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Abstract—Precisely calculating the cooling load is essential to 

improving the energy efficiency of cooling systems, as well as 

maximizing the performance of chillers and air conditioning 

controls. Machine learning (ML) has better capabilities in this 

area than conventional techniques and regression analysis, which 

are lacking. ML models are capable of automatically recognizing 

complex patterns that are influenced by various factors, 

including occupancy, building materials, and weather. They 

enable responsive predictions that enhance energy optimization 

and efficient building management because they scale well with 

data and adapt to changing scenarios. This research 

acknowledges the difficulties presented by the intricacies of 

energy optimization while exploring the intricate world of cooling 

load systems. To solve these issues, in-depth research and 

creative approaches to problem-solving are needed. The Weevil 

Damage Optimization Algorithm (WDOA) and the Improved 

Manta-Ray Foraging Optimizer (IMRFO) are two meta-heuristic 

algorithms that are seamlessly combined with the Gaussian 

Process Regression (GPR) model in this study to increase 

accuracy. Previous stability tests have provided extensive 

validation for the cooling load data used in these algorithms. The 

research presents three different models, each of which offers 

important insights for precise cooling load prediction: GPWD, 

GPIM, and an independent GPR model. With an RMSE value of 

1.004 and an impressive R2 value of 0.990, the GPWD model 

stands out as the best performer among these models. The 

remarkable outcomes demonstrate the outstanding precision of 

the GPWD model in forecasting the cooling load, highlighting its 

applicability to actual building management situations. 
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I. INTRODUCTION 

The imperative for energy conservation has garnered 
significant attention from scholars, given the staggering 
volumes of energy consumed across diverse applications. A 
substantial proportion of this energy is attributable to the global 
building sector, where the effective management of a crucial 
parameter, cooling load (CL), assumes pivotal importance. The 
Ventilation and Air Conditioning (HVAC) systems wield the 
responsibility of regulating these loads, a task heavily reliant 
on a multifaceted interplay of variables, including building 
characteristics, utilization patterns, and prevailing climatic 
conditions [1], [2]. HVAC systems, in addition to managing 
loads, are engineered to enhance indoor air quality and 
comfort. Achieving sustainable energy consumption hinges on 
adopting a judicious approach, such as the rigorous evaluation 
of energy performance through building energy testing (EPB) 
and the deployment of sophisticated HVAC models [3]. 

Presently, global energy consumption levels are alarmingly 
high, with projections suggesting a continued upward 
trajectory. This surge is often attributed to humanity's ever-
increasing aspirations for improved living standards [4], [5]. 
Notably, Europe alone accounts for almost 40% of total energy 
consumption within buildings, underscoring the magnitude of 
the challenge [6]. In 2013, global energy consumption reached 
a staggering 12,928.4 million tonnes, with the lion's share 
supplied by fossil fuels. Just five years prior, in 2008, the world 
consumed a colossal 474 Exajoules (EJ) of energy, with fossil 
fuels remaining the primary source [7]. Global electricity 
consumption experienced a substantial surge of 70% between 
1990 and 2008, underscoring the mounting energy demands. 
Building sector figures are particularly significant, as they 
constitute approximately 40% of global energy consumption 
and contribute to 30% of global CO2 emissions [8]. 

Due to the severe challenge posed by cooling loads, HVAC 
systems come to the fore. Typically, sensors and automation 
technology are harnessed to compute these loads. However, 
even advanced commercial Building Management Systems 
(BMS) at times struggle to predict cooling loads with the 
requisite accuracy. The complexity of this forecasting task is 
attributable to a web of interconnected factors, including a vast 
array of appliances and the need for building customization to 
meet the evolving demands of the population. This confluence 
of challenges underscores the pressing need for more robust 
and accurate load forecasting models that can empower 
engineers and scientists to better evaluate sustainability 
concerns during the construction phase of buildings [9], [10]. 

