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Abstract—Employing deep learning techniques on fMRI data 

enables the exploration of universal and culturally specific neural 

correlates underlying language processing across diverse 

populations. The study presents "BrainLang DL," a novel deep 

learning (DL) approach leveraging functional Magnetic 

Resonance Imaging (fMRI) data to unveil neural correlates of 

language processing across diverse cultural backgrounds. To 

bridge the knowledge gap in the universal and culture-specific 

aspects of language processing, we engaged participants from 

various cultural groups in a series of linguistic tasks while 

recording their brain activity using fMRI. Our rigorous data 

preprocessing pipeline included steps such as motion correction, 

slice timing correction, and spatial smoothing to enhance data 

quality for subsequent analysis. For feature extraction, research 

utilized the Crocodile Hunting Optimization (CHO) algorithm to 

pinpoint critical brain regions and connectivity patterns linked to 

language functions. To capture the temporal dynamics of neural 

activity related to language processing, we deployed advanced 

recurrent neural networks, specifically Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU) models. These 

techniques enabled us to unravel how linguistic information is 

encoded and processed over time. Our findings reveal both 

common and unique neural activation patterns in language 

processing across different cultures. Universally shared neural 

mechanisms highlight the fundamental aspects of language 

processing, while distinct variations underscore the influence of 

cultural context on brain activity. Furthermore, we employed 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit 

(GRU) networks to analyze the temporal dynamics of language-

related neural activity, uncovering how linguistic information is 

represented and processed over time. By integrating DL with 

fMRI analysis, our study provides a nuanced understanding of the 

neural correlates of language across cultures. It reveal both shared 

neural mechanisms underlying language processing across diverse 

populations and culturally specific variations in brain activation 

patterns. These findings contribute to a more comprehensive 

understanding of the neural basis of language and its modulation 

by cultural factors. Ultimately, our approach offers insights into 

the complex interplay between language, cognition, and culture, 

with implications for fields such as linguistics, neuroscience, and 

cross-cultural psychology. 

Keywords—Long Short-Term Memory; Gated Recurrent Unit; 

deep learning; functional magnetic resonance imaging; language 

I. INTRODUCTION 

Language comprehension and production are fundamental 
cognitive processes that play a pivotal role in human 
communication, social interaction, and cultural expression. 
Understanding the neural mechanisms underlying language 
processing is of paramount importance in unraveling the 
complexities of human cognition and behavior [1], [2]. 
However, investigating language processing in the brain poses 
significant challenges, particularly when considering the 
influence of cultural factors on neural activation patterns. While 
traditional neuroimaging techniques such as fMRI have 
provided valuable insights into the neural correlates of language, 
they often lack the sensitivity and specificity needed to capture 
subtle cultural variations in brain activity. Moreover, existing 
methods for analyzing fMRI data may not fully capture the 
dynamic and context-dependent nature of language processing, 
limiting our ability to uncover both universal and culturally 
specific aspects of language comprehension and production  [3], 
[4]. 

In recent years, the advent of deep learning techniques has 
revolutionized the field of neuroimaging analysis, offering new 
opportunities to explore the complex interactions between 
language, cognition, and culture [5]. DL models, such as CNNs, 
RNNs, and their variants, have demonstrated remarkable 
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capabilities in extracting meaningful features from complex and 
high-dimensional data, including fMRI time series. By 
leveraging the hierarchical representations learned by deep 
neural networks, researchers can gain deeper insights into the 
underlying neural mechanisms of language processing in the 
brain [6], [7]. 

Motivated by these advancements, the present study 
introduces "BrainLang DL," a novel deep learning approach that 
leverages fMRI data to unveil the neural correlates of language 
processing across diverse cultural backgrounds [8], [9]. Unlike 
traditional neuroimaging methods that may overlook cultural 
variations in brain activity, BrainLang DL offers a more 
nuanced and comprehensive understanding of how language is 
represented and processed in the human brain across different 
cultural contexts [10], [11]. By integrating deep learning 
techniques with fMRI analysis, our approach aims to bridge the 
gap between neuroscience, linguistics, and cross-cultural 
psychology, shedding light on the complex interplay between 
language, cognition, and culture [12] [13]. 

The primary objective of BrainLang DL is to elucidate both 
universal principles and culturally specific aspects of language 
processing in the brain [14] [15]. To achieve this goal, the study 
employs a multi-faceted approach that involves data collection, 
preprocessing, feature extraction, and deep learning analysis. 
Participants from various cultural groups are recruited to 
perform language tasks while undergoing fMRI scanning, 
allowing for the collection of rich and diverse neuroimaging 
data. Comprehensive preprocessing techniques are applied to 
ensure the quality and reliability of the fMRI data, including 
motion correction, slice timing correction, and spatial 
smoothing. Feature extraction is then performed using state-of-
the-art deep learning models, such as CNNs and RNNs, to 
identify salient brain regions and connectivity patterns relevant 
to language processing. Finally, deep learning techniques such 
as LSTM-GRU networks are employed to analyze the temporal 
dynamics of language-related neural activity, uncovering how 
linguistic information is represented and processed over time 
across different cultural groups. 

