosis. 

Hussain et al. [19] introduced CoroDet, a unique CNN-based 
technique that uses unprocessed chest X-ray and CT imaging 
data to automatically identify COVID-19. CoroDet outperforms 
11 other methods in the context of a comparison, with accuracy 
in classification of 99%, 94%, and 91% for the second, third and 
fourth classes categorizations respectively. CoroDet's 
consistency is further enhanced by the fact that the dataset used 
for assessment is among the most comprehensive datasets 
accessible to COVID identification. The dataset prepared for 
evaluating CoroDet constitutes one of the largest datasets for 
COVID detection. Deep learning models like CoroDet typically 
require substantial computational resources for training and 
inference, which may pose challenges for deployment in 
resource-constrained healthcare settings, especially in low- and 
middle-income countries. The COVID-19 pandemic is 
characterized by evolving epidemiological trends, including the 
emergence of new variants and changing clinical presentations. 
It does not provide external validation of CoroDet's performance 
on independent datasets from different institutions or geographic 
regions. Without validation on diverse datasets, the robustness 
and applicability of the model to different healthcare settings 
remain uncertain. 

DeGrave et al. [20] demonstrate that AI models trained on 
datasets synthesized from separate COVID-19-positive and 
negative images may learn spurious 'shortcuts' to achieve high 
accuracy, posing challenges for generalization to new 
hospitals.  AI systems are trained offers a nearly perfect 
environment for picking up these fictitious 'shortcuts'. Through 
the synthesis of training data from distinct datasets including 
images either positive or negative for COVID-19, these 
algorithms could unintentionally pick up features irrelevant to 
the pathophysiology of the disease. As a result, these models 
could perform well in assessment but have trouble generalizing 
to other hospitals or datasets. Also, dependence on medically 
relevant disease may not be ensured by evaluating these AI 
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models only on external data. Unwanted short cuts that these 
models take out might not always affect performance on fresh 
datasets, which makes it difficult to identify problematic 
behaviour using only external validation. In addition, relying 
just on assessments of other information may not be sufficient 
for these AI systems to be evaluated in terms of clinically 
applicable disease. It can be difficult to identify bad behaviour 
alone through external validation since unwanted short cuts that 
these models develop may not always affect performance on 
fresh datasets. Deep learning models may rely on confusing 
features rather than medically relevant pathology, leading to 
inaccurate or unreliable predictions. 

Ismael and Sengur [21] demonstrated techniques which 
include complete training of models using CNN, deep extraction 
of features, and pre-trained CNN fine-tuning. The collected 
characteristics were then classified using Support Vector 
Machine processors with different kernel features. A new CNN 
model was created and trained entirety in addition to the 
pretrained CNN models undergoing fine-tuning. The accuracy 
of 94% was obtained by combining deep features taken from the 
ResNet50 algorithm with an SVM classifier that used a linear 
kernel. An accuracy of 92% was obtained by fine-tuning the 
ResNet50 model, whereas an accuracy of 91.6% was obtained 
by the end-to-end trained CNN model. Moreover, contrasts 
using SVM classifications and local texture descriptors 
demonstrated how much better deep learning techniques 
performed than conventional techniques for COVID-19 
identification from chest CT images. 

The relevant studies cover approaches, to using learning in 
diagnosing and predicting COVID 19 from chest X ray and CT 
scans. A fusion network for COVID-19 detection using CT and 
X-ray data, incorporating uncertainty quantification techniques, 
was also developed. Additionally, a CNN-based technique for 
automatic COVID-19 detection from CT and chest X-ray 
imaging data, achieving high classification accuracy, was 
introduced. These research findings demonstrate that deep 
learning algorithms can effectively detect COVID 19 cases and 
track the progression of the disease. By integrating data and 
chest CT scans through a fusion technique, the proposed method 
enhances approaches providing more precise risk assessments 
for COVID 19 patients. Through evaluations the method 
surpasses techniques achieving high accuracy in classification 
and demonstrating efficacy in accurately identifying COVID 19 
cases. 