A. Literature Review 

Research into HVAC regulations and best practices has 
brought organizations like ASHRAE to the fore. ASHRAE's 
core mission revolves around advancing the knowledge and 
practice of cooling, ventilation, air conditioning, refrigeration, 
and associated human factors to meet the ever-expanding needs 
of the public [11]. The HVAC systems, in particular, play a 
transformative role in regulating the indoor environment, 
wielding significant influence over a building's overall energy 
consumption. Thus, the accurate prediction of cooling loads is 
pivotal in the quest to preserve energy. Researchers have 
embarked on substantial efforts to forecast the cooling loads of 
buildings. Their pursuit has culminated in the deployment of 
diverse machine learning (ML) algorithms that have proven to 
be effective in predicting these loads. For instance, Deb et al. 
[12] successfully employed artificial neural networks (ANN), 
which are particularly useful when dealing with nonlinear 
patterns that elude conventional analysis. Similarly, Khayatian 
et al. [13] harnessed ANN to forecast energy performance, 
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exemplifying the versatility and adaptability of this approach. 
In tandem, Moradzadeh et al. [14] contribute to the field by 
predicting heating and cooling loads with Support Vector 
Regression (SVR) and Multilayer Perceptron (MLP) models. 
Notably, the MLP method achieves an outstanding R-value of 
0.9993 in predicting Heating Load. This research introduces an 
advanced methodology that utilizes artificial neural networks 
and ML applications, specifically MLP and SVR techniques, 
for forecasting heat and cool loads and optimizing the 
consumption of energy in residential buildings. These 
technological strides collectively affirm the transformative 
potential of advanced computational methods in elevating the 
precision and efficiency of predictions the energy consumption 
of residential building. 

The application of ML in predicting cooling loads has 
opened up a realm of possibilities for enhancing energy 
efficiency in the building sector [15]. ML can sift through vast 
datasets, identify intricate patterns, and optimize HVAC 
system operations [16]. Through continuous learning and 
adaptation, these algorithms can adapt to changing building 
dynamics, further enhancing energy conservation efforts [17]. 
One notable advantage of ML is its ability to account for 
nonlinear relationships and complex interactions among 
variables. Traditional methods of load prediction often struggle 
with these complexities, leading to less accurate results [18]. 

Furthermore, ML models can continually refine their 
predictions as new data becomes available. This adaptability 
ensures that the HVAC system's performance remains 
optimized over time, even as building usage patterns and 
climate conditions evolve [19], [20]. The use of ML, such as 
artificial neural networks, offers a sophisticated approach to 
optimizing HVAC system operations, ultimately reducing 
energy consumption and environmental impact. As global 
energy consumption continues to rise, innovative solutions like 
ML must be embraced to mitigate the environmental footprint 
of the building sector and ensure a more sustainable future 
[21]. 

The primary aim is to forecast the cooling load of buildings 
utilization real-world dataset accurately that demonstrates 
energy usage patterns. Gaussian Process Regression (GPR) is 
employed as a simulation method to achieve this objective. To 
improve the efficiency of the GPR model, the Improved 
Manta-Ray Foraging Optimizer (IMRFO) and Weevil Damage 
Optimization Algorithm (WDOA) are chosen as hybrid models 
due to their unique advantages. These meta-heuristic 
algorithms are designed to optimize the GPR hyperparameters. 
Also, a perfect statistical analysis is carried out to assess the 
accuracy and reliability of each optimizer. The main goal of 
this research is to anticipate the cooling load demand of 
buildings precisely by combining sophisticated optimization 
algorithms with GPR. The selection of IMRFO and WDOA 
further enhances the effectiveness of the model as optimizers. 
Through a robust statistical analysis and the use of diverse 
performance metrics, this study aims to provide accurate and 
reliable predictions while enabling a comprehensive evaluation 
of the chosen optimizers' performance. 

The research examines how integrating machine learning 
methods like GPR, IMRFO, and WDOA improves HVAC 

system performance. Key findings and methodologies are 
summarized in a Table I, demonstrating continuous 
improvement of predictions with new data. Advanced 
algorithms enhance GPR effectiveness through rigorous 
optimization. Statistical analysis confirms accuracy and 
reliability, supporting energy efficiency and sustainability in 
buildings. 