Through its innovative approach and interdisciplinary 
methodology, BrainLang DL seeks to make significant 
contributions to our understanding of the neural correlates of 
language processing across cultures. By elucidating the complex 
relationship between language, cognition, and culture, the study 
aims to pave the way for future research in fields such as 
linguistics, neuroscience, and cross-cultural psychology. 
Ultimately, BrainLang DL holds the potential to advance our 
knowledge of human cognition and behavior, offering valuable 
insights into the diversity and universality of language 
processing in the human brain. 

The key contributions of the article is, 

 The study pioneers the integration of deep learning 
techniques with fMRI analysis to investigate the neural 
correlates of language processing across diverse cultural 
backgrounds. This novel approach offers a powerful tool 
for exploring both universal and culturally specific 
aspects of language processing in the human brain. 

 The study conducted comprehensive preprocessing of 
fMRI data, including motion correction, slice timing 
correction, and spatial smoothing, to ensure high-quality 
input for subsequent analysis. Furthermore, feature 
extraction was performed using CHO, allowing for the 
identification of salient brain regions and connectivity 
patterns relevant to language processing. These steps 
enhance the robustness and reliability of the findings. 

 Employing LSTM and GRU networks, the study 
analyzed the temporal dynamics of language-related 
neural activity, uncovering how linguistic information is 
represented and processed over time. This analysis 
provides insights into the dynamic nature of language 
processing in the brain and highlights variations in the 
timing and duration of neural responses across cultural 
groups. 

 By integrating deep learning with fMRI analysis, the 
study offers a nuanced understanding of the neural 
correlates of language across cultures. It reveals both 
shared neural mechanisms underlying language 
processing across diverse populations and culturally 
specific variations in brain activation patterns. 

  The organization of the paper is, Sections II, III and IV 
give the related works, problem statement and 
methodology respectively. Section V gives the results 
and the article is concluded in Section VI. 

II. RELATED WORKS 

In recent years, an integrated modelling approach that links 
behavior, brain function, and computing across several datasets 
and computer simulations has revolutionized the scientific study 
of sensation  [16]. This method provides fresh perspectives into 
the brain and cognitive processes in the subject domain by 
exposing patterns among models. In this section we report an 
organized study that applies this method to human speech 
processing, the quintessential cognitive ability of our species. 
The most effective "transformer" models, according to our 
research, generalize across multiple data sets and imaging 
methods and predict about 100% of understandable variability 
in brain reaction times to phrases. The accuracy of the 
algorithms on the next-word predicting test is highly associated 
with both their neural fits and fits to behavioral reactions. Neural 
fit seems to be significantly influenced by model design. These 
findings offer explicitly computational proof that the human 
brain's understanding of language systems are essentially shaped 
by prediction processing. 

Speaking Double Object and Prepositional Object structures 
the brain basis of what is unknown is more challenging for 
Japanese English learners [17]. When chatting, semantic 
encoding the transformation of non-verbal mental 
representations into a framework appropriate for expression 
comes before grammatical and phonological processing of 
words. We used fMRI to investigate if paralinguistic or 
linguistic processes are responsible for DO difficulties. A total 
of thirty people either identified the cartoons or used DO or PO 
to sum up them. Increased mistake rates and quick reactions 
suggested DO difficulties. Parieto-frontal activity, especially the 
left inferior frontal gyrus, was seen in DO in contrast to PO, 
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indicating language processes. Mental priming in PO that was 
generated just after DO and reversed in comparison to after 
control suggested that PO and DO overlapped a mechanism. 
Neurological repeat reduction across structural boundaries was 
noted in occipito-parietal areas, which intersect the pre-SMA 
language complex. Paralinguistic procedure is thus shared by 
DO and PO, while linguistics process causes saturation in DO. 

Name velocity is one of the most widely researched 
underlying cognitive aspects of reading difficulty and growth in 
reading. It is emotionally tested using the serial RAN test. 
Nevertheless, typical EEG analysis approaches have difficulty 
extracting brain elements to explore the neurological basis of 
speed of naming because to the unconstrained-reading style of 
serial RAN. In order to (a) better understand the group 
distinctions among children with DYS and CAC (b) increase the 
power of evaluation, and (c) determine the neural basis of 
naming speed, the current study attempts to investigate an 
original strategy to separating the neural processes through the 
repetitive RAN task [18]. We put forth a brand ML-based 
approach known as RAN-related neuronal-congruency 
elements, which is designed for extracting temporal neural 
elements throughout serial RAN. We present our methodology 
using EEG and eye-tracking measurements from sixty 
youngsters (30 DYS and 30 CAC) doing different and 
comparable control tasks in terms of phonetic or visual 
characteristics. The RAN-related neural-congruency elements in 
the DYS and CAC groups under each of the four situations show 
substantial variations, according to the results. The brain activity 
of mental processes linked to naming speed is captured by 
quickly automated neuro-congruency components, which also 
reveal disparities among children with dyslexia and generally 
growing youngsters. As an approach to help explore the 
neurological foundations of quick naming and their relationship 
to reading ability and related challenges, we suggest the resultant 
RAN-related brain-components. 