III. PROBLEM STATEMENT 

While some studies focus on analyzing CT scans and chest 
X-rays individually for COVID-19 diagnosis, there is a lack of 
research that effectively integrates multimodal data, such as 
ECG signals, to improve diagnostic accuracy [22]. It trains and 
evaluates their models on specific datasets, which may limit the 
robustness and generalization of the proposed methods to 
diverse patient populations and healthcare settings. The Existing 
methods has limitations, such as handling diverse and 
unbalanced datasets in clinical settings, relying on traditional 
machine learning algorithms without deep learning 
advancements, and lacking robust uncertainty quantification 
methods. Scalability concerns and deployment in resource-
limited healthcare environments also pose practical challenges. 

Addressing these issues is crucial for improving the method's 
utility and reliability in clinical practice. Thus, the proposed 
Multi-Modality COVID-19 Diagnosis System, which integrates 
information from ECG, X-ray, and CT images using advanced 
CNN algorithms. The proposed system uses multi-modality 
diagnosis, integrating data form-ray, ECG, and CT images, to 
improve COVID-19 diagnosis accuracy. It uses CNN algorithms 
like VGG19 and Deep Convolutional Networks to analyze 
complex data.  The developed COVID-19 detection system is 
evaluated on independent datasets to assess its real-world 
performance. 

IV. PROPOSED MULTI-MODALITY COVID-19 DETECTION 

SYSTEM USING DEEP CNN ALGORITHM 

The Proposed Multi-Modality COVID-19 Diagnosis System 
analyzes data from ECG, X-ray, and CT images for improved 
COVID-19 identification using CNN algorithms, such as 
VGG19 and Deep Convolutional Networks. In order to extract 
valuable details from each modality and enable thorough 
analysis of medical data, CNN algorithms are used. The system 
analyzes ECG data to identify relevant features that are 
suggestive of cardiac symptoms linked to COVID-19.  Chest X-
rays are evaluated to find typical patterns associated with 
COVID-19 pneumonia. In between, CT scans provide fine-
grained depicts of lung tissue, making it possible to identify 
minute anomalies that might indicate COVID-19 infection. 
CNN methods, such as VGG19 and Deep Convolutional 
Networks, play an essential part in the analysis of these various 
types of data. Large datasets of tagged COVID-19 patients and 
unaffected controls are used to train these algorithms so they can 
recognize intricate patterns and correlations in the data. By 
means of extraction and classification of features, the CNN 
algorithms are able to discriminate between COVID-19 
instances and non-COVID-19 diseases, therefore offering 
healthcare providers invaluable diagnostic support. Fig 1 depicts 
the illustration of the proposed multi-modality COVID-19 
detection system using CNN Algorithms. 

A. Data Collection 

The Kaggle dataset titled Extensive COVID-19 X-Ray and 
CT Chest Images Dataset contains a large collection of X-ray 
and CT images of the chest from patients [23]. The dataset 
consists of both Non-COVID and COVID cases represented in 
X-ray and CT images. With the aid of various augmentation 
techniques, the dataset has been expanded to encompass 
approximately 17,099 CT images and X-ray. Within the 
database, there are two primary files, one designated for X-ray 
images and the other for CT images.  COVID-19 X-ray images 
typically show bilateral ground-glass opacities (hazy areas) and 
consolidations (dense areas) in the lungs, which are indicative of 
viral pneumonia. X-ray images are widely used for initial 
screening and diagnosis of COVID-19 due to their accessibility, 
simplicity, and lower cost compared to CT scans. CT (Computed 
Tomography) scans use a series of X-ray images taken from 
different angles to create cross-sectional images of the body. 
COVID-19 CT images typically reveal bilateral and peripheral 
ground-glass opacities, consolidations, and crazy paving 
patterns in the lungs, often involving multiple lobes. ECG data 
for COVID-19 detection can be collected from patients who 
have been diagnosed with the virus or suspected cases. The 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

1106 | P a g e  

www.ijacsa.thesai.org 

dataset may include ECG recordings obtained during routine 
clinical assessments [24]. Table I shows the sample of the 
dataset.  

 
Fig. 1. Conceptual framework of multi-modality COVID-19 detection 

system using deep CNN algorithms. 

