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Abstract—The rise of cryptocurrency has dramatically 

changed. Cryptocurrencies have dramatically reshaped the 

landscape of financial transactions, enabling seamless cross-

border exchanges without centralized oversight. This 

revolutionary shift, powered by blockchain technology, has 

democratized currency control, entrusting it to a widespread 

network of participants rather than a single entity. Originating 

from Satoshi Nakamoto's introduction of Bitcoin, this digital 

currency model operates on a decentralized framework, 

contrasting starkly with traditional, centrally governed monetary 

systems. This research delves into forecasting the price of Ripple 

(XRP) by leveraging advanced deep-learning approaches and 

various technical indicators. This study achieves remarkable 

precision in its predictions through the meticulous preprocessing 

of data and the application of neural networks, particularly the 

convolutional neural network-gated recurrent unit hybrid model. 

Technical indicators further refined these forecasts, highlighting 

the effective collaboration between machine learning techniques 

and financial market analysis. Despite the volatile nature of the 

cryptocurrency market, this work makes a substantial 

contribution to the field of cryptocurrency prediction strategies, 

advocating for further investigations into the effects of 

macroeconomic factors and the utilization of more extensive 

datasets to deepen our understanding of market dynamics. 

Keywords—Cryptocurrency; ripple; convolutional neural 

network; gated recurrent unit; technical indicators 

I. INTRODUCTION 

Cryptocurrency has witnessed massive followings recently, 
making it popular and facilitating hassle-free cross-border 
transactions. It has given a new dimension to exchanging digital 
assets that run over Blockchain technology. This is a 
decentralized currency, meaning no one controls it; it is 
community-driven. Satoshi Nakamoto first coined this concept, 
leading to the development of ‘Bitcoin’ [1]. Unlike a 
centralized currency with control vested in a central authority 
like a government, a kingdom, or an organization, 
cryptocurrencies operate and are maintained by a distributed 
network system commonly known as nodes using blockchain 
technology [2]. 

The price of a centralized currency vis a vis another 
currency widely depends on the demand-supply dynamics and 
printing of currency. The central agency can print more 
currency anytime, which impacts a currency's face value. On 

the other hand, in the case of cryptocurrency, the supply is 
predetermined and transparent. Thus, the value of 
cryptocurrencies is more directly influenced by Demand-
supply dynamics. Because of these features, investors tend to 
invest in cryptocurrency and to minimize investment risks, they 
use various mathematical models to forecast future prices. 
Cryptocurrencies claimed a market valuation of more than USD 
2.3 trillion as of April 2021[4]. 

Ripple is the fastest-growing currency in recent times, 
demanding continuous forecasting because of its volatility in 
pricing [3]. In this paper, we have used Technical Indicators to 
predict the price of Ripple (XRP) coins using deep learning 
techniques. Technical Indicators are used mainly to know the 
price movement of a currency, i.e., whether it will rise or go 
down with passing time. 

The perspective of this paper is to address the challenges of 
predicting the price of Ripple (XRP) by utilizing deep learning 
techniques. As deep learning is one of the subsets of AI 
(Artificial Intelligence), it has ensured the detection of complex 
patterns in large datasets, proving itself as more favorable for 
forecasting in highly volatile markets. Technical Indicators are 
also used to provide insights into price movements; the research 
aims to improve the accuracy of predictions. Hence, it offers 
investors a more reliable tool in the course of decision-making. 

This research has great relevance as it has the potential to 
improve the predictability and stability of investments made in 
Ripple. The process of precise prediction algorithms can help 
investors in decision-making and improved risk management, 
which will support the general development and steadiness of 
the Bitcoin market. Going further, the impact of this research 
can be enlarged by applying the proposed approaches to 
additional cryptocurrencies. This research work focuses on 
using technical indicators and deep learning to create an 
authentic Ripple (XRP) prediction model. This study adds to 
the expanding body of knowledge in forecasting 
cryptocurrencies by dealing with the related problems of price 
volatility and the accuracy of prediction. This is also helpful in 
offering useful guidance for investors in navigating this 
continuously changing market. 

This paper helps in surveying the ongoing state of 
cryptocurrencies, focusing on Ripple's (XRP) ascent and 
economic relevance. It spells out the process for forecasting 
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Ripple's price changes using the methods of deep learning as 
well as technical indicators. The accuracy and efficacy of these 
predictive algorithms are indicated by examining the output. 
The study also directs the ramifications of the outcomes, the 
difficulties encountered, and potential avenues for further 
investigation. The findings and significance of this research for 
Bitcoin investments are summed up in the conclusion. 