Humans communicate complicated knowledge through 
language creation and understanding alternated during a 
conversation  [19]. Nevertheless, little is known about the brain 
mechanisms behind these supplementary tasks or the how 
speech accurately conveys knowledge. There, we found brain 
signals that accurately represent the creation of speech, 
understanding, and changes in speech throughout genuine 
conversation among humans using an assortment of intracranial 
neuro recorders and initially trained models. The findings show 
that brain activity encoding language was widely dispersed 
throughout frontotemporal regions in a variety of frequency 
ranges. Additionally, we discover that these actions were 
particular to the terms and phrases being communicated and that 
they relied on the specific setting and word sequence of the 
words. Lastly, we show that listener-speaker changes were 
linked to particular, time-aligned modifications to brain activity, 
and that these brainwaves overlapping throughout the process of 
language creation and interpretation. Taken together, the 
findings show a dynamical arrangement of brain activity 
supporting language generation and recognition in genuine 
speech and enable the application of DL models to comprehend 
the brain processes behind human language. 

The present collection of literature includes a number of 
noteworthy research that investigate the complex interplay of 

language processing, brain activity, and mental processes. An 
integrated modelling method that connects behavior, brain 
function, and computers is presented in a ground-breaking 
research that offers new insights into the cognitive processes of 
the brain, especially voice processing. The work underscores 
how prediction processing shapes language systems and shows 
how well transformer models can predict brain reaction times to 
phrases. A different research looks at the neurological 
underpinnings of language problems that Japanese English 
learners have while processing specific phrase forms, 
identifying neural correlates linked to both paralinguistic and 
linguistic processes. Furthermore, studies on reading challenges 
explore the brain underpinnings of quick naming, putting forth 
novel ML techniques to identify neural components associated 
with rapid naming and their correlation with reading 
proficiency. Moreover, research using computational models 
and intracranial neuro recorders illuminates the brain processes 
behind language production and comprehension in naturalistic 
speech, illustrating the dynamic organization of brain activity 
facilitating language formation and recognition. All of these 
research advance our knowledge of the neural correlates of 
language processing and open new avenues for investigation 
into the brain mechanisms behind human language utilizing 
deep learning models. 

III. PROBLEM STATEMENT 

The study aims to address the pressing need for a deeper 
understanding of the neural correlates underlying language 
processing across diverse cultural backgrounds. While language 
comprehension and production are fundamental human abilities, 
the neural underpinnings and potential cultural variations remain 
poorly understood. Existing methods for investigating language 
processing in the brain often rely on traditional neuroimaging 
techniques, such as fMRI, which may lack the sensitivity and 
specificity needed to uncover subtle cultural differences in 
neural activation patterns. Additionally, many current 
approaches are limited in their ability to capture the dynamic 
nature of language processing over time and to identify 
culturally specific aspects of neural activity. Furthermore, there 
is a lack of comprehensive integration between deep learning 
techniques and fMRI analysis, which hinders the exploration of 
universal and culturally specific aspects of language processing. 
These limitations underscore the need for a novel approach that 
leverages deep learning methods to analyze fMRI data and 
unveil the neural correlates of language across diverse cultural 
backgrounds, thereby providing insights into the complex 
interplay between language, cognition, and culture  [16]. 

IV. PROPOSED LSTM-GRU FRAMEWORK 

The methodology involves several key steps for 
investigating the neural correlates of languages across cultures. 
Firstly, data collection entails administering language tasks to 
participants from diverse cultural backgrounds while recording 
fMRI data. Following this, preprocessing is conducted to clean 
and prepare the fMRI data, including steps such as motion 
correction, slice timing correction, and spatial smoothing using 
Gaussian convolution to enhance signal-to-noise ratio. 
Subsequently, feature extraction is performed utilizing CHO 
algorithms to identify subsets of brain regions or connectivity 
patterns most relevant to language processing. Finally, 
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employing LSTM and GRU networks enables the analysis of 
temporal dynamics in the fMRI data, facilitating the exploration 
of how language is represented and processed in the brain across 
different cultural contexts. Through this integrated approach, the 

study aims to uncover both universal and culturally specific 
neural correlates of language processing. The proposed 
methodology is depicted in Fig. 1. 

 
Fig. 1. Proposed methodology. 