TABLE I.  SAMPLE DATASET 

ECG X-Ray CT Images 

   

  
 

  
 

  
 

B. Pre-Processing using Gaussian Filter 

X-ray and CT images may come in varying sizes, so resizing 
them to a standard resolution can facilitate consistency and 
reduce computational complexity. Intensity Normalization is 
done by adjusting the intensity levels of the images to a standard 
scale helps in reducing variability between images captured 
using different devices or settings. Enhancing image contrast 
can improve the visibility of important features, making it easier 
for medical professionals to interpret the images accurately. 
Removing baseline wander or low-frequency noise from ECG 
signals helps in isolating the cardiac waveform and improves 
signal quality. Segmenting ECG signals into individual 
heartbeats or cardiac cycles facilitates the analysis of specific 
features such as the P-wave, QRS complex, and T-wave. 

Pre-Processing using a Gaussian filter is a widely used 
method for smoothing and noise reduction in images and 
signals. The Gaussian function, a bell-shaped curve representing 
the distribution of values, is generated based on two parameters: 
the σ and μ. The Gaussian kernel is convolved with the input 
image or signal, multiplying neighboring values at each pixel or 
data point and summed to produce the output value. This process 
is repeated for all pixels or data points in the image or signal. 
Smaller kernel sizes and lower standard deviations result in less 
smoothing, while larger values produce more pronounced 
blurring. After the convolution operation is performed, the 
output is generated, representing the pre-processed version of 
the input. The Gaussian filter is defined by the Gaussian 
function, which is given by the following Eq. (1), 

𝐺(𝑎, 𝑏) =
1

2𝜋𝜎2 e
a2+b2

2σ2                               

where, G(a, b) is the Gaussian function at coordinates (a, 
b),𝜎 is the standard deviation of the Gaussian distribution. 

C. Feature Extraction and Pneumonia Detection using VGG 

19 

Initially, relevant structures are extracted from the data 
images using techniques like CNNs. These structures may 
include the presence of specific patterns, densities, or shapes 
indicative of different respiratory conditions. For viral 
pneumonia detection, characteristic features may include 
bilateral lung involvement, ground-glass opacities, and 
peripheral distribution of lesions. Bacterial pneumonia, on the 
other hand, may exhibit lobar consolidation, air bronchograms, 
and pleural effusions. Normal cases are characterized by clear 
lung fields without any abnormal opacities or consolidations. 
Once features are extracted, a classification algorithm is 
employed to categorize the cases into viral pneumonia, bacterial 
pneumonia, or normal. This algorithm could be a deep learning 
model trained on labelled datasets containing examples of each 
condition. 

Fig. 2 shows the architecture of VGG 19 model. In the 
context of pneumonia classification using deep learning 
techniques like VGG-19, distinguishing between viral and 
bacterial pneumonia involves training the model to recognize 
patterns and features specific to each type of infection. 
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Fig. 2. VGG 19 architecture. 

D. Prediction of COVID-19 using Deep CNN 

The recognition of COVID-19 using deep CNNs following 
the classification of pneumonia by VGG-19 involves a 
sequential order. Initially, the VGG-19 architecture is employed 
to categorize chest X-ray or CT images into different pneumonia 
categories, such as bacterial pneumonia, viral pneumonia and 
normal lungs. This step involves optimizing the pre-trained 
VGG-19 model on a database containing labelled images of 
various pneumonia types. Initially, the VGG-19 architecture is 
employed to classify chest X-ray or CT images into different 
pneumonia categories, such as viral pneumonia, bacterial 
pneumonia, and normal lungs. This step involves fine-tuning the 
pre-trained VGG-19 model on a dataset containing labelled 
images of various pneumonia types. The extracted features from 
the VGG-19 model are then fed into a deep CNN specifically 
designed for recognizing COVID-19. This network is trained on 
a dataset comprising chest imaging data from individuals 
diagnosed with COVID-19 and those without the virus. The 
COVID-19 detection CNN undergoes training and fine-tuning 
using the extracted features as input. During this process, the 
model learns to distinguish between COVID-19 cases and non-
COVID-19 based on the learned features from the VGG-19 
architecture. Once trained, the concert of the disease detection 
CNN is assessed using a separate test dataset containing chest 
images from individuals with known COVID-19 status. Fig. 3 
shows the COVID-19 prediction using Deep CNN. 