II. BACKGROUND 

A. Ripple (XRP) 

Ripple (XRP), developed by Ripple Labs Inc. co-founders 
Chris Larsen and Jed McCaleb, and diverges from traditional 
cryptocurrencies as a digital payment protocol. Operating on a 
decentralized blockchain, it prioritizes facilitating secure, 
instant, and low-cost cross-border transactions. Notably, XRP's 
role as a bridge currency streamlines the exchange of fiat 
currencies internationally, prompting its adoption by many 
global banks for transactions and presenting investment 
potential for investors [5]. 

B. Technical Indicators 

 Technical indicators track market price movements, 
assisting investors in timing their investments [6]. This 
study integrates such indicators into the dataset, 
categorized as Technical Indicator-1 to Technical 
Indicator-4. Through feature selection, specific 
indicators from each group were chosen for predictive 
analysis. 

 Relative Strength Index (RSI) was developed by J. 
Welles Wilder. As a financial market technical indicator. 
The RSI measured the speed and change of price 
movement using a momentum oscillator as per Eq.  (1). 

     𝑅𝑆𝐼 = 100 −  [
100

1+
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑎𝑖𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑠𝑠

]                      (1) 

The RSI is calculated mostly for a period of 14 days. 

 The Stochastic Indicator detects potential trend reversals, 
indicating oversold conditions within a 0 to 100 range on 
two axes, by comparing current prices with historical 
highs and lows [6]. Eq. (2) and Eq. (3) outline the 
calculation process, aiding in its interpretation.: - 

    𝐾% =  ((𝐴 − 𝐵)/ (𝐶 − 𝐵))  ∗ 100              (2) 

𝐷% = 𝑋 − 𝑝𝑒𝑟𝑖𝑜𝑑 𝑠𝑖𝑚𝑝𝑙𝑒 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝐾%    
 (3) 

The indicator uses 14 days to calculate %𝐷 𝑎𝑛𝑑 %𝐾. The 
user can also change the period as per the requirement [8]. 

where, 

𝐴: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑙𝑜𝑠𝑒                                                                  

𝐵: 𝐿𝑜𝑤𝑒𝑠𝑡 𝐿𝑜𝑤 𝑖𝑛 𝑋 𝑃𝑒𝑟𝑖𝑜𝑑                                                          

𝐶: 𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝐻𝑖𝑔ℎ 𝑖𝑛 𝑋 𝑝𝑒𝑟𝑖𝑜𝑑                                                               

𝑋: 14 𝑑𝑎𝑦𝑠 𝑝𝑒𝑟𝑖𝑜𝑑 

 The Commodity Channel Index (CCI) gauges price 
variance from the average over a specified period, with 
values above 100 indicating a strong uptrend and those 
below -100 signalling a downtrend:  

     𝐶𝐶𝐼 =  
𝑇𝑃−𝑀𝐴

.015∗𝑀𝑒𝑎𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
       (4) 

Where, 

𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑃𝑟𝑖𝑐𝑒(𝑇𝑃) =  ∑
(𝐻𝑖𝑔ℎ + 𝑙𝑜𝑤 + 𝐶𝑙𝑜𝑠𝑒)

3
  

𝑃

𝑖=1
 

𝑃: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑒𝑟𝑖𝑜𝑑𝑠                              

𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑀𝐴) =  
∑ (𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑝𝑟𝑖𝑐𝑒)𝑃

𝑖=1

𝑃
     

𝑀𝑒𝑎𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛  
∑ (𝑇𝑃 − 𝑀𝐴)𝑃

𝑖=1

𝑃
               

 The Moving average convergence/divergence (MACD) 
is a momentum oscillator used for trade trends but not to 
identify the oversold or overbought conditions [5]. Eq. 
(5)𝑎𝑛𝑑 𝐸𝑞. (6) shows the calculation of MACD [3]: - 

𝑀𝐴𝐶𝐷𝑃 =  𝐸𝑀𝐴12(𝑝)–  𝐸𝑀𝐴26(𝑝)         (5) 

   𝑆𝑀𝐴𝐶𝐷 = 𝐸𝑀𝐴9(𝑀𝐴𝐶𝐷)                  (6) 

Where, 

            𝐸𝑀𝐴12(𝑝)
= 12 − 𝑃𝑒𝑟𝑜𝑖𝑑 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑖𝑐𝑒 

 𝐸𝑀𝐴26(𝑝)
= 26 − 𝑃𝑒𝑟𝑖𝑜𝑑 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑖𝑐𝑒 

𝐸𝑀𝐴9 = 9 − 𝑃𝑒𝑟𝑖𝑜𝑑 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑖𝑐𝑒 

 The Money Flow Index (MFI) is an oscillator that 
combines price and volume data to evaluate strength and 
momentum on a scale of 0 to 100, with readings above 
70 indicating overbought conditions and below 30 
indicating oversold conditions, potentially signalling a 
forthcoming price rebound opportunity [6]. 