TABLE I.  THE EFFICIENCY AND WORK DONE SUMMARY 

Aspect Description 

Machine Learning 

Benefits 

Continuous refinement of predictions with new data 

Optimization of HVAC system operations with artificial 

neural networks 

Reduction of energy consumption and environmental 
impact 

Research 

Methodology 

Use of Gaussian Process Regression (GPR) for accurate 

cooling load forecasts 

Integration of Improved Manta-Ray Foraging Optimizer 
(IMRFO) and Weevil Damage Optimization Algorithm 

(WDOA) as hybrid models for GPR optimization 

Performance 
Evaluation 

Comprehensive statistical analysis to assess accuracy and 

reliability 

Evaluation of optimization algorithms (IMRFO and 

WDOA) effectiveness 

II. MATERIALS AND METHODOLOGY 

A. Data Gathering 

This study focuses on the importance of reliable data for the 

successful implementation of strategies to predict cooling load 

requirements in buildings. The research utilizes a dataset 

consisting of 768 samples sourced from the study available at 

https://www.sciencedirect.com/science/article/abs/pii/S235271

0223020351, which is crucial for training sophisticated 

models and evaluating the proposed strategies. The study 

utilizes a GPR model and considers eight key input variables 

related to cooling load production. These variables include 

relative compactness, surface area, roof area, wall area, 

orientation, overall height, glazing area, and glazing area 

distribution. Each variable has an impact on cooling 

requirements and is represented in a correlation plot (Fig. 1). 

Statistical values of these input parameters are provided in 

Table II. The study emphasizes the significance of these 

variables in understanding the dynamics of cooling load in 

buildings. It highlights the need for high-quality data and 

emphasizes the importance of intelligent model training and 

data analysis techniques to achieve research objectives [22], 

[23]. 

B. Gaussian Process Regression (GPR) 

The framework for probabilistic regression used by 𝐺𝑃𝑅 
starts with a training dataset as its input 𝐷 = {(𝑦𝑤 , 𝑥𝑤)  ,   𝑤 =
1,2,3, … , 𝑊} of 𝑊 couples of vector input 𝑥𝑤𝐼𝑅𝐿  and based on 
a dataset of training phase with output values (𝑦𝑛), 𝐺𝑃𝑅 builds 
a model that can successfully generalize to the output 
distribution at new input locations. It is assumed that the output 
noise uncertainty is extremely, zero-mean, stationary, and 
normally distributed and is brought on by outside variables like 
truncation or observation errors [24]. 

𝑦 = 𝑓(𝑥) + 𝛿,      𝛿 "𝑊(0, 𝑠𝑛𝑜𝑖𝑠𝑒
2 )  (1) 
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TABLE II.  THE STATISTICAL PROPERTIES OF THE INPUT VARIABLE OF COOLING 

Variables 
 Indicators 

Category 𝑴𝒊𝒏 𝑴𝒂𝒙 𝑨𝒗𝒈 𝑺𝒕. 𝑫𝒆𝒗. 

Relative Compactness Input 0.62 0.98 0.764 0.106 

Surface Area Input 514.5 808.5 671.7 88.09 

Wall Area Input 245 416.5 318.5 43.63 

Roof Area Input 110.25 220.5 176.6 45.17 

Overall Height Input 3.5 7 5.25 1.751 

Orientation Input 2 5 3.5 1.119 

Glazing Area Input 0 0.4 0.234 0.133 

Glazing Area Distribution Input 0 5 2.813 1.551 

Cooling Output 10.9 48.03 24.59 9.513 

 
Fig. 1. The plot of correlation for the input and output variables. 

𝐺𝑃𝑅  utilizes a Gaussian Process (𝐺𝑃) to represent the 
hidden parameters of  𝑓, with 𝑥 serving as an index for these 
parameters. The goal is to limit the analysis to functions whose 
values are correlated in a Gaussian manner, which is achieved 
by using a Fixed Gaussian distribution for any limited set of 
{𝑓(𝑥1), … , 𝑓(𝑥𝑘)}  with unique indices. In a Bayesian 
framework, this is akin to setting a GP prior over functions. By 
specifying the mean function 𝑣(𝑥)  and the function of 
covariance 𝑘(𝑥, 𝑥′) , can conveniently define functions. This 
technique makes it simple to determine the function values of 
new inputs with a small amount of training data. The variance 

of the 𝑠𝑛𝑜𝑖𝑠𝑒
2 , is used to represent the noise in the model. 