A. Data Collection 

Prior to entering the fMRI structure, subjects filled out a 
thorough MRI examination form and a questionnaire about their 
socioeconomic status. After that, they were told to stay still and 
open-eyed while paying close attention to a tale stimulus. In 
certain cases, an eye tracker was used to measure subjects' 
attentiveness in real time. Psychtoolbox or PsychoPy software 
was used to deliver the narrative stimuli. Sometimes, a 
prominently situated fixation cross or dot was provided during 
the presentation, but individuals were not given specific 
instructions to maintain fixation. The MRI-compatible insert 
headphones were used to transmit hearing stimuli, and either 
headsets or foam padding were used to reduce scanners noise. 
The researcher or the subject adjusted the level when the 
participants indicated acceptable visibility and understanding 
prior to gathering information, making ensuring they could 
easily hear the auditory stimuli above the MRI acquisition noise 
[20]. 

B. Preprocessing using Spatial Smoothing 

In fMRI data analysis, spatial smoothing is a typical 
preprocessing method used to increase the signal-to-noise ratio 
(SNR) and make activation patterns easier to identify. By 
convolving the time series of each voxel with a spatial Gaussian 
kernel, this approach blurs the data and disperses activation 
information to nearby voxels. By lessening the influence of 
voxel-wise variability, spatial smoothing serves to attenuate the 
impacts of spatial noise and modest anatomical heterogeneity 
between individuals, improving the dependability of future 
statistical analyses. The size of the smoothing kernel, however, 
is crucial since too big of a kernel might cause loss of spatial 
specificity and perhaps blur activation boundaries, while too 
little of a kernel can result in insufficient noise suppression. 
Additionally, because spatial smoothing may have an impact on 
how activation patterns are interpreted, particularly in areas with 
complex functional organization, its application should be 

carefully considered based on the particulars of the experimental 
design and research question. 

𝑓𝑠 (x,y,z) = 
1

2𝜎 2
 ∬ ∫ 𝑓(𝑥′, 𝑦′, 𝑧′)𝑒 −

∞

−∞

∞

−∞

 
(𝑥−𝑥′)2+(𝑦−𝑦′)2+(𝑧−𝑧′)2

2𝜎 2
 dx’dy’dz’         (1) 

There are other ways to apply spatial smoothing, but the 
most popular one is Gaussian convolution because of its 
efficiency and ease of use. In order to account for greater voxel 
sizes, bigger kernels are applied to data recorded at lower spatial 
resolutions. Generally, researchers choose a smoothing kernel 
size depending on the inherent spatial resolution of the fMRI 
data. Using techniques like surface rendering or statistical 
parametric maps, one may visually examine the effects of spatial 
smoothing on the data to determine the degree of blurring and 
how it affects activation cluster localization. Additionally, 
adaptive smoothing approaches, which dynamically modify the 
smoothing kernel in response to local signal properties, are a 
recent development in spatial smoothing techniques that attempt 
to maintain spatial distinctiveness while successfully 
suppressing noise. All things considered, spatial smoothing is an 
essential preprocessing step in the analysis of fMRI data that 
strikes a compromise between preserving spatial distinctiveness 
and boosting signal-to-noise ratio, thereby facilitating the 
precise identification and interpretation of brain activation 
patterns. 

The study leverages advanced methods like Crocodile 
Hunting Optimization (CHO) and Long Short-Term Memory 
(LSTM) networks to analyze brain activity during language 
processing. CHO mimics the stealthy and strategic hunting 
behavior of crocodiles, iteratively selecting the most relevant 
features (such as specific brain regions or connections) from a 
vast array of fMRI data. This selection process enhances the 
identification of neural patterns linked to language tasks. 
Meanwhile, LSTM networks, a type of deep learning model, are 
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designed to understand how information evolves over time. 
They are particularly useful for capturing the dynamic changes 
in brain activity as participants process and produce language. 
By combining these methods, the study aims to uncover both 
common and culturally unique aspects of how the brain handles 
language, offering insights into the intricate relationship 
between language, cognition, and culture. 

C. Feature Extraction using CHO 

Utilizing CHO for feature extraction in fMRI data analysis 
involves adapting the principles of crocodile hunting behavior 
to iteratively select subsets of features (e.g., voxels or brain 
regions) that are most informative for the task at hand. In this 
process, the fMRI data is initially represented as a large feature 
space, and CHO aims to efficiently search through this space to 
identify subsets of features that optimize a predefined criterion, 
such as classification accuracy or task-related activation 
strength. Inspired by the stealthy approach and sudden attacks 
of crocodiles, the algorithm iteratively updates candidate 
solutions by adjusting the selection of features within each 
solution, potentially adding, removing, or swapping features 
based on their individual performance in solving the 
optimization problem. 