       𝑀𝐹𝐼 =  100 − 
100

(1+𝑀𝑜𝑛𝑒𝑦 𝑅𝑎𝑡𝑖𝑜)
                  (7) 

Where, 

𝑀𝑜𝑛𝑒𝑦 𝑅𝑎𝑡𝑖𝑜 =  
14 𝑝𝑒𝑟𝑖𝑜𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑚𝑜𝑛𝑒𝑦 𝑓𝑙𝑜𝑤

14 𝑝𝑒𝑟𝑖𝑜𝑑 𝑛𝑒𝑔𝑒𝑡𝑖𝑣𝑒 𝑚𝑜𝑛𝑒𝑦 𝑓𝑙𝑜𝑤
 

 The Chikou Span, or the Lagging Span or Lagging Line, 
is one of the five lines comprising the Ichimoku Kinko 
Hyo indicator. 

     𝐶𝑆 =  𝐿𝑎𝑠𝑡 𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒 𝑃𝑙𝑜𝑡𝑡𝑒𝑑 26 − 𝑃𝑒𝑟𝑖𝑜𝑑𝑠 𝑖𝑛 𝑃𝑎𝑠𝑡   
(8) 

Where, 

𝐶𝑆 ∶  𝐶ℎ𝑖𝑘𝑜𝑢 𝑆𝑝𝑎𝑛        

 

 The “Williams %R (Williams Percentage Range” is a 
financial tool that measures the oscillation in the price 
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range for any financial asset and in our case the price of 
the cryptocurrency. It is based on the volume of purchase 
and sales of an asset and plays an important role for 
trading decisions. 

       𝑊𝑖𝑙𝑙𝑖𝑎𝑚𝑠 %𝑅 =  
𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝐻𝑖𝑔ℎ − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑙𝑜𝑠𝑒 

𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤𝑒𝑠𝑡 𝐿𝑜𝑤
      (9) 

where, 

𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝐻𝑖𝑔ℎ: 𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑟𝑖𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑  14 𝑑𝑎𝑦𝑠 

𝐿𝑜𝑤𝑒𝑠𝑡 𝐿𝑜𝑤: 𝐿𝑜𝑤𝑒𝑠𝑡 𝑝𝑟𝑖𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 14 𝑑𝑎𝑦𝑠 

 The Normalized Average True Range (NATR) is similar 
to the Average True Range (ATR) indicator, but it has an 
extra step. The NATR takes the ATR values and adjusts 
them to fit on a scale from 0 to 100. This makes it easier 
to compare the volatility of different assets 

o The Average Directional Index (ADX) measures how 

strong a market trend is by comparing two other 

indicators: the Positive Directional Index (+DI) and 

the Negative Directional Index (-DI). It helps traders 

see how much momentum a trend has and spot good 

trading opportunities. A high ADX means a strong 

trend, while a low ADX means the market is not 

trending much, which helps traders decide when to 

trade and manage their risk 

o The On-Balance Volume (OBV), attributed to Joseph 

Granville, evaluates cumulative volume flow in 

financial instruments like stocks, currencies, or 

commodities. It assists traders and investors in 

spotting potential price trends and reversals by 

analyzing the relationship between price movements 

and trading volume [3]. 

o Triple Exponential Moving Average (TEMA) is a 

variation of the traditional Exponential Moving 

Average (EMA), with the key difference being that 

TEMA incorporates triple smoothing, making it more 

responsive to recent price movements. Eq. (10) 

indicates the calculation of TEMA. 

 𝑇𝐸𝑀𝐴  = [(3 × 𝐸𝑀𝐴1) − (3 × 𝐸𝑀𝐴2)] +  𝐸𝑀𝐴3 (10) 

Where, 

𝐸𝑀𝐴1: 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝐸𝑀𝐴)     

𝐸𝑀𝐴2: 𝐸𝑀𝐴 𝑜𝑓 𝐸𝑀𝐴1 

𝐸𝑀𝐴3 ∶  𝐸𝑀𝐴 𝑜𝑓 𝐸𝑀𝐴2 

III. LITERATURE REVIEW 

Athey, Parashkevov, et al. [8] create a pricing model for 
Bitcoin and offer conflicting data about the model's capacity to 
explain price movements. Using an equilibrium model, 
Pagnotta and Buraschi [9] examine the value of Bitcoin and 
other decentralized network assets.  Raskin and Yermack [10], 
for instance, analyze the consequences of central banking. The 
subject of Yermack is corporate governance. Huberman, 
Leshno, et al. [11] examine the cost of mining bitcoin. Harvey 
[12] concludes with a thorough explanation of the workings of 

cryptocurrency. Chan and Bessembinder [13] and, LeBaron 
Sullivan [14], Timmermann and White [15] concentrate on how 
profitable these tactics are in equities markets. Based on 
particular stock portfolios, Han, Yang, and Zhou [16] and 
Shynkevich [17] compare a few particular MA strategies with 
the buy-and-hold approach. Neely, Rapach, Tu, and Zhou [18] 
use technical indicators to predict the premium for stock risk. 
Huang and Huang [19] use stock exchange-traded funds (ETFs) 
to evaluate MV methods. For instance, Allen and Karjalainen 
(2018), Brown, Goetzmann, and Kumar [20], Lo, Mamaysky, 
and Wang [21], and Hsu, Hsu, and Kumar [22], among others, 
also examine additional technical trading principles in addition 
to MV techniques. Furthermore, Hsu, Taylor, and Wang [23] 
use foreign exchange data to evaluate a set of technical analysis 
methods. 