𝑣(𝑥) = 𝐸[𝑓(𝑥)],     𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝑣(𝑥))(𝑓(𝑥′) −
𝑤(𝑥′))]   (2) 

The 𝐸[. ] denote expectation. Only the unseen region of the 
input space is relevant for the mean function selection, which is 
typically set to 0. The covariance function, which is regular and 
positive indeterminate by definition when assessed for any 
couple of points in input space, is the only factor that 
influences how the process behaves [25]. The function of 
covariance usually includes several hyperparameters, 
determining the earlier distribution of 𝑓(𝑥) . The squared 
exponential of covariance function is commonly used in [26]. 

𝑘(𝑥, 𝑥′) = 𝑞1 exp (
‖𝑥−𝑥′‖

2𝑞2
)   (3) 
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Here, 𝑘 denotes a norm that is defined on the input space. It 
is worth noting that the covariance function decays rapidly as 
the distance of input pairs 𝑥  and 𝑥′  rises, indicating weak 
correlations between 𝑓(𝑥)  and 𝑓(𝑥′) . There are three 
hyperparameters involved: 𝑞1  specifies the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 
allowable covariance, the correlation decay rate as points 
become farther apart is characterized by a positive 
hyperparameter, 𝑞2, and 𝑞3 is a hyperparameter that represents 

the variance 𝑠𝑛𝑜𝑖𝑠𝑒
2  in Eq. (1), although it has not specifically 

been expressed in Eq. (2). A vector (𝑞) is formed by grouping 
these hyperparameters, which are then considered as 
realization of random vector (𝑄). Based on the training data, 
the realization that offers the most appropriate for the dataset is 
chosen to make predictions. The inference procedure is easy if 
this assumes that the hyperparameters are already known. 
Denoting the vector of training latent variables as 𝑓  and the 
vector of test latent variables as 𝑓∗, can obtain the following 
joint Gaussian distribution: 

𝑝(𝑓, 𝑓∗) = 𝑊 (0, [
𝑘𝑓,𝑓     𝑘∗,𝑓

𝑘𝑓,∗     𝑘∗,∗
])  (4) 

The covariance matrix 𝐾  is formed by calculating the 
covariance of the 𝑖 − 𝑡ℎ parameter in the group represented by 
the first subscript and the 𝑗_𝑡ℎ parameter in the group 
represented by the second subscript (∗ is used in place of 𝑓∗ for 
short), using the function of covariance 𝑘(. , . )in Eq. (4) and the 
related hyperparameters [27]. The prediction framework is 
illustrated in Fig. 2. 

C. Improved Manta-Ray Foraging Optimizer (IMRFO) 

One of the effective metaheuristic methods for resolving 
optimization issues is the Manta Ray Foraging Optimisation 
Algorithm. Premature convergence, however, occasionally acts 
as a constraint. Two changes have been made to the Manta Ray 

Foraging Optimisation Algorithm to maximize its potential. 
The first entails integrating the algorithm with the widely 
recognized opposition-based learning (OBL) technique. 
Sometimes, the primary solution is in the opposite direction of 
the optimal solution, and the solution deviates from it. This 
may result in unsuccessful attempts at problem-solving or in 
more optimization efforts [28]. It is crucial to think about the 
worst-case scenario in such circumstances. As a result, the 
OBL technique was applied to the algorithm to produce more 
effective results, as follows:  

�̅�𝑖
𝑑 = 𝑥𝑖

𝑚𝑎𝑥 + 𝑥𝑖
𝑚𝑖𝑛 − 𝑥𝑖

𝑑  (5) 

In this approach, �̅�𝑖
𝑑 represents the opposite location of 𝑥𝑖

𝑑, 

while 𝑥𝑖
𝑚𝑎𝑥  and 𝑥𝑖

𝑚𝑖𝑛  represent the maximum and minimum 

constraints, respectively. If �̅�𝑖
𝑑 has better performance than its 

opposite location, which is denoted as 𝑥𝑖
𝑑 , then �̅�𝑖

𝑑  is utilized 

instead of 𝑥𝑖
𝑑. 

