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Abstract—Early illness diagnosis, treatment monitoring, and 

healthcare administration all depend heavily on the identification 

of abnormalities in medical data. This paper proposes a unique 

way to improve healthcare anomaly detection through the 

integration of attention mechanisms and Generative Adversarial 

Networks (GANs) for improved performance. By integrating 

GANs, artificial data that closely mimics the distributions of actual 

healthcare data may be produced, so, it is important to 

supplementing the dataset and strengthening the resilience of 

anomaly detection algorithms. Simultaneously, the Convolutional 

Block Attention Module (CBAM) facilitates the model's 

concentration on useful characteristics present in the data, 

thereby augmenting its capacity to identify minute deviations from 

the norm. The suggested method is assessed using a large dataset 

from healthcare settings that includes both typical and unusual 

cases. When compared to current techniques, the results show 

notable gains in anomaly detection performance. The model also 

shows resilience to noise, small abnormalities, and class 

imbalance, indicating its potential for practical clinical 

applications. The suggested strategy has the potential to improve 

clinical decision-making and patient care by giving doctors faster, 

more precise insights into anomalous health states. With an 

accuracy of around 99.12%, the suggested GAN-CBAM is 

implemented in Python software and outperforms other current 

techniques such as Gaussian Distribution Anomaly detection 

(GDA), Augmented Time Regularized (ATR-GAN), and 

Convolutional Long Short-Term Memory (ConvLSTM) by 

2.97%. With potential benefits for bettering patient outcomes and 

the effectiveness of the healthcare system, the suggested strategy is 

a major step forward in the improvement of anomaly 

identification in the field of medicine. 
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I. INTRODUCTION 

Advancements in anomaly detection methodologies hold 
significant promise for enhancing healthcare outcomes by 

enabling early identification of abnormal patterns or deviations 
in medical data [1]. Anomaly detection plays a pivotal role in 
various healthcare applications, including disease diagnosis, 
treatment monitoring, and patient management [2]. However, 
the complexity and heterogeneity of healthcare data pose 
significant challenges for traditional anomaly detection 
techniques. In recent years, the integration of advanced 
machine learning techniques has emerged as a promising 
approach to address these challenges and improve the accuracy 
and reliability of anomaly detection in healthcare settings [3]. 
In this context, this paper proposes a novel framework for 
advancing healthcare anomaly detection by integrating GANs 
with attention mechanisms to achieve enhanced performance 
[4]. 

GANs have garnered considerable attention in the ML 
community for their ability to generate synthetic data that 
closely resembles real-world data distributions [5]. By 
leveraging the adversarial training paradigm, GANs learn to 
generate high-fidelity samples that capture the underlying 
structure and complexity of the original data [6]. In the context 
of healthcare anomaly detection, GANs offer a promising 
avenue for data augmentation, enabling the generation of 
diverse and representative synthetic samples to augment limited 
or imbalanced datasets [7]. Furthermore, attention mechanisms 
have gained prominence for their ability to focus on relevant 
features or regions within the data, thereby enhancing the 
model's ability to capture salient information for anomaly 
detection. By integrating attention mechanisms into the 
anomaly detection framework, the proposed approach aims to 
improve the model's discriminative power and robustness to 
subtle deviations or anomalies in healthcare data [8]. 

The integration of GANs and attention mechanisms 
represents a novel and synergistic approach to advancing 
healthcare anomaly detection [9]. By harnessing the 
complementary strengths of these techniques, the proposed 
framework aims to overcome limitations associated with 
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traditional anomaly detection methods, such as reliance on 
handcrafted features or susceptibility to class imbalance and 
noisy data [10]. Moreover, the proposed approach holds 
promise for facilitating interpretability and explainability in 
anomaly detection, enabling clinicians to better understand and 
trust the model's outputs. Overall, this paper contributes to the 
ongoing efforts in leveraging advanced machine learning 
techniques to enhance anomaly detection in healthcare, with 
potential applications in improving patient outcomes, clinical 
decision-making, and healthcare system efficiency [11]. 

Healthcare anomaly detection, a critical aspect of healthcare 
informatics, involves the identification of abnormal patterns, 
deviations, or outliers within healthcare data. This field plays a 
pivotal role in various healthcare applications, including 
disease diagnosis, treatment monitoring, patient safety, fraud 
detection, and resource optimization. Anomalies in healthcare 
data can manifest in diverse forms, such as unusual 
physiological measurements, unexpected variations in medical 
imaging findings, irregularities in billing records, or atypical 
patterns in patient health records. Detecting these anomalies is 
essential for ensuring early disease diagnosis, timely 
intervention, and effective healthcare management, ultimately 
leading to improved patient outcomes and healthcare system 
efficiency [12]. 

One of the primary objectives of healthcare anomaly 
detection is to enhance early disease diagnosis and treatment 
monitoring. By analyzing patient health records, medical 
imaging data, and physiological measurements, anomaly 
detection algorithms can identify subtle deviations from normal 
patterns that may indicate the presence of underlying health 
conditions [13]. For example, anomalies in ECG signals could 
signify cardiac arrhythmias or abnormalities, while anomalies 
in medical imaging scans such as CT or MRI could indicate the 
presence of tumors, lesions, or other pathological findings. 
Early detection of these anomalies enables healthcare 
practitioners to initiate timely interventions, implement 
appropriate treatment strategies, and monitor patient progress 
more effectively. 