To comprehend the dynamics of crypto asset prices and, 
more specifically, how price information is transmitted between 
Bitcoin markets and traditional ones, Giudici and Polinesi [24] 
applied hierarchical clustering to Bitcoin prices collected from 
various exchanges. Akyildirim, Goncu, and Sensoy [25] 
examined the prediction of twelve cryptocurrencies at the daily 
and minute frequency levels using machine learning 
classification techniques. It has been demonstrated through 
social media interaction analysis that sentiment indexes may be 
used to forecast price bubbles (Chen & Hafner [26]) and that 
sentiment gleaned from Reddit subject conversations correlates 
with prices (Phillips and Gorse [27]). The use of optimized deep 
learning algorithms with improved classification results over 
earlier research (Bartolucci et al., [28]; Uras and Ortu [29]) is a 
significant addition to this work. 

IV. FEATURE SELECTION METHOD 

A. Information Value (IV) 

Regression analysis heavily relies on feature selection to 
improve the model's performance; this finds the most essential 
attributes. Although the Information Value (IV) cutoff 
approach is generally intended for use in classification issues, 
we have employed it in this instance indirectly. Continuous 
forecasting is a technique used in time series prediction to 
improve model performance by removing unnecessary features. 
When creating a model, features with IV values higher than a 
predetermined cutoff are kept, whereas features with values 
lower than the cutoff are removed, exceeding the IV threshold 
ensures the maximum feasible feature relevance and model. By 
determining the proper IV threshold, the feature selection 
procedure increases the interpretability of the model and boosts 
predictive performance. 

B. Data description 

The XRP dataset, obtained from Kaggle.com, covers data 
from August 5, 2013, to July 6, 2021, encompassing open, 
close, high, and low attributes. After preprocessing, it contains 
2893 observations. The dataset is partitioned into three subsets: 
an initial set of 202 observations for technical indicator 
initialization, a training set of 1924 observations, and a test set 
of 767 observations [7]. XRP price was low before 2017, and 
the return is not relatively volatile. 
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V. METHODOLOGY 

A. Deep Learning Algorithms (DL) 

The section elucidates the employment of Deep Learning 
(DL) algorithms, utilizing the Keras Framework for Deep 
Learning (Chollet et al., 2015), primarily for time series 
forecasting. DL architectures, characterized by multilevel 
complexity, encompass various models for inference. 
Technical Indicators with cutoff values ranging from 0.1 to 0.5 
are integrated into XRP data, enhancing forecasting accuracy 
via deep learning methodologies. 

B. Long Short-Term Memory 

Recurrent neural networks (RNN) face challenges with the 
vanishing gradient problem, hindering their ability to learn 
long-range dependencies in sequential data due to diminished 
gradients [30]. In 1997, Sepp Hochreiter and Jurgen 
Schmidhuber introduced LSTM networks, equipped with 
specialized memory cells that enable long-term information 
retention, overcoming the limitations of traditional RNNs. 
LSTM contains a Cell State that stores long-term memory; the 
Hidden State captures short-term memory in LSTM networks, 
with Input, Forget, and Output Gates controlling information 
flow. 

We computed some basic parameters of LSTM followed by 
Eq. (11) - Eq. (16) 

𝑓𝑡 = 𝜎(𝑦𝑡 + 𝑖𝑡−1)𝑋𝑖          (11) 

          𝑔𝑡 =  𝜎(𝑦𝑡 𝑊𝑓 +  𝑖𝑡−1𝑋𝑓)         (12) 

         𝑝𝑡=   𝜎(𝑦𝑡 𝑊𝑜 + 𝑖𝑡−1𝑋𝑜)  (13) 

        Č𝑡 = 𝑡𝑎𝑛ℎ(𝑦𝑡 𝑊𝑔 +  𝑖𝑡−1𝑋𝑔)  (14) 

       C𝑡=  𝜎(𝑔𝑡 × 𝐶𝑡−1 +  𝑗𝑡 × Č𝑡)  (15) 

     𝑖𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) × 𝑂𝑡  (16) 

where, 𝑦𝑡 is input, 𝑖𝑡−1 is the output of the previous cell 
state, 𝐶𝑡−1 is cell memory of previous LSTM, 𝑖𝑡  is current 
output, C𝑡is the current cell state and 𝑋, 𝑎𝑛𝑑 𝑊 are the weights. 