The second change entails applying the self-adaptive 
technique, which permits the individual to adjust their size 
through variable adaptation. Optimizing for individual size is a 
critical component. First, this transformation is applied to 
update the primary individual size: 

𝑥𝑖
𝑑(𝑡) = 10 × 𝑁   (6) 

𝑁, in this case, stands for the number of parameters. Then, 
the following formula determines the updated individual size 
for the next iteration: 

�̅�𝑖
𝑑+ = 𝑟𝑜𝑢𝑛𝑑(𝑥𝑖

𝑑 × (1 + 𝛿))  (7) 

The adjustable parameter 𝛿, which represents a random in 
range of −0.5 to 0.5, is used to modify the individual size in 
this context. 

 

Fig. 2. Estimation framework of the GPR model. 
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Based on whether δ is positive or negative, the individual 
size either increases or decreases. If the updated individual size 

( �̅�𝑖
𝑑+ ) is larger than the previous size ( �̅�𝑖−1

𝑑+ ), the current 
populations proceed to the subsequent iteration. In such cases, 
the remaining individuals are selected based on elitism. On the 

other hand, when �̅�𝑖
𝑑+  is less than �̅�𝑖−1

𝑑+ , only the best 
individuals from the current population are carried forward to 
the subsequent iteration, and the remaining populations are 
discarded. It is set to the number of problem parameters if the 
updated individual size is less than the problem size. 

D. Weevil Damage Optimization Algorithm (WDOA) 

The Curculionidae superfamily of insects includes the large 
and diverse group of insects known as weevils. Their 
prominent snouts help to identify them. An estimated 97,000 
species, they constitute one of the largest groups of organisms 
on the planet. While most weevil species are considered 
environmental nuisances, some, such as the boll, wheat, and 
maize weevils, are well known for seriously harming crops.. 
Weevils, despite their unfavourable image, are crucial 
components of many ecosystems as pollinators, decomposers, 
and animal prey [29]. The populations of weevils are generated 
randomly, resulting in n populations represented as 
(𝑊1, 𝑊2, … 𝑊𝑛). It is well known that weevils actively seek out 
the ideal conditions for breeding, which is frequently 
represented as a cost function. The following actions are taken 
until the condition for termination is satisfied [30]. 

 Take the strongest applicant out of the pool of 
applicants as a first step. Doing this, the best weevil is 
kept and can be utilized to create new weevil 
populations. 

 Distribute the Fly Power Rate (𝜓)  and Snout Power 
Rate (𝜑)  for each weevil to promote population 
diversity. This step involves assigning a value of 𝜑 and 
𝜓  to each weevil, representing their relative power 
levels. It is possible to diversify the weevil population 
and prevent any one individual from taking over by 
dispersing these values.  

 Implement these tactics to increase the number of 
weevils. Retaining the best candidate and promoting 
population diversity by assigning values can both 
enhance the general quality and diversity of the weevil 
population. 

Adopting measures such as distributing (𝜑)  and (𝜓)  for 
each weevil provides a comprehensive understanding of their 
power levels. Each weevil's level of harm is determined by the 
Damage Decision Variable (𝐷𝐷𝑉) , where greater damage 
increases the weevil's chance of surviving. Performance and 
the mutation rate parameter, μ, in the Reproduction 
Environment Rate (𝑅𝐼𝑅) are inversely correlated. Evolutionary 
algorithms typically sort the population and pass on the best 
individuals to the next generation to increase population 
diversity and quality [31]. 

𝑊𝐷𝑂𝐴 = 𝐶𝐹 ∑ ∑ (𝑊𝑖[𝜑,𝑛
𝐷𝐷𝑉=1

𝑛
𝑖=1  𝜓] × 𝑅𝐼𝑅 𝑜𝑓 𝜇 (8) 

𝐶𝐹  refers to the cost function. The pseudo-code for the 
𝑊𝐷𝑂𝐴 is presented as follows. 

Algorithm 1. The pseudo-code of WDOA. 