Furthermore, healthcare anomaly detection plays a crucial 
role in patient safety and quality of care. By flagging unusual 
medication prescriptions, treatment orders, or adverse drug 
reactions, anomaly detection systems help prevent medication 
errors, adverse events, and patient harm. Similarly, anomaly 
detection algorithms can identify anomalies in hospital 
admission records, discharge summaries, or surgical 
procedures, enabling healthcare providers to ensure compliance 
with clinical protocols, minimize risks, and enhance patient 
safety standards [14]. 

In addition to improving patient care and safety, healthcare 
anomaly detection contributes to healthcare system efficiency 
by optimizing resource allocation, streamlining administrative 
processes, and reducing operational costs. By identifying 
anomalies in healthcare supply chain data, inventory 
management systems, or staffing schedules, healthcare 
organizations can optimize resource utilization, mitigate supply 
chain disruptions, and improve workflow efficiency [15]. 
Moreover, anomaly detection algorithms can identify 
inefficiencies, bottlenecks, or deviations from established 

performance metrics within healthcare operations, enabling 
administrators to implement targeted interventions, process 
improvements, and quality assurance initiatives to enhance 
overall system performance. 

The key contributions of the article are, 

 The paper suggests a unique method to improve 
healthcare anomaly detection that combines GANs with 
attention processes, notably the CBAM. The model can 
now produce synthetic data that closely resembles actual 
healthcare distributions while concentrating on useful 
aspects seen in the data, which enhances the algorithm's 
capacity to spot minute departures from the norm. 

 The work efficiently increases the dataset and improves 
the resilience of anomaly detection models by utilizing 
GANs for data augmentation. This augmentation leads 
to more dependable detection outcomes by addressing 
the restrictions caused by incomplete or unbalanced 
datasets that are frequently found in healthcare settings. 

 The suggested methodology is assessed using an 
extensive dataset that includes both typical and unusual 
cases from medical environments. 

 The study demonstrates how resilient the suggested 
paradigm is to problems like noise, class imbalance, and 
minute abnormalities seen in healthcare data. Because 
of its resilience, the model may be applied more 
effectively in actual clinical situations and gives doctors 
faster, more precise insights into diseases that deviate 
from the norm. 

The remainder of the article includes related works, 
problem statement, methodology and results in Section II, III, 
IV and V. The paper and future scope are concluded in Section 
VI and Section VII respectively. 

II. RELATED WORKS 

Oluwasanmi et al. [16] explain that due to their involvement 
in several crucial and vital situations, computerized anomaly 
detection and detection have grown increasingly important in 
the modern age. It suggests three AI systems that use 
DL techniques to examine and identify abnormalities in human 
electrical impulses in order to achieve these objectives. Two of 
the three suggested methods are a restoration decoder with 
minimal remodeling losses and an attention automatic encoder 
that transfers the input information to a lower-dimensional 
latent representations with optimal features persistence. To 
identify the prominent responses in the encoded dispersion, the 
auto encoder incorporates a focus component at the bottlenecks. 
Furthermore, time-series sequencing data analysis and 
generating reconstructions have been developed for learning a 
Gaussian distribution through the use of a VAE and a network 
with LSTM. When identifying normal beating hearts from 
individuals suffering from acute congestive cardiac failure, the 
three suggested models shown exceptional capacity to identify 
abnormalities on the assessed ECG5000 data with an accuracy 
of 99% and 99.3% precise value. 

Vaccari et al. [17] explains that AI and ML techniques are 
increasingly being used in the medical field for a variety of 
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reasons, including systems for clinical decision-making, 
tracking patients, and the detection and prognosis of potential 
illnesses. In addition, because autonomous medical devices 
which fall under the IoMT umbrella allow ongoing surveillance 
and immediate utilization of data by medical professionals, 
their widespread adoption has made it easier to get information 
about patients. Nevertheless, the data gathered may not be 
accurate enough to apply accurate methods because of potential 
problems in real-world contexts, like connectivity failure, 
inconsistent use, abuse, or lax compliance to a surveillance 
programmed. To build artificial datasets big enough to train 
ML models, hence, methods to augment data can be applied. In 
this study, it uses the notion of GANs to supplement patient data 
collected by IoMT devices for the purpose of tracking COPD. 
By contrasting the artificial information with the actual data 
captured by the detectors, also use an understandable AI system 
to show how accurate the simulated information is. As 
confirmed using a unique ML-based technique, the outcomes 
show that data sets generated by an organized GAN are similar 
with a real database. 

In the United States, heart disease is the primary cause of 
mortality. In order to preserve the lives of individuals, prompt 
medical attention is essential for the accurate identification of 
cardiac disease. The ECG is an extremely widely used tool used 
by doctors to evaluate heart electrical activity and identify 
potential abnormalities. Creating efficient mathematical 
models is necessary to fully utilize the ECG data for trustworthy 
heart disease diagnosis. Zekai Wang et al. [18] present a GAN-
based two-level hierarchy structure to support ECG signal 
interpretation. A Made GAN makes up the first-level 
demonstrate, that attempts to distinguish anomalous signals 
from regular ECGs in order recognize anomalies. By 
combining the TL learning method used to on information from 
the first-level acquiring with the multi-branching design to deal 
with the data-lacking and unbalanced information problems, the 
second-level training aims at strong multi-class categorization 
for various arrhythmia recognition. It assesses how well the 
suggested architecture performs using actual ECG readings 
obtained from the MIT-BIH cardiac dataset. According to 
results from experiments, suggested model works better than 
the approaches that are already in widespread use in fact. 