C. Gated Recurrent Unit 

The Gated Recurrent Unit (GRU), an RNN variant 
developed by Cho et al., mitigates shortcomings of traditional 
RNNs via a gating mechanism facilitating information flow 
between network layers. It features two gates [33]: the Reset 
gate, which discards past information based on the previous 
hidden state and current input, and the Update gate, blending 
previous and new states. GRU's architecture excels in capturing 
sequential data relationships and finding applications in natural 
language processing, speech recognition, and time series 
analysis. Despite its simpler design compared to LSTM 
networks, GRU maintains strong performance while offering 
reduced computational overhead. 

D. Convolution Neural Network 

Convolution Neural Network (CNN) is a deep learning 
model. 1D Convolutional Neural Network ( 1D CNN) is a 
neural network architecture designed to process one-
dimensional data sequences. 1D CNNs are used for sequence 

data represented along a single dimension, such as time series 
data or text. In this paper, we have used 1D CNN for our time 
series data analysis. In CNN, there is a convolution layer, which 
is important [31]. This layer performs the convolution operation 
and helps the network learn hierarchical features in the input 
sequence [32]. 

 
Fig. 1. Flow diagram of the proposed model. 

VI. PROPOSED ENSEMBLE MODELS 

In this section, we discuss our proposed ensembled models 
where the XRP price is combined with the technical indicators 
to predict the future. As shown in Fig. 1, the proposed 
workflows depict the first step of the data preprocessing. 
Second step, technical indicators are used, increasing the data 
set's features. In third stage, a feature selection method known 
as Information Value Cutoff is used with different values for 
different indicators, and finally, the features undergo the 
existing and proposed deep learning models to get the output. 
The proposed deep learning models are CNN-LSTM, CNN 
GRU, CNN-LSTM-GRU and CNN-GRU-LSTM. The 
ensemble model is a hybrid model that integrates CNN-LSTM, 
CNN-GRU, CNN-LSTM-GRU, and CNN-GRU-LSTM, whose 
performance is enhanced by the Attention mechanism. The 
model begins with a Convo 1D layer, which is used for feature 
extraction from the input sequence using the convolutional 
operations. Then, two subsequent LSTM and two subsequent 
GRU layers were used in the model with 64 neurons to capture 
the dependencies of sequential data. The model is followed by 
a dropout rate of 0.1 to mitigate the overfitting concerns [32]. 
Our model stands out because it uses an attention module that 
zooms in on the important parts of the input data. This makes 
the model more accurate. We also use a Rectified Linear Unit 
(ReLU) activation function to boost performance. Finally, the 
model flattens the data into a one-dimensional form and uses a 
dense layer to make predictions. 

The dynamic feature of our combined models lies in the 
attention mechanism. This tool improves accuracy, efficiency, 
and clarity in deep learning models. Just like how humans focus 
on important details, attention helps models concentrate on key 
parts of the input data when making predictions. It assigns 
different weights to parts of the input, allowing the model to 
prioritize important information and ignore unnecessary details. 
This results in more accurate and context-aware predictions. 
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The flexibility and power of attention mechanisms are essential 
for achieving top performance in modern deep learning models. 

VII. PERFORMANCE EVALUATION 

A dataset often has messy data with missing or repeated 
values, so we need to clean it before using it in models. Hence, 
Data preprocessing is very important and involves several steps 
to make sure the data is ready and good for analysis. For time 
series data, which has its own challenges like irregular 
timestamps and seasonal trends, the process starts with data 
cleaning. This means finding and fixing missing data and 
removing duplicates. Next, we transform the data to make it 
easier to analyze, which includes scaling and normalizing it. 
Then, we do feature engineering, which means creating new 
useful features from the existing data to improve the model. We 
also reduce the number of features and select the most 
important ones for better predictions. After that, we split the 
data into training, testing, and validation sets. This step is 
crucial because it helps us accurately evaluate the model's 
performance and prevent overfitting. 

Handling data correctly is key to making accurate, 
understandable, and reliable machine learning models. Properly 
prepared data leads to better analysis and successful machine 
learning tasks. 

VIII. EVALUATION MATRIX 

A. Root Mean Square Error 

Root Mean Square Error (RMSE) is an important measure 
in regression analysis and machine learning that shows how 
accurate predictions are. It does this by calculating the square 
root of the average of the squared differences between the 
predicted and actual values. A lower RMSE means the model 
is performing better because it indicates smaller differences 
between the predictions and the actual results. 

B. Mean Absolute Percentage Error 

Mean Absolute Percentage Error (MAPE) measures how 
accurate forecasts are by averaging the percentage differences 
between predicted and actual values. It's easy to understand for 
everyone, not just technical experts. However, MAPE can be 
affected by very large errors and doesn't work well when actual 
values are zero [31]. 