Creat a random set of Weevils: (𝑊1, 𝑊2, … 𝑊𝑛)  
Calculate 𝐶𝐹 value (Cost function and sort best to worst) 

While the termination criterion is not met  

Continue the best individuals 

                Calculate Fly Power Rate ψ and Snout power Rate φ for 

each Weevils according to 𝐶𝐹  

Seeking for an environment with more food source 

Choose 𝑊𝑖 by probability with 𝜑  

Choose 𝑊𝑗 by probability with 𝜓 

Randomly choose a 𝐷𝐷𝑉 from 𝑊𝑗   

Change out random 𝐷𝐷𝑉 𝑊𝑗  with 𝑊𝑖 

 

Begin  Mutation 𝜇 

Choose a 𝐷𝐷𝑉 in 𝑊𝑖 with the probability of mutation rate (𝑅𝐼𝑅)  

If 𝑊𝑖 𝐷𝐷𝑉 is selected 

Change out 𝑊𝑖 (𝐷𝐷𝑉) with a randomly developed 𝐷𝐷𝑉 

End if  

End Mutation 

Calculate the 𝐸𝑆𝐼 value of new Weevils  

Sort population (𝑏𝑒𝑠𝑡 𝑡𝑜 𝑤𝑜𝑟𝑠𝑡 (𝑐𝑜𝑠𝑡))  

Change out the worst with the preview development’s best  

Sort population (𝑏𝑒𝑠𝑡 𝑡𝑜 𝑤𝑜𝑟𝑠𝑡 (𝑐𝑜𝑠𝑡)) 

End while 

E. Efficiency Assessment Methods 

This article uses a variety of metrics to assess the models, 
including the previously mentioned Fractional bias (𝐹𝐵) , 
Correlation Coefficient (R2), Mean Square Error (𝑀𝑆𝐸), Index 
of agreement (𝐼𝑂𝐴), and Root Mean Square Error (𝑅𝑀𝑆𝐸).  

 Fractional Bias (FB): Fractional Bias calculates the 
average bias, the variation of predicted and observed 
values, relative to their average. An FB value close to 0 
indicates that the predictions are unbiased, while a 
positive or negative value indicates overestimation or 
underestimation, respectively. 

 Correlation Coefficient (R²): The Correlation 
Coefficient, also known as the coefficient of 
determination, quantifies how well the predicted values 
correlate with the observed values. An R² value close to 
1 demonstrates a great positive correlation, meaning the 
model explains most of the variability in the observed 
data. A value close to 0 indicates little to no correlation. 

 Mean Square Error (MSE): Mean Square Error is the 
average of the squared differences between predicted 
and observed values. Lower MSE values indicate better 
model performance, as they show that the predictions 
are closer to the actual values. It is sensitive to outliers 
due to the squaring of errors. 

 Index of Agreement (IOA): The Index of Agreement is 
a standardized measure of the degree of model 
prediction error, taking into account the range of 
observed values. IOA values range between 0 and 1, 
which 1 represent perfect agreement between the model 
predictions and the observed values. 

 Root Mean Square Error (RMSE): The square root of 
the average of the squared discrepancies between the 
predicted and observed values is known as the root 
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mean square error. Similar to MSE, lower RMSE 
values indicate better model performance. RMSE is 
useful because it provides an error metric in the same 
units as the original data, making it easier to interpret. 

During the training, validation, and testing phases, a high 
R2 value determines that the algorithm performed suitable. 
Conversely, smaller MSE and RMSE values are better since 
they indicate less model error. These metrics are computed 
using Eq. (9–13). 