Specifically, the system utilizes average pooling layers (La), 
which compute the average activation within each pooling 
region. This can be expressed mathematically in Eq. (2), 

𝑃𝐿 =  𝑑𝑎/ |𝑑𝑎|

where, da represents the activation set in the pooling region 
a, and |da| denotes the cardinal number of the set. It employs soft 
max and fully connected layers to facilitate classification. The 
fully connected layer establishes connections with all neurons, 
multiplying its input with a weight matrix to produce the 
multiplicative result. It is represented by Eq. (3), 

𝑆𝐿 =  
𝑒𝛽𝑃𝑠

∑𝐴−1
𝑃 .𝑒𝛽𝑃𝑠 

 
Fig. 3. Detection of COVID-19 using deep CNN. 

where, 𝛽𝑃𝑠represents the value of the output neuron for class 
P and sample s. P represents the total number of classes. A 
represents the Index variable used for summation over all 
classes. e represents the Euler's number, 
approximatelyequalto2.71828. To prevent overfitting, we 
incorporate dropout layers, which randomly deactivate neurons 
during model training, and rectified linear units (ReLU) to 
efficiently handle gradient-based training. It is given by the   Eq. 
(4). 

𝑅𝑒𝑙𝑢 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥 (0, 𝛼)

where, α represents the Input value to the ReLU function. 
The ReLU function outputs the maximum of either 0 or the input 
value α. If α is negative, the ReLU function outputs 0; otherwise, 

its outputs α. 

This process involves the expansion and training of a 
specialized CNN architecture tailored specifically for detecting 
COVID-19 from chest imaging data. The CNN architecture is 
trained using the labelled training dataset to learn the patterns 
and features associated with COVID-19 in chest imaging data. 
As the CNN trains on the chest imaging data, it automatically 
learns to extract relevant features and patterns from the input 
images. These features capture important characteristics 
indicative of COVID-19 infection, such as ground glass 
opacities, consolidation, and other abnormalities typically 
observed in chest imaging of COVID-19 patients. Once training 
is complete, the CNN is evaluated on the database to evaluate its 
concert and recognize latent problems such as underfitting. 
Finally, the trained CNN is tested on an independent dataset (the 
testing set) to evaluate its real-world performance. 
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Algorithm for the Proposed Multi-Modality COVID-19 

Diagnosis System 
Input: ECG data, X-ray images, CT images 

Output: COVID-19 diagnosis 

Start 

Load the Input Images 

Pre-Processing using Gaussian Filter 

       Resize CT images and X-ray to a standard resolution 

       Normalize intensity levels of images 

       Enhance image contrast 

Apply Gaussian filtering for image smoothing and noise reduction 

Feature Extraction and Pneumonia Detection using VGG19 

 Load pre-trained VGG19 model 

        Extract features from input images using VGG19 

        Classify features into pneumonia categories (viral, bacterial, 

normal) 

Prediction of COVID-19 using Deep CNN 

Optimizing pre-trained VGG19 model for COVID-19 detection 

         Train specialized CNN architecture for COVID-19 

identification 

          Evaluate trained CNN on independent datasets 

Output 

          COVID-19 diagnosis based on analysis of ECG, X-ray, and 

CT data 

End 

V. RESULTS AND DISCUSSION 

The Multi-Modality COVID-19 Diagnosis System, 
integrating ECG, X-ray, and CT data, demonstrated robust 
performance in enhancing COVID-19 diagnosis. The study's 
approach of implementing each dataset separately underscores 
its meticulous and thorough methodology in evaluating the 

performance of the proposed multi-modality COVID-19 
diagnosis system. By analysing each dataset independently, the 
study ensures a comprehensive understanding of the system's 
effectiveness across various medical imaging modalities, 
including ECG, CT scans, and X-rays. Feature extraction and 
pneumonia detection using VGG19 facilitated the recognition of 
specific patterns indicative of viral or bacterial pneumonia, 
further enhancing COVID-19 diagnosis accuracy. The deep 
CNN, fine-tuned on extracted features from VGG19, effectively 
detected COVID-19 cases. Employing various neural layers 
ensured robust classification and regularization of the model. 
During training, the COVID-19 detection CNN iteratively 
adjusted parameters based on error, learning to extract relevant 
features suggestive of disease infection from input data. 
Implemented in Python software, the COVID-19 detection 
system achieved an impressive accuracy of 99% when evaluated 
on dataset. Implemented in Python software, the COVID-19 
detection system achieved an impressive accuracy of 99.12% 
when evaluated on the Extensive COVID-19 X-Ray and CT 
Chest Images Dataset. Through iterative parameter adjustments 
based on error during Deep CNN training, the system learns to 
extract relevant features indicative of COVID-19 infection from 
chest imaging data. The evaluation on independent datasets, 
including the dataset, showcases anotable accuracy of 99.12% 
in detecting disease.  