C. R-Square 

R-squared (𝑅2) measures how much of the variation in the 
outcome can be explained by the regression model. It helps us 
understand how well the model fits the data and how good it is 
at making predictions. The 𝑅2 value ranges from 0 to 1: 

 An 𝑅2 of 0 means the model doesn't explain any of the 
variations. 

 An 𝑅2 of 1 means the model perfectly explains all the 
variations. 

IX. RESULT ANALYSIS 

In this segment, we present the outcomes of simulations 
aimed at forecasting the price of Ripple (XRP) over the next 10 
days, utilizing four technical indicators. The result shows the 
value of feature selection method IV with cutoff values 
0.01,0.02,0.03,0.04 𝑎𝑛𝑑 0.05 . The forecasting dataset for 
XRP prices differs from the training data, allowing an accurate 
assessment of model performance. Various evaluation metrics, 
including RMSE, MAPE, and 𝑅2 , was analyzed for LSTM, 
GRU, CNN, and ensemble models (such as CNN-LSTM, CNN-
GRU, CNN-LSTM-GRU, and CNN-GRU-LSTM hybrids), 
with comparative results presented in Tables I, II, III, IV. The 
study aims to determine the most effective model for predicting 
XRP prices. 

TABLE I. NORMALIZED VALUES FOR TECHNICAL INDICATOR-1 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.01 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.0523 0.0301 0.0340 0.0274 0.0262 0.0295 0.0277 

MAPE 4.1404 0.8646 4.7267 3.6804 1.8724 1.9506 3.7855 

𝑹𝟐 0.7371 0.9127 0.8890 0.9277 0.9343 0.9165 0.9264 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.02 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.0430 0.0319 0.0298 0.0293 0.0254 0.0297 0.0319 

MAPE 7.3072 0.7574 1.2095 0.9582 2.8467 2.3445 2.2480 

𝑹𝟐 0.8220 0.9022 0.9145 0.9174 0.9382 0.9156 0.9024 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.03 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.0501 0.0298 0.0315 0.0271 0.0256 0.0308 0.0286 

MAPE 1.0798 0.5779 1.8525 1.8745 1.8732 1.8560 1.6101 

𝑹𝟐 0.7587 0.9147 0.9048 0.9297 0.9369 0.9089 0.9213 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.04 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.0418 0.0316 0.0293 0.0293 0.0227 0.0304 0.0278 

MAPE 7.0830 0.5765 1.4572 0.9380 2.7703 2.8315 1.9364 

𝑹𝟐 0.8320 0.9042 0.9140 0.9174 0.9504 0.9113 0.9259 
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 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.05 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.0415 0.0277 0.0280 0.0302 0.0256 0.0297 0.0301 

MAPE 3.9683 0.5423 1.4667 0.9477 0.6989 1.4186 3.5558 

𝑹𝟐 0.8342 0.9261 0.9246 0.9127 0.9369 0.9151 0.9128 

 
(a) RMSE, MAPE and 𝑅2when Cut off =0.01.         (b) RMSE, MAPE and 𝑅2 when Cut off =0.02.       (c) RMSE, MAPE and 𝑅2 when Cut off =0.03. 

  
(d) RMSE, MAPE and 𝑅2 when Cut off =0.04. (e) RMSE, MAPE and 𝑅2 when Cut off =0.05. 

Fig. 2. Comparison of RMSE, MAPE and 𝑅2 of existing and proposed models for technical indicator 1. 

RMSE is a metric comparing predicted and actual coin 
prices, where lower values indicate better model accuracy. 
Table I showcases results from seven deep-learning algorithms 
across five IV-Cutoff levels, predicting prices over a 10-day 
span. The CNN-GRU hybrid model consistently outshines 
others, displaying superior performance across all IV-Cutoff 
values for Technical Indicator-1. These findings are further 
illustrated in Fig. 2(a), (b), (c), (d), and (e), presenting 
comprehensive data visualization. The 𝑅2  values also affirm 
the model's fit, demonstrating high coefficients across various 
IV-Cutoff levels. The study highlights the CNN-GRU hybrid 
model's efficacy in predicting coin prices using Technical 
Indicator-1. 

Table II summarizes the performance of seven deep 
learning algorithms applied to Technical Indicator 2 across five 
IV-Cutoff values for forecasting the next 10 days. Notably, the 
CNN-GRU hybrid model demonstrates superior performance at 
IV-Cutoffs 0.03 and 0.04, with RMSE values of 0.1539 and 
0.1612, respectively. Conversely, CNN-LSTM-GRU exhibits 
better results at IV-Cutoffs 0.02 and 0.05, showcasing lower 
RMSE values of 0.1595 and 0.1613. CNN-LSTM stands out at 
IV-Cutoff 0.01, boasting an RMSE of 0.1607. R^2 values 
indicate robust data fit, with the highest achieved at IV-Cutoff 
0.03 (0.9789). Fig. 3 illustrates these results comprehensively, 
depicting all values for each IV-Cutoff." 