Said et al. [19] explains that False alarms have several 
detrimental consequences in important IoT application areas 
including the Defense Industry and Healthcare, including 
anxiety, interruption of emergency services, and wasted 
resources. As a result, an alert should only be delivered when 
the right thing happens. However, the accuracy of identifying 
events is impacted by intrusions into connected devices. In this 
study, an ADS is presented for a connected device in a smart 
healthcare facility to identify occurrences of interest related to 
the surroundings and health of patients while also looking for 
hacking attempts. It was demonstrated that supplying one 
platform for e-health assessment and network infrastructure 
supervision helps to optimize capabilities and uphold system 
dependability. As a result, choices about patient treatment and 
environmental modification are made with more accuracy. 
Because of an edge installation that enables processing near to 
data sources, minimal latency is guaranteed. The suggested 
ADS is put into practice and assessed utilizing the Contiki 

Cooja simulator, and an examination of an actual data set serves 
as the foundation for the e-health detection of events. The 
findings demonstrate a high rate of detection for both IoT 
network breaches and e-health-related incidents. 

Li et al. [20] explains that Modern manufacturing has made 
extensive use of supervised ML approaches, like categorization 
models, for web-based anomaly detection. Since anomalous 
process states are uncommon in typical industrial 
environments, there's a chance that the data used to train the 
model is excessively unbalanced. This might lead to a large 
amount of training biases in supervised learning that would 
further reduce the accuracy of anomaly detection. It makes 
sense to use methods for data enhancement to provide useful 
fake data samples for the anomalous process states in order to 
lessen training bias. Unfortunately, the majority of data 
enhancement algorithms now in use do not adequately account 
for the temporal arrangement of the signal generated by sensors, 
and in need to achieve appropriate augmentation achievement, 
a significant number of real samples are often needed. This 
research created a unique data-driven approach called 
augmented temporal regularized ATR-GAN to overcome these 
constraints. ATR-GAN can provide simulated samples for 
models of supervised learning that are more successful by 
including a suggested enhanced generator. Three factors sum 
up this enhanced generator's originality in the suggested 
technique: 1) To recognize high-quality manufactured samples, 
an enhanced filter layer is added to the augmented the 
generator; 2) A new separation metric called TRH distance was 
created in the enhanced filter layer to accurately assess the 
similarities within accomplished artificial instances and actual 
instances. However, and 3) to make the most of the 
comparatively small amount of training data and better 
diversify the generated data, batching methods have been 
included in the suggested enhanced generator. Furthermore, 
cases from the real-world in additive production and 
computational modelling are used to verify the efficacy of the 
suggested ATR-GAN. 

Ziyu Wang et al. [21] explains that EMR progress has been 
hampered by the dichotomy between the years of administrative 
oversight and the enormous rise in the need for health 
information privacy. This invention has the potential to 
encourage patient data independence at this historical juncture. 
In this work, researchers suggest a decentralized, effective, and 
secure Ethereum platform for sharing and protecting data 
privacy called Guard Health. When working with sensitive 
data, Guard Health oversees data exchange, security, 
authorization, and preservation. In order to ensure safe 
information preservation and transmission which forbids 
transmission of information without authorization it makes use 
of the Blockchain and smart contracts. The latest GNN for 
harmful node identification is implemented together with an 
authentication model to accurately manage user trust. The 
results of the test and safety assessment demonstrate that the 
suggested plan is suitable for smart healthcare system. 

Massive amounts of statistics are generated by sensors, the 
foundation for sophisticated data technologies. The cloud may 
be utilized for storing this information for later analysis and 
effective use. Unusual information may be found in sensor 
information for a number of circumstances (e.g., node 
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placement in hard locations, inadequately configured 
instruments, and malicious operations by attackers). In certain 
instances, such as data systems for forest fires, health care 
surveillance structures, along with other IoT structures, 
recognizing anomalies is essential. Dwivedi et al. [22] presents 
a machine-learning-supervised system of identifying anomalies 
for medical surveillance sensor clouds, which integrate many 
bodily sensors from various individuals with the internet. The 
method has its foundation on the Gaussian distribution. Python 
is used for executing this position. The suggested scheme's 
utilization of the Gaussian statistical framework enhances 
effectiveness, productivity, and accuracy. When contrasted 
with different controlled learning-based anomaly identification 
systems, GDA offers 98% effectiveness with 3% and 4% 
enhancements. 

Astillo et al. [23] explains that in the field of medical 
treatment, implanted internet of things medical equipment, 
have caused a radical shift. It has enhanced the patient care that 
healthcare practitioners provide. Furthermore, it has assisted 
those with chronic illnesses in taking control of their own 
treatment. The majority of IoTMD's clients are individuals who 
have the condition, who need help keeping their blood sugar 
levels within acceptable bounds. Nevertheless, these 
technologies' security protection against possible cyber threats 
is still lacking. These kinds of hazards should not be 
disregarded as they may endanger the patients' life. In light of 
this, this study suggests a deep learning-based anomalous 
identification system made up of estimate and categorization 
algorithms that can be utilized to the diabetes administration 
management and control System, an area of healthcare 
organizations. While the categorization technique's goal is to 
identify aberrant points of information, the estimating 
technique was utilized to predict the individuals' blood sugar 
levels at each assessment period increment. For contrast, this 
article provides the multilayer perceptron and convolutional 
neural network techniques. Furthermore, in order to protect 
individual confidentiality regarding significant physiologic 
information contained in the information set, this work uses 
federated learning and independent training techniques. 
Moreover, simulations were transformed into their compact 
versions using the post-quantization reduction approach, which 
helped to get around the operationally taxing deep learning 
operations. The FL approach had a greater recall percentage 
than the IL technique, according to the trial data. Furthermore, 
the CNN-based anomalous identification system enhanced by 
FL outperforms the MLP-based method in terms of 
performance. The typical remember percentage for the first 
category was 99.24%, whereas the typical recall rate for the 
latter was just 98.69%. When the initial algorithms were 
changed to their compact form, the inferential latencies of the 
predictions were drastically lowered from in excess of three 
hundred 𝑚𝑠 to lower than several milliseconds, and all without 
compromising the value of recall. 