A. Dataset Comparison 

Table II shows that the ECG abnormalities in Covid-19 
patients could be attributed to myocardial damage, 
inflammation, or arrhythmias. A typical chest X-ray reveals 
clean lung fields, well-defined lung structures, and no evidence 
of infection or consolidation. It acts as a benchmark for 
comparison. Covid-19 pneumonia is often characterized by 
bilateral ground-glass opacities or consolidations on chest X-
rays. A typical CT scan of the chest shows clear lung tissue and 
blood arteries, with no evidence of infection or inflammation. 
Covid-19 CT findings include bilateral GGOs, crazy-paving 
patterns, and consolidations. 

TABLE II.  COMPARISON OF DATASET 

ECG X-Ray CT Images 

COVID-19 COVID-19 COVID-19 

   

Normal Normal Normal 
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B. Evaluation of Performance for VGG 19 in Pneumonia 

Detection 

Table III and Fig. 4 gives the comparison of VGG 19 with 
other existing models. The proposed VGG-19's precision is 
99.4%. This indicates that the technique correctly predicts 
pneumonia 99.4% of the time. The proposed VGG-19 has a 
recall of 98.7%, which means it properly detects 98.7% of all 
cases of pneumonia. The proposed VGG-19 has an excellent F1 
score of 99.32%. The proposed VGG-19 has an accuracy of 
99%, demonstrating a high level of accuracy in pneumonia 
diagnosis. The proposed VGG-19 has superior precision, recall, 
F1-score, and accuracy in identifying pneumonia. Its 
outstanding performance makes it an attractive contender for use 
in clinical settings. 

TABLE III.  EVALUATION OF PERFORMANCE 

Methods 
Precision 

(%) 

Recall 

(%) 

F1- 

Score 

(%) 

Accuracy 

(%) 

Res Net 

50[25] 
95 95.3 96 95.6 

Image 
Net[25] 

98.2 97 97.4 97.68 

Proposed 

VGG 19 
99.4 98.7 99.32 99 

 
Fig. 4. Comparison of VGG performance with existing methods. 

TABLE IV.  COMPARISON OF THE PROPOSED VGG 19’S PERFORMANCE IN 

ECG,CTS AND X-RAY IMAGES 

Proposed 

VGG 19 

Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

F1 Score 

(%) 

ECG 99.1 98.4 98 98.9 

CTs 99 98.9 99.23 98.34 

X-Ray 99.12 99.34 99.02 98.07 

Fig. 5 and Table IV shows the accuracy of the proposed 
VGG 19 model. The suggested VGG-19 has an amazing 99.1% 
accuracy in categorizing ECG images. This high level of 
precision suggests that the model is good in detecting aberrant 
heart beats and patterns in ECG data. The proposed VGG-19 
retains a high accuracy of 99% when identifying CT images. CT 
scans are critical for identifying a variety of illnesses, and the 
accuracy of the model provides repeatable findings. The 
Proposed VGG-19 obtains 99.12% accuracy on X-ray images. 

This precision is critical in diagnosing lung abnormalities, 
fractures, and other disorders evident on X-rays. The proposed 
VGG-19 performs consistently and robustly across multiple 
medical imaging modalities, making it an important tool for 
correct diagnosis and treatment of patients. 

 
Fig. 5. Accuracy of proposed VGG 19. 

C. Training and Validation Accuracy 

As shown in Fig. 6, the training accuracy measures the 
efficiency with which the trained model responds to training 
data for every epoch. Training precision increases substantially 
with an increasing number of epochs. In the beginning, after 10 
epochs, the model obtains a training accuracy of 0.41, indicating 
underfitting. 

 
Fig. 6. Training accuracy of deep CNN. 