TABLE II. NORMALIZED VALUES TECHNICAL INDICATOR 2 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.01 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.4242 0.2393 0.2064 0.1607 0.1825 0.1734 0.1776 

MAPE 2.3616 0.6452 1.1983 0.4731 1.2763 0.5170 1.2806 

𝑹𝟐 0.8396 0.9490 0.9620 0.9770 0.9703 0.9732 0.9719 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.02 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.4513 0.2227 0.2204 0.2005 0.1662 0.1595 0.1614 

MAPE 3.3980 0.8098 1.0700 1.1617 0.5700 0.6711 0.6283 

𝑹𝟐 0.8184 0.9558 0.9567 0.9642 0.9754 0.9773 0.9768 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.03 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.5718 0.2140 0.2868 0.1960 0.1539 0.1754 0.1823 

MAPE 5.1379 1.1808 1.6387 0.7837 0.7666 0.7778 1.0016 

𝑹𝟐 0.7085 0.9592 0.9267 0.9658 0.9789 0.9726 0.9704 
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 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.04 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.5006 0.2246 0.3203 0.2198 0.1612 0.1968 0.1710 

MAPE 3.6101 1.4830 2.2568 0.5316 0.5608 0.5635 0.9440 

𝑹𝟐 0.7766 0.9550 0.9085 0.9569 0.9768 0.9655 0.9739 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.05 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.4825 0.2534 0.2482 0.2271 0.1878 0.1613 0.1788 

MAPE 2.7127 1.9540 0.9781 1.0408 0.6091 0.3922 1.1926 

𝑹𝟐 0.7924 0.9428 0.9451 0.9540 0.9686 0.9768 0.9715 

 
(a) RMSE, MAPE and 𝑅2when Cut off =0.01       (b) RMSE, MAPE and 𝑅2 when Cut off =0.02      (c) RMSE, MAPE and 𝑅2 when Cut off =0.03 

   
(d) RMSE, MAPE and 𝑅2 when Cut off =0.04     (e) RMSE, MAPE and 𝑅2 when Cut off =0.05 

Fig. 3. Comparison of RMSE, MAPE and 𝑅2 of existing and proposed models for technical indicator 2.

Table III shows Various deep learning algorithms were 
assessed for a technical indicator 3, across different threshold 
values. The CNN-LSTM-GRU hybrid model excelled with an 
IV-Cutoff of 0.01, yielding an RMSE of 0.2534 and an  𝑅2 of 
0.9379. Conversely, CNN-GRU performed better with IV-
Cutoff values of 0.02, 0.03, and 0.05, showcasing RMSEs of 
0.2116, 0.2359, and 0.2088, respectively, with corresponding  
𝑅2 values. CNN-GRU-LSTM outshone others with an IV-
Cutoff of 0.04, achieving an RMSE of 0.2185 and an  𝑅2of 
0.9583. Fig. 4 (a), (b), (c), (d), (e) illustrate these results 
comprehensively. 

Table IV shows the result obtained using seven deep learning 

algorithms for technical indicator 4 with five different values 

for the next 10 days. In technical indicator 4 result varies when 

the threshold value is changed. The CNN-GRU hybrid model 

gives better results for all the IV-Cutoff values followed by 

RMSE 0.2630,0.2489,0.2427,0.2517 and 0.2523. 𝑅2  signifies 

the better fit of the data. In IV-Cutoff 0.01 the 𝑅2 is 0.9331, in 

0.02 𝑅2  is 0.9401, in 0.03 𝑅2  is 0.9540, in 0.04 𝑅2  is 0.9388 

and in 0.05 𝑅2 is 0.9485. In Fig. 5 (a), (b), (c), (d), (e) all the 

values are depicted. The result shows CNN-GRU hybrid model 

gives better results for all the IV-Cutoff values. 

TABLE III. NORMALIZED VALUES TECHNICAL INDICATOR 3 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.01 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.3240 0.4068 0.3066 0.2838 0.2608 0.2534 0.2828 

MAPE 1.6371 1.8003 1.3034 0.8630 0.7324 1.0167 0.5569 

𝑹𝟐 0.8985 0.8401 0.9091 0.9221 0.9343 0.9379 0.9227 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.02 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.3098 0.2718 0.3295 0.2453 0.2116 0.2394 0.3063 

MAPE 1.4753 0.9284 1.3753 0.6595 0.6606 0.7545 0.9594 

𝑹𝟐 0.9072 0.9286 0.8953 0.9418 0.9567 0.9446 0.9093 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 
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When IV-