Numerous studies demonstrate the importance of AI and 
ML in anomaly identification across a range of industries, 
particularly healthcare. With its high accuracy in detecting 
illnesses like heart disease using ECG data, artificial 

intelligence (AI) systems that use deep learning techniques are 
becoming more and more important for analyzing and 
recognizing irregularities in human electrical impulses. 
Furthermore, GANs are a useful tool for enhancing patient data 
to improve ML model training and enable more accurate 
tracking of illnesses like COPD. Novel techniques such as 
ATR-GAN, which tackles temporal arrangement and data 
imbalance, improve anomaly detection systems for smart 
industrial processes and healthcare facilities. Using blockchain 
technology and smart contracts, decentralized systems such as 
Guard Health guarantee safe data exchange and security in the 
healthcare industry. Moreover, deep learning-based systems for 
controlling chronic illnesses like diabetes and machine 
learning-supervised systems for medical monitoring sensor 
clouds show notable gains in anomaly identification and patient 
care. All things considered, anomaly detection and data security 
are changing as a result of AI and ML breakthroughs, 
improving the precision and dependability of many 
applications. 

III. PROBLEM STATEMENT 

Effectively identifying abnormalities in medical data, which 
are essential for early illness diagnosis, treatment monitoring, 
and healthcare management, is a major issue for the healthcare 
industry. Current anomaly detection techniques frequently 
encounter problems such as unequal class distribution, noisy 
data, and minute departures from typical patterns, which can 
result in less-than-ideal outcomes and possibly compromise 
patient safety [23]. Therefore, there is a pressing need to 
advance anomaly detection techniques in healthcare by 
integrating cutting-edge technologies such as GANs and 
attention mechanisms. This study aims to address these 
challenges by proposing a novel approach that combines GANs 
for data augmentation with attention mechanisms for feature 
selection, ultimately enhancing the performance of anomaly 
detection models in healthcare settings. 

IV. PROPOSED GAN-CBAM FRAMEWORK FOR ANOMALY 

DETECTION 

The research methodology entails several key steps. Firstly, 
information series is conducted to accumulate relevant datasets 
containing each regular and anomalous instances from 
healthcare settings. Subsequently, statistics preprocessing 
techniques, together with Min-Max normalization, are carried 
out to standardize the statistics and make sure consistency 
across extraordinary functions. Next, GANs are used for 
records augmentation, generating synthetic facts samples to 
decorate the training dataset and enhance the version's 
robustness. Attention mechanisms are protected in the 
ambiguity detection framework to beautify the version's overall 
performance by specializing in informative functions within the 
records. Finally, a performance assessment is performed to 
assess the effectiveness of the proposed method using 
appropriate metrics along with accuracy, precision, recollect, 
and F1-score, providing insights into the model's capability to 
efficiently hit upon anomalies in healthcare statistics. It is 
depicted in Fig. 1. 
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Fig. 1. Proposed methodology. 

A. Data Collection 

CT (Computed Tomography) scientific pix had been 
sourced from Kaggle, a famous platform for web hosting and 
sharing datasets. These images, obtained through Kaggle's 
repositories, constitute a treasured useful resource for scientific 
studies and diagnostic purposes. CT imaging performs an 
important position in healthcare, imparting distinctive move-
sectional images of inner systems within the frame. The 
availability of CT images on Kaggle allows get admission to 
various datasets encompassing various anatomical regions, 
pathologies, and patient demographics. Researchers and 
clinical professionals utilize these datasets for obligations 
inclusive of disease diagnosis, treatment making plans, and 
clinical education. Moreover, the collaborative nature of 
Kaggle permits the sharing of knowledge, algorithms, and 
insights, fostering collaboration and innovation in medical 
imaging research [24]. Overall, the CT medical images sourced 
from Kaggle function a precious useful resource for advancing 
scientific imaging strategies, enhancing patient care, and 
furthering our understanding of complicated medical 
conditions. 

B. Preprocessing using Min-Max Normalization 

Preprocessing of the CT scientific images received from 
Kaggle includes several steps, with Min-Max normalization 
being an essential method to standardize the pixel depth values 
throughout the images. In this system, each pixel intensity price 
is scaled to fall within a particular variety, typically among 0 
and 1, primarily based at the minimal and most intensity values 
found inside the dataset. This normalization step ensures that 
the pixel values are similar across exclusive images and 
prevents any biases brought by using versions in pixel intensity 
distributions. By scaling the pixel values to a common variety, 
Min-Max normalization allows in enhancing the convergence 
and stability of subsequent machine studying algorithms 
applied to the dataset. Min-max normalization is given in Eq. 
(1). 