But as training goes on, accuracy gradually improves. At 60 
epochs, the training accuracy is 0.98. At 100 epochs, it has 
improved to 0.992. This pattern indicates that a model is 
acquiring information from the training information and getting 
more effective. Validation accuracy assesses how effectively the 
model extends to new data (validation set). Validation accuracy, 
like training accuracy, increases as epochs increase. The 
validation accuracy at ten epochs is 0.55. By the 100th epoch, it 
has reached an amazing 0.995, showing that the framework 
operates effectively with new information. The growing 
validation accuracy indicates that the prediction model has 
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minimal overfitting and may generalize successfully. As the 
algorithm trains, the accuracies of both training and validation 
improve regularly. The model's performance maintains at 
roughly 100 epochs, indicating that more training could not 
considerably increase accuracy. It is critical to establish a 
balance between training for sufficient time to understand 
patterns while minimizing overfitting. 

D. Training and Validation Loss 

The training loss is the difference between both model's 
predicted and real desired outcomes at each epoch. As shown in 
Fig. 7, reduced training loss implies that the model is well fitted 
to the training data. In the supplied data, the training loss is 0.98 
after 10 epochs. The training loss lowers continuously as the 
epochs advance, reaching 0.36 after 60 epochs. At 100 epochs, 
it drops to an excellent 0.16. This pattern indicates that the 
algorithm is absorbing information from training data and 
increasing its forecasting abilities. The validation loss indicates 
how effectively the model applies to previously unidentified 
information (validation set). Like training loss, smaller 
validation loss suggests higher adaptation. In the presented data, 
the validation loss is 0.89 after 10 epochs. By 100 epochs, it has 
dropped significantly to 0.11. The reduction in validation loss 
indicates that the algorithm has limited overfitting and will 
function well with new data. As the model learns, both training 
and validation losses gradually reduce. The gradual reduction of 
training and validation losses indicates that the algorithm is 
learning efficiently and without overfitting from occurring. The 
right quantity of epochs for training can be determined through 
observation of the loss curve. The Deep CNN has a positive loss 
curve, suggesting excellent learning and adaptation. Model 
training requires improving hyperparameters and ending quickly 
due to validation loss. 

 
Fig. 7. Loss curve of deep CNN. 

E. ROC Curve 

Fig. 8 shows the Receiver Operating Characteristic 
Curve for the Deep CNN based on the provided True Positive 
Rate and False Positive Rate data. The ROC curve is an 
illustration of a classifier's efficiency at various classification 
levels. It compares the TPR (sensitivity or recall) to the FPR (1-
specificity) when the value of the threshold for identifying 
positive and negative examples changes. The information being 
given demonstrates the TPR and FPR at different thresholds (0 
to 0.6). At the lowest possible threshold (0), both TPR and FPR 

are zero, indicating that the model forecasts no positive events 
(either true or false positives). As the value of the threshold is 
raised, TPR gradually rises, showing that the model correctly 
recognizes more positive events. PR also rises, but at lower 
rates, implying that the model has produced certain false positive 
forecasts. At 0.6, the TPR is 0.991, indicating that the model 
accurately identifies 99.1% of positive cases. The FPR is also 
0.991, meaning that the model mistakenly labels 99.1% of 
negative instances as positive. 

 

Fig. 8. ROC curve of DCNN. 

F. Comparison of the Proposed Deep CNNs Performance 

with Existing Methods 

The Deep CNN performed successfully, exceeding both 
Random Forest and Linear Ridge techniques. As shown in Fig. 
9 and Table V, its high precision (99%), recall (99.1%), and F1-
score (98.8%) suggest appropriate Covid-19 classification. The 
proposed CNN utilizes transferable learning and pre-trained 
structures, making it useful for medical imaging despite the low 
availability of information. The proposed Model achieves a high 
accuracy of 99.12%, which is comparably high with RF and 
Linear ridge methods. 

G. Discussion 

The results from the multi-modality COVID-19 diagnosis 
system, integrating ECG, X-ray, and CT scan data, enhancing 
the accuracy and performance of COVID-19 analysis. By 
leveraging VGG19 for feature extraction and pneumonia 
detection, the machine demonstrates robust performance in 
figuring out specific patterns indicative of viral or bacterial 
pneumonia, thereby augmenting the accuracy of COVID-19 
prognosis [25]. The best-tuning of deep CNNs on extracted 
functions in addition complements the system's capability in 
detecting COVID-19 instances, making sure a complete method 
to disease identity. 