During the hunting phase of CHO, candidate solutions are 
dynamically adjusted based on their evaluation against the 
optimization criterion, akin to crocodiles stealthily approaching 
prey. This phase involves exploring the feature space to identify 
promising subsets of features while balancing exploration of 
new solutions and exploitation of promising ones. The algorithm 
then proceeds to the attack phase, where a subset of candidate 
solutions is selected for further exploration based on their 
performance. This mimics the sudden and decisive attacks of 
crocodiles, focusing computational resources on refining the 
most promising solutions. Through iterative refinement and 
adaptation, CHO aims to efficiently navigate the high-
dimensional feature space of fMRI data, ultimately identifying 
subsets of features that maximize the discriminative power or 
relevance to the experimental task, facilitating more accurate 
and interpretable analyses of neural activity patterns. 

1) Initialization: Like other metaheuristic techniques, the 

initialising step is finished prior to proceeding to the main 

stages. During the initialising process, a large number of 

random starting locations are formed. These randomised 

solutions comprise, in reality, the original set of crocodiles. 

These options have an equal disparate distribution within the 

bottom and upper borders. These cures are generated using the 

following expression: 

y = BC + r * (VC – BC)   

After initial parameters such as population size, maximum 
number of repetitions, and lower and higher bounds of variables 
are established, randomized solutions (y) are constructed in 
accordance with Eq. (2), where BC and VC are the problem's 
lower and upper limits, respectively. Additionally, r is a 
randomly distributed variable that is formed between zero and 
one. These solutions are then evaluated using the goal function. 
Actually, CHS operators evaluate the responses based on the 
function of objectives. If a better way is found, that one replaces 

the previous one. The best solution, also known as the superior 
resolution (yprey), has the average function value that is the 
lowest. 

2) Chasing the prey: As previously said, there are two half 

of the population overall. As thus, each zone represents half of 

the overall population. The squad of hunters contains the first 

part of the answers. Ambushers thus comprise 50% of the 

overall population, or the second half. Hunters and ambushers 

are the two unique groups into which these two distinct sets are 

randomly divided. The reasoning behind replicating chaser 

behaviour is based on the separation between prey and 

crocodiles that resembles that of chasers. As previously 

indicated, the prey is pursued by a different group of hunters 

called chasers, who steer it towards the shore and other shallow 

regions rather than actually catching it. The following are the 

proposed formulae to duplicate this. 

𝑒𝑗,𝑡 = | 𝑦𝑝𝑟𝑒𝑦
𝑡 −  𝑦𝑐ℎ𝑎𝑠𝑒𝑟

𝑗,𝑡
 |     

3) Attacking the prey: The prey will eventually arrive up 

wherever the ambushers are waiting for the chance to grab the 

victim. Actually, the assailants try to guide the victim to this 

site or the attack region, while the ambushers hide in the last 

position. It is thought that in order to reproduce the attack phase, 

intruders are forced to alter their location in line with the 

following equations: 

𝑒𝑗,𝑡 = | 𝑦𝑝𝑟𝑒𝑦
𝑡 −  𝑦𝑎𝑚𝑏𝑢𝑠ℎ𝑒𝑟

𝑗,𝑡
 |                   (4) 

D = 
𝑎𝑞𝑐+𝑎𝑞𝑎+ 𝑦𝑝𝑟𝑒𝑦

3
  (5) 

Furthermore, aqc represents the average location of hunters, 
aqa represents the averaged positioning of ambushers, and 
crocodiles alter their position dependent on the locations of prey 
or the mean positioning of all subgroups. 𝑦𝑝𝑟𝑒𝑦 is the optimal 

location or prey position. 

The Eq. (6) represents. 

𝑍𝑡 =  𝜎(𝑤𝑧.[𝑠𝑡−1, 𝑦𝑡])  (6) 

wz is a learnable weight matrix specific to the update gate is 
given in Eq. (7). 

𝑟𝑡  =   𝜎(𝑤𝑟.[𝑠𝑡−1, 𝑦𝑡])     (7) 

D. Employing LSTM-GRU for Neural Correlation of 

Languages 

The choice of Long Short-Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) networks in this study is driven by their 
superior ability to model temporal dependencies in sequential 
data, such as the dynamic brain activity recorded during 
language processing tasks. Unlike simpler models like 
traditional feedforward neural networks, which are ill-suited for 
handling sequences where the order and timing of information 
are crucial, LSTM and GRU networks excel at capturing long-
term dependencies and managing the complexities of sequential 
data thanks to their unique architectures. These recurrent models 
are designed with mechanisms to maintain and update their 
memory over time, making them particularly effective for 
understanding how linguistic information unfolds and is 
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processed in the brain over time. Additionally, compared to 
other advanced models like Transformers, which are also 
powerful but often require significantly more computational 
resources and data to train effectively, LSTMs and GRUs offer 
a balanced approach with robust performance and manageable 
complexity. This balance makes them well-suited for fMRI data 
analysis, where the goal is to uncover detailed temporal patterns 
in neural activity without overwhelming computational 
demands. 