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
    (1) 

The implementation of Min-Max normalization for the CT 
images includes iterating through every pixel in every image 
and making use of the normalization components, which 
calculates the scaled pixel value based totally on the authentic 
depth value, the minimal intensity fee found within the dataset, 

and the most depth price located in the dataset. This process is 
computationally positive and may be without difficulty 
included into present image processing pipelines. Additionally, 
Min-Max normalization preserves the relative relationships 
among pixel intensities within each image whilst making sure 
consistency and comparison across the whole dataset. Overall, 
by preprocessing the CT scientific images the usage of Min-
Max normalization, the dataset is ready for subsequent 
evaluation, which includes responsibilities which include 
feature extraction, image segmentation, and machine 
mastering-based category or detection algorithms. 

C. GAN for Data Augmentation 

GANs are applied for data augmentation in various domain 
names, inclusive of medical imaging. In the context of CT 
images sourced from Kaggle, GANs play a critical function in 
expanding the dataset size and variety by producing artificial 
images that intently resemble real CT images. GANs consist of 
neural networks, a generator and a discriminator, which can be 
educated adversarial to generate sensible images while 
distinguishing among real and artificial ones. By leveraging 
GANs for information augmentation, researchers can conquer 
limitations posed by using the availability of restrained or 
unbalanced datasets, improving the robustness and 
generalization capabilities of device studying models skilled on 
those datasets. The artificial images generated by GANs seize 
the underlying distribution of the unique facts, allowing more 
powerful education of deep mastering trends for duties 
consisting of ailment category, segmentation, and anomaly 
detection in medical imaging packages. Additionally, GAN-
based totally facts augmentation helps the exploration of rare or 
pathological instances, supplying treasured insights for 
enhancing diagnostic accuracy and clinical decision-making in 
healthcare settings. 

1) GAN initialization: The discriminator D and the 

generator G contain specific class understanding, in contrast to 

the autoencoder. G is instructed to create photos for various 

classes throughout the adversarial training, and D is tasked to 

decide whether to identifier the images as bogus or with a 

problem-specific classification c. By initializing G with the 

weights included in the decoder ∆ and one of the layers of a 

discriminator De with the values of the encoder E, the 

autoencoder information is transmitted between the GAN 
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components at the point of GAN initialization. The highest 

layer of the discriminator 𝐷𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 the final discriminant 

output. It is an intense layer with an activation function based 

on softmax. The final layer's values are learned throughout 

adversarial training and are first initialized at randomly. 

The discriminator's initialization is just utilized to provide 
significant properties to 𝐷 that aid in image classification. 
There is a deeper purpose to the generator's startup. The 
generator 𝐺 is equal to the decoder ∆ whenever adversarial 
instruction begins. As a result, the latent vector 𝑍 supplied to 
generators G is equal to a position in the autoencoder's hidden 
space; that is, Z may be seen as either the input of ∆ or the 
output of 𝐸. As a result, the encoder E converts actual pictures 
into the latent area that G is using. Before beginning adversarial 
training, it takes use of this feature to acquire a decent class 
conditioned thinking, that is, determining the appearance of a 
latent vector 𝑍𝑐 for a class 𝑐 image. 

The transformation of the prior probability distribution 
𝐷(𝑥) and 𝐺(𝑧) of GAN into the related probability distribution 
subsequent to 𝐷(𝑥 ∣ 𝑐) and 𝐺(𝑧 ∣ 𝑐) can be represented as 
follows: 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥 ∣ 𝑐)] + 𝐸𝑧∼𝑝𝑧(𝑧)

[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧 ∣ 𝑐)))]  (2) 

In this equation, 𝑚𝑖𝑛𝐺 denotes the minimization with 
respect to the generator 𝐺. 𝑚𝑎𝑥𝐷  denotes the maximization 
with respect to the discriminator 𝐷. 𝑉(𝐷, 𝐺) represents the 

value function. 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥 ∣ 𝑐)] denotes the 

expectation over real data samples x drawn from the data 

distribution 𝑝𝑑𝑎𝑡𝑎(𝑥). 𝐸𝑧∼𝑝𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺( 𝑧 ∣ 𝑐 )))] 

denotes the expectation over generated samples 𝐺(𝑧 ∣ 𝑐) drawn 
from the generator's distribution 𝑝𝑧(𝑧). The GAN training 
methodology is based on the same process as GAN. 
To maximize the loss values generated by the discriminator and 
minimize the loss values of the generator unless they both 
stabilize, the optimizer performs the highest and lowest 
operations during alternating rounds of adversarial training. 

With median vector µc and a matrix of covariance 𝛴𝑐, 
it represents a class within the space of latent variables with a 
normal distribution of multiple variables 𝑁𝑐 =  𝑁 (µ𝑐, 𝛴𝑐). 
It calculates µ𝑐 and 𝛴𝑐 for every class c in the training dataset, 
taking into account all real images 𝑋𝑐 of class c that are 
accessible, in order to approximate the distribution of 𝑍𝑐 = 
𝐸(𝑋𝑐). It uses these distributions of probabilities to initialize 
the class-conditional hidden vector power source, which is a 
random process that accepts a class label c as input and outputs 
a randomly selected residual vector 𝑍𝑐 from 𝑁𝑐. The 
probabilistic distributions of 𝑁𝑐 are regarded as immutable 
while undergoing adversarial training, preventing the 
generation algorithm from deviating from the original class 
encoded in the space of latent values. 