TABLE V.  COMPARISON OF PERFORMANCE IN COVID-19 

CLASSIFICATION USING DEEP CNN 

Methods 
Precision 

(%) 

Recall 

(%) 

F1- Score 

(%) 

Accuracy 

(%) 

Random 
Forest [26] 

58.8 56.3 57.3 56 

Linear Ridge 

[26] 
54.4 53.3 53.6 53.6 

Proposed 
Deep CNN 

99 99.1 98.8 99.12 
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Fig. 9. Comparison of performance in COVID-19 classification using deep 

CNN. 

The evaluation of the proposed VGG19 version's 
performance against present techniques highlights its superiority 
in precision, recall, F1-score, and accuracy in figuring out 
pneumonia throughout distinct imaging modalities. With 
precision achieving 99.4% and an accuracy of 99%, the 
proposed VGG19 version showcases good performance in 
pneumonia diagnosis, underscoring its ability for medical 
application [26]. Additionally, the version's constant and strong 
performance across numerous clinical imaging modalities, 
which include ECG, CT scans, and X-rays, emphasizes its 
versatility and reliability in helping accurate diagnosis and 
treatment selection-making. 

The training and validation processes of the deep CNN 
elucidate the model's dynamics and generalization 
competencies. The determined patterns of growing training and 
validation accuracies imply the model's effective learning from 
the data at the same time as minimizing overfitting. The 
integration of training and validation losses similarly validates 
the model's efficient mastering method without conceding its 
capability to simplify to new data. The ROC curve evaluation 
affords insights into the version's sensitivity and specificity, 
showcasing its efficiency in categorizing positive instances 
while minimizing false-fine predictions. Overall, the contrast of 
the proposed deep CNNs overall performance with existing 
strategies underscores its efficacy in COVID-19 type, signifying 
its capacity as a valuable tool in clinical settings for correct 
disease diagnosis. 

VI. CONCLUSION AND FUTURE WORK 

The multi-modality COVID-19 diagnosis system created in 
this work uses deep Convolutional Neural Network (CNN) 
algorithms to analyse CT, X-ray, and ECG images, which is a 
major breakthrough in medical diagnostics. The extraction of 
complementary information is made possible by the integration 
of many imaging modalities, which improves the overall 
efficiency and accuracy of diagnosis. Capturing the different 
patterns linked to COVID-19 in medical images, the CNN 
algorithms employed in this system are skilled in feature 
extraction and classification. Additionally, the ability to detect 
cardiac abnormalities—which are commonly seen in COVID-

19 patients—enhances the diagnosis procedure when ECG data 
is included. Healthcare workers' diagnostic load is lessened by 
this automated, quick analysis capabilities, which makes 
processing massive amounts of medical data more effectively 
possible. The outcome of the study show that this technology 
has the potential to greatly enhance patient outcomes and 
diagnostic accuracy. However, further actions are required 
before its potential could be realized in clinical practice. To 
guarantee the system's dependability and efficacy across a range 
of patient demographics and healthcare contexts, validation via 
comprehensive clinical studies and real-world application is 
essential. Subsequent investigations have to concentrate on 
many crucial domains to augment the system's relevance and 
influence. Primarily, broadening the dataset to encompass a 
more diverse array of patient demographics and imaging 
modalities would enhance the system's resilience and 
generalizability. Through the implementation of cutting-edge 
machine learning techniques, the multi-modality COVID-19 
diagnosis system shows great promise for revolutionizing 
COVID-19 diagnoses by increasing accuracy and efficiency. 
The problem identified in this paper include the complexity of 
integrating multi-modality data, the computational demands of 
training deep neural networks, and the need for extensive and 
diverse datasets to ensure the robustness of the system. 
Additionally, addressing potential biases in the training data and 
ensuring the generalizability of the model across different 
populations are critical challenges that need to be addressed in 
future research. This approach has the potential to be a vital 
weapon in the global fight against COVID-19, improving patient 
outcomes and healthcare delivery around the globe, if the 
previously indicated future research directions are addressed. 
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