Employing a combination of LSTM and GRU networks 
holds immense promise for investigating the neural correlates of 
languages. These RNN variants are adept at capturing the 
temporal dynamics inherent in fMRI data collected during 
language tasks. LSTMs excel at modeling long-range 
dependencies and preserving relevant information over 
extended sequences, while GRUs offer a more streamlined 
architecture with comparable performance. By leveraging both 
LSTM and GRU networks, researchers can effectively capture 
the nuanced temporal patterns of language processing in the 
brain across diverse cultural contexts. This combined approach 
enables the identification of dynamic changes in neural 
activation patterns associated with different linguistic stimuli or 
processes, providing valuable insights into how language is 
represented and processed in the human brain. 

LSTM networks play a crucial role in exploring the neural 
correlates of languages by effectively modeling sequential 
dependencies in fMRI data collected during language tasks. As 
a specialized type of RNN, LSTMs are adept at capturing 
temporal dynamics and long-range dependencies in sequential 
data while mitigating the vanishing gradient problem. In the 
context of fMRI analysis, LSTMs can be trained on sequences 
of neural activations to identify patterns of brain activity 
associated with different linguistic processes or stimuli. Their 
ability to retain relevant information over extended periods 
allows LSTMs to capture the nuanced temporal dynamics of 
language processing in the brain across cultures. 

LSTMs offer a powerful framework for decoding linguistic 
content directly from brain activity patterns, shedding light on 
the neural representation of language across diverse cultural 
contexts. By training LSTMs to predict linguistic from fMRI 
time series data, researchers can uncover the neural signatures 
associated with specific linguistic components. Additionally, 
LSTMs can be used for classification tasks, distinguishing 
between different language conditions or cognitive processes 
based on patterns of brain activity. Through their capacity to 
model sequential dependencies and decode linguistic content 
from neural data, LSTMs significantly contribute to advancing 
our understanding of the neural correlates underlying language 
processing in the human brain across cultures. 

The equation for the input gate is, 

𝑖𝑡= σ (𝑣𝑖[𝑘𝑡−1,𝑦𝑡] + 𝑐𝑖)     (8) 

The equation for the forget gate is, 

𝑓𝑡= σ (𝑣𝑓[𝑘𝑡−1,𝑦𝑡] + 𝑐𝑓)     (9) 

The equation for the output gate is, 

𝑜𝑡= σ (𝑣𝑜[𝑘𝑡−1,𝑦𝑡] + 𝑐𝑜)     (10) 

The cell state is expressed in Eq. (11), 

𝑑�̃�= tank (𝑣𝑑[𝑘𝑡−1, 𝑦𝑡] + 𝑐𝑑     (11) 

The candidate cell state is expressed in Eq. (12), 

𝑑𝑡=𝑓𝑡 * 𝑑𝑡−1+ 𝑖𝑡 * 𝑑�̃�         (12) 

The final output is expressed in Eq. (13), 

𝑘𝑡=𝑜𝑡 * tank (dt)     (13) 

In the exploration of the neural correlates of languages, GRU 
networks play a pivotal role in capturing the temporal dynamics 
of language processing within the brain. GRU networks are a 
variant of RNNs designed to effectively model long-range 
dependencies in sequential data while mitigating the vanishing 
gradient problem. Specifically, GRUs employ gating 
mechanisms to selectively update and forget information over 
time, enabling them to retain relevant linguistic context while 
discarding irrelevant information. In the context of fMRI data 
analysis, GRU networks can be trained on sequences of neural 
activations collected during language tasks, allowing 
researchers to identify brain regions or connectivity patterns that 
exhibit dynamic changes in response to different linguistic 
stimuli or processes. 

GRU networks provide a means to decode linguistic content 
directly from brain activity patterns, offering insights into the 
neural representation of language across diverse cultural 
contexts. By training GRU networks to predict linguistic 
features from fMRI time series data, researchers can uncover the 
neural signatures associated with specific linguistic components. 
Additionally, GRU networks can be used for classification tasks, 
distinguishing between different language conditions or 
cognitive processes based on patterns of brain activity. Through 
their ability to capture temporal dynamics and decode linguistic 
content from neural data, GRU networks contribute significantly 
to unraveling the complex neural correlates underlying language 
processing in the human brain across cultures. 

GRU combines the previous memory with the current input 
at reset gate 𝑟𝑡. The reset gate determines how much old data 
should be ignored. Like the update gate, it takes input at time 
step t as well as the prior hidden state as inputs and outputs 
values between 0 and 1. Furthermore, 𝑟𝑡 determines the equation 
of a new output added to the previous state, which is given in 
Eq. (14) 

�̃�𝑡 =  tanh {𝑊ℎ. (𝑟𝑡  Θ[𝑠𝑡−1, 𝑦𝑡])   (14) 

For a hyperbolic tangent function, tanh stands for. Eq. (8) 
gives the output range for tanh as (-1,1), where ℎ𝑡  is the 
predicted value for the current cell. 