2) Adversarial training: Data goes via the generator 𝐺 and 

discriminator 𝐷 in groups throughout the training process, and 

the weights they assign are adjusted to maximize the loss 

values. An input image is classified by the discriminator as 

either phoney or matching to a single of the n problem-specific 

classes. It gives 1/ (𝑛 +  1) of the number of images for every 

batch; that is, it offers the best feasible balancing for the 

fictitious class. The result of G, which receives dormant vectors 

𝑍𝑐 that are taken from the class-conditional dormant vector 

generators as inputs, is bogus data. The evenly spaced class 

labels 𝑐, or the fictitious images that are uniformly dispersed 

among the problem-specific groups, are then fed into the 

category-conditional dormant vector encoder. It optimizes the 

sparsely categories cross entropy loss function in order to 

correspond to the category labels for genuine images and the 

false label for created ones while trained the discriminant 𝐷. 

The generator G learns batches of identical size for each 
batch that the discriminant learns. In order to accomplish this, 
a standard distribution is applied to the labels 𝑐, resulting in the 
randomized drawing of an entire set of conditionally residual 
vectors 𝑍𝑐. The generator processes these vectors, while the 
discriminant receives the resultant pictures. The discriminator's 
chosen labels and the labels c that were utilized to create the 
images are matched by the settings in 𝐺. 

D. Employing Attention Mechanism for Enhanced Anomaly 

Detection 

Employing attention mechanisms for stronger anomaly 
detection involves integrating mechanisms that permit trends to 
focus on applicable capabilities or areas inside the input 
statistics, thereby enhancing the detection of irregularities or 
anomalies. By dynamically weighting one-of-a-kind 
components of the facts, interest mechanisms enable the 
version to prioritize informative functions even as suppressing 
noise or irrelevant statistics. This selective attention enhances 
the model's potential to figure subtle deviations from normal 
styles, leading to extra accurate anomaly detection. 
Additionally, attention mechanisms facilitate interpretability 
with the aid of highlighting the capabilities contributing 
maximum to anomaly detection selections, permitting higher 
expertise and validation of detected anomalies. Overall, 
incorporating attention mechanisms enhances anomaly 
detection systems' performance, robustness, and 
interpretability, making them greater powerful in numerous 
real-world programs, inclusive of healthcare, cybersecurity, 
and fraud detection. 

1) Attention mechanism: The attention mechanism is going 

to be implemented on the framework using the Convolutional 

Block Attention Module (CBAM) and the system for attention. 

After going via CBAM, the characteristic maps created by the 

next encoder convolutional layer that follows will yield a more 

detailed feature map for the next encoder convolutional layer. 

A more accurate characteristic map for the hidden 

representational space is then produced by passing the 

improved features map via the encoder layer of convolution and 

CBAM using the same process. Significantly this idea, it's 

possible to see that the latent shape space improves with 

learning about the characteristics of this information and 

provides us with improved outcomes. Because the attention 

mechanism suggested by the attention compute block feeds in 

the encoder's intermediate results and adds them to the 

encoder's final result to produce an equivalent weight. 
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Subsequently, the autoencoder's bottlenecks layer receives the 

improved intermediate outcomes from the encoder due to their 

comparable value. Through doing this, the abnormal input is 

suppressed and the bottleneck layer is able to identify the 

regular input by learning from the improved feature maps. 

2) Baseline deep autoencoder: The encoder is composed of 

five Conv2D blocks, every one of which has an activation layer 

with a slope that is negative of 0.2, a 2D batch normalization 

layer, and a 2D convolutional layer. The graphic displays the 

convolutional layers' total amount of input methods, amount of 

output methods, and kernel size. Four FC layers make up the 

bottle neck layer, and a ReLU activating layer sits behind them. 

The flattening size of the encoder's output, or 4 * 4 * 128 = 

2048, is the quantity of inputs. It is used for acquiring the 

features that are taken from the encoder; it might be 

conceptualized as a space that contains the inputs' hidden 

representations. Five 2D inverted convolutional (DConv2D) 

blocks make up the decoder. Identical to the Conv2D blocks, 

the DConv2D blocks contain the identical information; 

however, because they are performing opposite operations, the 

input and output channels of each block are inverted. To 

preserve the reconstruction values, the batch normalization 

layer and activating layer are deleted from the final DConv2D 

block. The two attention-based approaches that are presented in 

the current endeavor are both applied to the basal algorithm's 

encoder to improve the model's ability to focus on and learn 

form the more representational aspects of the input. 

3) CBAM-based deep autoencoder: The subsequent 

Conv2D block's result will pass via CBAM Block 1 to provide 

improved output. The encoder's deep layer receives the 

improved output after that. After obtaining the characteristic 

maps of the final Conv2D block, the CBAM Block 2 refines its 

results once more. In order for the final Conv2D block to learn 

regarding featured-emphasized outputs, twice-refined map 

features will be fed into the latent image space. The model 

should do reconstructions better and have a higher learning 

result. Since the CBAM block requires the smallest amount of 

setting for CNN systems, it's possible that no significant gains 

are seen. The model should do reconstructions better and have 

a higher learning result. Since the CBAM block requires the 

smallest amount of setting for CNN systems, it's possible that 

no significant gains are seen. It is depicted in Fig. 2. 

4) Attention-based deep autoencoder: Separated and input 

into attention blocks 1, and 2, respectively, are the results of the 

subsequent and fourth Conv2D blocks. The layers wherever the 

global maps of features will be used to improve the 

intermediary feature maps are wherever the focus of calculation 

takes place. The result is combined and sent into the layer that 

represents the bottleneck after that. Wherein a comparison 

matrix is initially created by adding the intermediary feature 

maps to the global map of features. The intermediary feature 

maps are subsequently amplified by the matrix of features to 

highlight the pertinent ones and prevent the irrelevant ones. 