Cutoff=0.03 

RMSE 0.3351 0.2837 0.3002 0.2638 0.2359 0.2909 0.3224 

MAPE 0.9801 1.0614 1.0699 0.6866 0.8832 0.5527 0.6227 

𝑹𝟐 0.8914 0.9222 0.9129 0.9327 0.9562 0.9182 0.8995 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.04 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.2839 0.2901 0.3532 0.2370 0.2888 0.2889 0.2185 

MAPE 1.4274 1.0099 1.2319 0.8026 1.0228 0.6041 0.6074 

𝑹𝟐 0.9221 0.9187 0.8794 0.9457 0.9194 0.9193 0.9583 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.05 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.3195 0.3427 0.2858 0.2722 0.2088 0.2612 0.3101 

MAPE 1.6789 1.1028 1.0314 0.7243 0.5320 0.4716 0.6957 

𝑹𝟐 0.9013 0.8864 0.9211 0.9284 0.9578 0.9340 0.9070 

   
(a) RMSE, MAPE and 𝑅2when Cut off =0.01     (b) RMSE, MAPE and 𝑅2 when Cut off =0.02     (c) RMSE, MAPE and 𝑅2 when Cut off =0.03 

  
(d) RMSE, MAPE and 𝑅2 when Cut off =0.04      (e) RMSE, MAPE and 𝑅2 when Cut off =0.05 

Fig. 4. Comparison of RMSE, MAPE and 𝑅2  of existing and proposed Models for Technical Indicator 3. 

TABLE IV. NORMALIZED VALUES TECHNICAL INDICATOR 4 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.01 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.4025 0.3057 0.3028 0.2924 0.2630 0.3107 0.3096 

MAPE 0.8684 1.1769 0.8240 0.6068 0.6541 0.7239 0.7545 

𝑹𝟐 0.8433 0.9097 0.9114 0.9174 0.9331 0.9067 0.9073 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.02 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.3846 0.3269 0.2747 0.2921 0.2489 0.3231 0.3233 

MAPE 0.5857 0.4298 0.3820 0.9106 0.4295 0.6897 1.0152 

𝑹𝟐 0.8570 0.8967 0.9270 0.9134 0.9401 0.9291 0.9290 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.03 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.3958 0.3189 0.2924 0.3335 0.2427 0.3408 0.3480 

MAPE 0.8768 0.6223 0.8152 0.6749 0.5132 0.8490 1.1701 

𝑹𝟐 0.8486 0.9017 0.9174 0.8925 0.9540 0.8877 0.8829 

 

 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.04 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.4068 0.3088 0.2831 0.2783 0.2517 0.3793 0.3543 

MAPE 0.8161 0.8242 0.7760 0.5137 0.4152 0.5721 0.6925 

𝑹𝟐 0.8399 0.9078 0.9225 0.9251 0.9388 0.8609 0.8787 
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 EXISTING MODELS PROPOSED ENSEMBLED MODELS 

When IV-

Cutoff=0.05 

MODELS LSTM GRU CNN CNN-LSTM CNN-GRU CNN-LSTM-GRU CNN-GRU-LSTM 

RMSE 0.3690 0.3263 0.2718 0.3133 0.2523 0.3380 0.3359 

MAPE 0.7085 0.5782 0.4247 0.6295 0.5272 0.8943 0.6564 

𝑹𝟐 0.8684 0.8971 0.9286 0.9051 0.9485 0.8996 0.9009 

   
(a) RMSE, MAPE and 𝑅2when Cut off =0.01         (b) RMSE, MAPE and 𝑅2 when Cut off =0.02       (c) RMSE, MAPE and 𝑅2 when Cut off =0.03 

  
(d) RMSE, MAPE and 𝑅2 when Cut off =0.04 (e) RMSE, MAPE and 𝑅2 when Cut off =0.05 

Fig. 5. Comparison of RMSE, MAPE and 𝑅2 of Existing and Proposed Models for Technical Indicator 3. 

X. CONCLUSION AND FUTURE WORK 

In conclusion, this research successfully employed 
advanced deep learning techniques and key technical indicators 
to decode the unpredictable price fluctuations of Ripple (XRP). 
The study achieved exceptional forecasting accuracy through 
thorough data preprocessing, feature engineering, and the 
application of sophisticated neural network architectures like 
the CNN-GRU hybrid. The models improved prediction 
accuracy and better-understood market trends by using 
technical indicators like RSI, MACD, and Stochastic 
Oscillators in deep learning. This shows that combining 
technical analysis with machine learning can create more 
accurate prediction models, marking a new step in financial 
forecasting. 

Future research can build on this by including 
macroeconomic indicators, analyzing sentiment from social 
media and news, and studying how regulatory changes affect 
cryptocurrency prices. Expanding the dataset to cover more 
cryptocurrencies and longer time periods could provide deeper 
insights into market behavior. These efforts will help 
understand Ripple's pricing better and support further studies in 
predicting cryptocurrency trends. We hope and trust as digital 
assets grow, methods and models will keep evolving to 
understand their complexities better. 
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