Tanh is the symbol for a hyperbolic tangent function. The 
output range for tanh is (-1,1) according to Eq. (15), where ℎ𝑡  is 
the expected value for the current cell. 

              𝑓𝑡  =  (1 − 𝑧𝑡)  ∗  𝑓𝑡 − 1 +  𝑧 𝑡 ∗  𝑓𝑡  (15) 

  GRU's design is simpler than that of traditional other 
approaches, yet it still works well in terms of 
performance and speed. 
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Fig. 2. LSTM-GRU architecture. 

 LSTM-GRU architectures (see Fig. 2) offers a powerful 
framework for decoding linguistic content directly from 
brain activity patterns, facilitating a deeper 
understanding of the neural representation of language 
across cultures. By training LSTM-GRU networks to 
predict linguistic features from fMRI time series data, 
researchers can uncover the neural signatures associated 
with specific linguistic components, such as word 
semantics or syntactic structures. Additionally, LSTM-
GRU networks can be utilized for classification tasks, 
distinguishing between different language conditions or 
cognitive processes based on patterns of brain activity. 
Through their ability to model sequential dependencies 
and decode linguistic content from neural data, LSTM-
GRU networks contribute significantly to unraveling the 
complex neural correlates underlying language 
processing in the human brain across cultures. 

V. RESULTS AND DISCUSSION 

The results of our work, "BrainLang DL," which applies a 
deep learning technique to fMRI data to investigate the 
neurological correlates of language processing across different 
cultural backgrounds, are presented in the results section. The 
findings demonstrate how well the suggested LSTM-GRU 
model explains both universal and culturally particular facets of 
language processing in the human brain. 

A. Brain Activation Map 

A brain activation map is a visual aid that shows areas of the 
brain that are significantly active during a certain task or 
cognitive process. It is usually created using neuroimaging data, 
such as fMRI. These maps, which are frequently presented as 
colour-coded overlays over images of the physical brain, 
provide spatial information regarding the locations and 
intensities of brain activity. By identifying the regions of the 
brain associated with specific behaviors or activities, brain 
activation maps enable researchers to explore the neurological 
underpinnings of cognitive processes like language processing, 
memory retrieval, and motor control. These maps can show 
individual variances in brain activity as well as common 
activation patterns shared by people or groups, offering 
important insights into the structure and operation of the human 
brain. It is depicted in Fig. 3. 

B. Temporal Activation Profile 

A temporal activation profile, which is usually generated 
from neuroimaging data such as fMRI, is a graphical depiction 
that shows the dynamic changes in brain activity over time 
during a particular cognitive task or stimulus presentation. These 
profiles, which are frequently represented as graphs displaying 
the degree of cerebral activity at various moments during the 
task, offer temporal information regarding the timing and 
duration of brain activation. Researchers can uncover patterns of 
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neural activity and clarify the timing of cognitive activities by 
utilising temporal activation profiles to study the temporal 
dynamics of the brain's reactions to different stimuli or cognitive 
processes. These profiles can provide insights into the temporal 
processing of neural responses by displaying differences in the 
timing and length of neural responses across various situations 
or experimental groups. It is shown in Fig. 4. 

 
Fig. 3. Brain activation map. 

 
Fig. 4. Temporal activation profile. 

C. Model Accuracy 

The ability of a predictive model to correctly classify or 
forecast unknown data is measured by its model accuracy. It is 
commonly represented as the ratio of the model's accurate 
predictions to the total number of forecasts. Accuracy in 
classification problems is the proportion of cases in which the 
model predicts the input data's class label with precision. The 
accuracy of a regression job is determined by how closely the 
model's predictions match the actual values of the target 
variable. A high accuracy shows that the model is doing a good 
job of identifying the underlying patterns in the data and making 
good generalizations to new, unobserved cases. It is given in Fig. 
5. 

D. Model Loss 

Model loss, often referred to as the loss function or cost 
function, is a metric used to express how much the real values 
of the target variable differ from the projected outputs of a 
ML model (see Fig. 6). It is a gauge of the model's performance 
on the training set and shows the mistake the model made in 
predicting the future. Reducing this loss function is the aim of 

machine learning model training, which raises prediction 
accuracy. Depending on the kind of task, different loss functions 
are utilized, such as categorical cross-entropy for classification 
tasks and mean squared error for regression tasks. Through 
methods such as gradient descent, the loss function is optimized, 
allowing the model to learn to provide more accurate predictions 
and more successfully generalize to unknown data. Keeping an 
eye on the loss function's trend while the model is being trained 
gives insights into how the model is learning and aids in 
directing the training process towards convergence. 

 

Fig. 5. Model accuracy. 

 
Fig. 6. Model loss. 