This widens the distinction among pertinent and unimportant 

data and aids in the autoencoder's rebuilding of regular 

information and unusual input that has been detected by 

computing the restoration. 

 
Fig. 2. CBAM-based deep autoencoder. 

V. RESULTS AND DISCUSSION 

There are various important phases in the research 
approach. First, information series are run in order to compile 
pertinent datasets from healthcare settings that include both 
typical and unusual cases. Then, to standardize the data and 
ensure consistency among remarkable functions, preprocessing 
techniques for statistics are applied, including Min-Max 
normalization. GANs are then applied to records augmentation, 
producing fake fact samples to adorn the training dataset and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

1120 | P a g e  

www.ijacsa.thesai.org 

improve the resilience of the version. The ambiguity detection 
framework incorporates attention methods that enhance the 
version's overall performance by focusing on informational 
functions inside the records. Lastly, performance evaluation is 
carried out to evaluate the efficacy of the suggested approach 
utilizing relevant measures in addition to accuracy, precision, 
recall, and F1-score, offering insights into the model's capacity 
to effectively identify abnormalities. 

A. Model Accuracy 

Model accuracy, inside the context of device gaining 
knowledge of and statistical modeling, refers to the proportion 
of effectively categorized times or predictions made by means 
of a model out of the full quantity of times in the dataset. It is a 
fundamental evaluation metric used to assess the overall 
performance of a predictive version, indicating how nicely the 
version's predictions align with the surface fact labels or effects. 
Model accuracy is calculated because the ratio of the number of 
efficaciously expected times to the overall number of instances, 
usually expressed as a percent. A higher accuracy fee means 
that the model is making more correct predictions, even as a 
decrease accuracy indicates a better price of misclassifications. 
It is depicted in Fig. 3. 

 
Fig. 3. Model accuracy. 

B. Model Loss 

Model loss, inside the context of ML, refers to a measure of 
the discrepancy among the actual outcomes and the predictions 
made by means of a model all through the learning procedure. 
It quantifies how nicely the version's predictions align with the 
real labels or goals for the given dataset. The intention of 
gaining knowledge of version is to limit its loss feature, thereby 
enhancing the model's capability to as it should be predicting 
effects. Commonly used loss features consist of MSE for 
regression duties and specific entropy for type duties. As the 
model iteratively learns from the education data, its loss 
regularly decreases, indicating advanced overall performance 
and better alignment with the ground reality. It is depicted in 
Fig. 4. 

 
Fig. 4. Model loss. 

C. ROC 

Receiver Operating Characteristic (ROC) is a graphical 
representation of the performance of a binary class model 
throughout different discrimination thresholds. It plots the 
genuine nice charge (sensitivity) in opposition to the false high-
quality rate (1 - specificity) at various threshold values, wherein 
sensitivity is the proportion of actual positives efficiently 
recognized by the version, and specificity is the proportion of 
real negatives efficiently recognized by way of the model. The 
ROC curve visually illustrates the trade-off between sensitivity 
and specificity and gives insights into the model's potential to 
discriminate among the advantageous and terrible classes. A 
higher vicinity below the ROC curve suggests higher 
discrimination overall performance, with values in the direction 
of suggesting a extra effective classifier. ROC analysis is 
extensively utilized in evaluating the performance of type 
models and determining the most fulfilling threshold for 
making predictions. It is depicted in Fig. 5. 

 
Fig. 5. ROC of GAN-CBAM. 

D. Detection Time 

Detection time refers to the length taken through device or 
set of rules to identify and flag anomalies inside a dataset. In 
the context of anomaly detection, detection time is a crucial 
performance metric that measures the performance and 
responsiveness of the detection manner. It encompasses the 
time elapsed from the moment an anomaly happens or enters 
the gadget to the factor at which it's miles detected and flagged 
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for further action or research. A shorter detection time is 
applicable as it permits for timely responses to anomalies, 
minimizing capacity dangers or damages related to anomalous 
events. Detection time is mainly crucial in time-touchy 
applications such as cybersecurity, fraud detection, and actual-
time tracking systems in which spark off identification of 
anomalies is important for powerful chance mitigation and 
selection-making. It is depicted in Fig. 6. 

E. Accuracy 

A performance parameter called accuracy is used to 
evaluate a model's overall prediction accuracy in machine 
learning and classification applications. The ratio of accurately 
predicted instances to all occurrences in the dataset is used to 
calculate it. Analyzing a model's accuracy measure is a simple 
and straightforward way to assess how well it performs in 
forecasting outcomes for each class. Even while it provides a 
rapid evaluation of overall performance, it might not be 
adequate in situations when there is an uneven distribution of 
courses. Eq. (3) expresses accuracy. 

NegPosNegPos
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Accuracy
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Fig. 6. Detection time. 