TABLE I.  COMPARISON OF PERFORMANCE METRICS 

Methods 

Performance Metrics 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

CNN-LSTM 89.67 93.33 91.22 95.32 

CNN-GRU 91.32 95.67 93.78 91.34 

MLP-GRU 95.43 92.67 96.78 94.67 

Proposed 

LSTM-GRU 
99.12 96.76 96.99 97.99 

Table I presents a comparison of performance metrics for 
different methods in a classification task. The methods evaluated 
include CNN-LSTM, CNN-GRU, MLP-GRU, and the proposed 
LSTM-GRU approach. Performance metrics such as accuracy, 
precision, recall, and F1-score are reported as percentages. 
Among the methods, the proposed LSTM-GRU approach 
achieves the highest accuracy of 99.12%, indicating its superior 
performance in correctly classifying instances. 
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Clinically, its precise detection of neural patterns can aid in 
diagnosing and treating language-related neurological disorders, 
such as aphasia or dyslexia. Furthermore, in cross-cultural 
studies, the model's insights can inform the development of 
more culturally sensitive educational tools and technologies, 
fostering better language learning and cognitive development. 
Additionally, for brain-computer interfaces (BCIs), the LSTM-
GRU’s accuracy in interpreting brain signals can enhance the 
effectiveness of communication aids for individuals with severe 
motor impairments, improving their interaction capabilities. 

Additionally, it exhibits high precision, recall, and F1-score, 
further underscoring its effectiveness in accurately identifying 
positive instances while minimizing false positives and false 
negatives. Comparatively, CNN-LSTM, CNN-GRU, and MLP-
GRU also demonstrate strong performance across the metrics, 
albeit with slightly lower accuracy and F1-score values. Overall, 
the results highlight the efficacy of the proposed LSTM-GRU 
method in achieving superior classification performance in the 
given task. It is depicted in Fig. 7. 

 
Fig. 7. Performance metrics. 

E. Discussion 

The results demonstrate the effectiveness of the proposed 
LSTM-GRU approach in achieving superior classification 
performance compared to other methods evaluated. With an 
impressive accuracy of 99.12%, the proposed method 
outperforms CNN-LSTM, CNN-GRU, and MLP-GRU, 
indicating its robustness in accurately classifying instances in 
the classification task. Furthermore, the high precision, recall, 
and F1-score values of the proposed LSTM-GRU approach) 
highlight its ability to correctly identify positive instances while 
minimizing both false positives and false negatives. These 
findings suggest that the proposed LSTM-GRU architecture 
effectively captures the underlying patterns in the data and 
generalizes well to unseen instances, making it a promising 
approach for classification tasks. 

Additionally, expanding the dataset to include more diverse 
populations and employing transfer learning could improve the 
model’s ability to generalize findings across different cultural 
contexts. Further refinement of the feature extraction process 
and exploring hybrid models combining LSTM/GRU with 
newer architectures like Transformers could also enhance the 
understanding of the intricate neural mechanisms underlying 
language processing. Future research could explore further 

optimizations and extensions of the proposed LSTM-GRU 
architecture, such as incorporating attention mechanisms or 
exploring ensemble methods, to enhance its performance across 
a wider range of classification tasks. Overall, the results 
underscore the effectiveness of deep learning architectures, 
particularly LSTM-GRU networks, in achieving high 
performance in classification tasks. 

VI. CONCLUSION AND FUTURE WORK 

In conclusion, the integration of deep learning techniques 
with fMRI data analysis presents a powerful approach for 
investigating the neural correlates of language processing across 
diverse cultural backgrounds. The study, "BrainLang DL," has 
demonstrated the effectiveness of this approach in uncovering 
both universal and culturally specific aspects of language 
processing. Through language tasks conducted with participants 
from various cultural groups and comprehensive preprocessing 
of fMRI data, we identified salient brain regions and 
connectivity patterns relevant to language processing using 
CHO. Additionally, employing LSTM and GRU networks 
enabled the analysis of temporal dynamics in language-related 
neural activity, revealing how linguistic information is 
represented and processed over time. The article contribute to a 
deeper understanding of the neural basis of language and its 
modulation by cultural factors. We have identified shared neural 
mechanisms underlying language processing across diverse 
populations, as well as culturally specific variations in brain 
activation patterns. These insights offer valuable implications 
for fields such as linguistics, neuroscience, and cross-cultural 
psychology, shedding light on the complex interplay between 
language, cognition, and culture. For future work, it is essential 
to further investigate the role of cultural factors in shaping 
language processing in the brain. This could involve conducting 
larger-scale studies with more diverse cultural samples and 
exploring additional deep learning architectures to enhance the 
analysis of fMRI data. Additionally, longitudinal studies could 
help elucidate how language processing mechanisms evolve 
over time within different cultural contexts. Overall, continued 
research in this area holds promise for advancing our 
understanding of the complex relationship between language, 
culture, and the brain. 
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