F. Precision 

Precision is a machine learning performance indicator that 
measures how well a model predicts the future. It is computed 
as the ratio of correctly predicted positive outcomes to the total 
of correctly predicted positive and false positive outcomes. One 
may calculate precision using Eq. (4). 
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G. Recall 

A performance parameter called recall assesses how well a 
model can identify and pinpoint each and every pertinent 
instance of a particular class. It goes by the names true positive 
rate and sensitivity as well. The ratio of true positive predictions 
to the total of true positives and false negatives is used to 
compute it. It appears in Eq. (5). 
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H. F1-Score 

The F1 score is a machine learning performance statistic 
that sums together recall and accuracy into a single figure. It 
provides a fair metric that takes into account both false 
negatives and false positives. It is computed using the harmonic 
mean of accuracy and recall. Eq. (6) represents it. 

recallprecision

recallprecision
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The contrast of performance metrics across distinctive 
anomaly detection methods, as provided in Table I, exhibits the 
effectiveness of the proposed GAN-CBAM method in 
advancing healthcare anomaly detection. The outcomes 
demonstrate that the proposed approach achieves superior 
overall performance throughout all metrics compared to 
existing strategies, including GDA, ATR-GAN, and 
ConvLSTM. With an impressive accuracy of 99.12%, the 
precision of 97.32%, consider of 98.11%, and F1-Score 
98.45%, the GAN-CBAM model showcases its capability to 
correctly perceive anomalies in healthcare information even as 
minimizing false positives and false negatives which is shown 
in Fig. 7. The integration of GANs for facts era and interest 
mechanisms for feature selection lets in the version to 
awareness on relevant records and effectively discriminate 
among regular and anomalous times. These findings highlight 
the capacity of the proposed approach to enhance anomaly 
detection in healthcare settings, enabling more correct and 
reliable detection of abnormalities for advanced affected person 
care and medical selection-making. 

TABLE I. COMPARISON OF PERFORMANCE METRICS 

Methods 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

GDA [22] 93.78 92.89 91.23 96.77 

ATR-GAN [20] 98.11 93.78 94.99 97.89 

ConvLSTM 

[15] 
96.89 91.67 93.89 93.89 

Proposed GAN-

CBAM 
99.12 97.32 98.11 98.45 

 

Fig. 7. Comparison of metrics. 
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I. Discussion 

The suggested collection of GANs with CBAM improves 
the robustness and accuracy of detecting irregularities in 
medical data, which represents a breakthrough in healthcare 
anomaly identification. Data scarcity and class imbalance are 
addressed by using GANs to create generated data that closely 
resembles actual healthcare data, strengthening the robustness 
of anomaly detection systems. By improving the model's 
capacity to concentrate on pertinent features, the CBAM 
improves the identification of small abnormalities. With an 
accuracy of 99.12%, the analysis conducted on a large 
healthcare dataset demonstrates that the GAN-CBAM approach 
performs noticeably better than other conventional methods 
like GDA [22], ATR-GAN [20], and ConvLSTM [15]. This 
enhancement highlights the potential of the technique for useful 
clinical applications by providing quicker and more accurate 
insights that can support treatment monitoring, early sickness 
identification, and overall patient care. 

The suggested approach, however, is not without its 
difficulties and restrictions. When GANs and attention 
mechanisms are combined, the computational complexity rises, 
necessitating a significant investment of time and resources for 
training and deployment. This may restrict the method's 
scalability and accessibility, especially in healthcare settings 
with limited resources. The challenges of the proposed method 
include handling data imbalance, noise resilience, identifying 
minute abnormalities, and ensuring practical clinical 
applicability. The proposed method may face limitations in 
computational complexity and scalability for large-scale 
healthcare datasets. Furthermore, more validation is needed to 
assess the method's efficacy in a wide range of real-world 
settings with different kinds of anomalies, even if it 
demonstrates robustness to noise and minor irregularities. 
Reliance on massive datasets for training might also be 
problematic when access to such data is restricted or 
unavailable due to privacy issues. Notwithstanding these 
drawbacks, the suggested GAN-CBAM technique is a 
promising advancement in improving anomaly detection 
efficiency in the medical field, with the potential to greatly 
enhance patient outcomes and clinical decision-making. 

VI. CONCLUSION 

The research shows how generative adversarial networks 
(GANs) and attention processes may be used to improve 
healthcare anomaly detection. In comparison to current 
techniques, the suggested GAN-CBAM model performs better, 
achieving greater accuracy, precision, recall, and F1-score. The 
model successfully identifies pertinent patterns and deviations 
in healthcare data by utilizing GANs for data augmentation and 
attention mechanisms for feature selection. This results in 
anomaly detection outputs that are more accurate and 
dependable. The results highlight how important it is to 
implement cutting-edge machine learning strategies that are 
customized to the particular qualities of healthcare datasets. 
The suggested method has the potential to improve clinical 
decision-making and patient care by giving medical 
professionals faster and more accurate insights on aberrant 
health conditions. Several directions for further study are 
worthwhile to pursue in the future.  

VII. FUTURE SCOPE 

Further research into the model's predictability can shed 
light on the underlying causes of anomalies and improve 
physicians' comprehension and confidence in the model. Its 
application across other medical domains and contexts can also 
be expanded by investigating the scalability of the suggested 
technique to bigger and more diversified healthcare datasets. 
Further improving the model's performance and applicability in 
actual clinical settings is possible by the incorporation of 
domain-specific information or professional advice into the 
anomaly detection framework. Deploying the model in a 
variety of healthcare applications might also be facilitated by 
investigating the possibilities of transfer learning approaches to 
modify the model for various healthcare contexts or domains. 
The model's comprehension of intricate healthcare settings may 
be enhanced and anomaly detection performance can be 
enhanced by looking into the integration of other data 
modalities, such as textual or temporal data. The efficiency of 
the healthcare system and patient outcomes may both be greatly 
enhanced by ongoing research into developing anomaly 
detection techniques in the field of medicine. 
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