𝑅2 = (
∑ (ℎ𝑖−ℎ̅)(𝑞𝑖−�̅�)𝑁

𝑖=1

√[∑ (ℎ𝑖−ℎ)2𝑁
𝑖=1 ][∑ (𝑞𝑖−�̅�)2𝑁

𝑖=1 ]

)

2

  (9) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑞𝑖 − ℎ𝑖)

2𝑁
𝑖=1   (10) 

𝑀𝑆𝐸 =
1

𝑁
∑ 𝑞𝑖

2𝑁
𝑖=1    (11) 

𝐹𝐵 =
1

𝑁
∑

2×(𝑞𝑖−ℎ𝑖)

𝑞𝑖+ℎ𝑖

𝑁
𝑖=1   (12) 

𝐼𝑂𝐴 = 1 −
∑ (𝑥𝑖,𝑞−𝑥𝑖,ℎ)2𝑁

𝑖=1

∑ (|𝑥𝑖,ℎ−𝑥𝑞̅̅ ̅̅ |+|𝑥𝑖,𝑞−𝑥𝑞̅̅ ̅̅ |)2𝑁
𝑖=1

  (13) 

Here, ℎ𝑖  and 𝑞𝑖  refer to the predicted and experimental 
values, respectively. The mean values of the experimental 

samples and predicted are represented by ℎ̅  and �̅� , 
alternatively, and 𝑁 demonstrates the number of samples being 
considered. 

III. RESULTS 

A. Hyperparameter 

Table III presents the results of the hyperparameter tuning 
for two models: GPWD and GPIM. Hyperparameters are 
critical settings that influence the training process and 
performance of machine learning models. For the GPWD 
model, the hyperparameters include 120 restarts, a length scale 
of 685.0302031, and an alpha value of 0.896335693. These 
values suggest a robust optimization process aimed at fine-
tuning the model for high precision in cooling load prediction. 
On the other hand, the GPIM model is configured with 55 
restarts, a length scale of 112, and an alpha value of 1.4. This 
set of hyperparameters indicates a different optimization 
strategy, potentially focusing on balancing computational 
efficiency and prediction accuracy. 

The number of restarts in both models indicates multiple 
attempts to find the optimal solution, enhancing the reliability 
and stability of the models. The length scale parameter 
influences the model efficiency in generalizing across various 
scales of data, while the alpha parameter affects the model's 
noise tolerance, contributing to its robustness in varying 
conditions. The distinct hyperparameter values reflect the 
tailored approaches of each model to achieve optimal 
performance in forecasting cooling loads. 

B. Evaluation of Models 

The objective of this study was the prediction of cooling 
loud using three distinct models: GPR, GPWD, and GPIM. 

Model performance was assessed against experimental data, 
which was divided into training (70%), validation (15%), and 
testing (15%) phases. This division ensured an unbiased 
evaluation of the models. To comprehensively compare the 
algorithms employed five statistical metrics: R2, RMSE, FB, 
IOA, and MSE. 

During the training phase, the GPWD model exhibited 
exceptional predictive accuracy. It achieved the highest R2 
(0.990) and IOA (0.997) values, surpassing the other models. 
In comparison, the GPR model had slightly lower R2 (0.971) 
and IOA (0.993) values. The GPWD model's superior 
performance was further highlighted by additional error 
indicators, such as the RMSE values ranging from 1.004 to 
2.208, indicating lower errors compared to the GPR model. 
When considering the FB values during training, the GPWD 
model demonstrated the lowest value (-0.007), while the GPR 
model had the highest value (0.002). This suggests that the 
GPWD model provided a better fit to the data than the GPR 
model. Furthermore, in terms of MSE, the GPWD model 
excelled with a training value of 1.007, while the GPR model 
exhibited the highest value (2.658). 

Overall, the results underscored the superiority of the 
GPWD model over the GPR and GPIM models, particularly 
during the training phase. Its high R2 and IOA values indicate a 
strong ability to explain the variance in the dependent variable. 
Additionally, the lower RMSE and FB values, along with the 
lower MSE value, further support the GPWD model's superior 
performance. It is important to note that these findings are 
specific to the training phase and may vary across different 
phases or datasets. Further analysis and evaluation are 
necessary to validate the models' performance in real-world 
scenarios. 

Nonetheless, the results obtained from this study highlight 
the potential of the GPWD model for accurate cooling load 
prediction. The developed models' results for GPR are 
represented in Table IV, and Fig. 3 displays the line plot for 
each metric. 

This study compares how well hybrid models perform in 
the training, validation, and testing stages utilization the scatter 
plot shown in Fig. 4. Overall, the GPWD model shows 
minimal variation of predicted and observed values, indicating 
good accuracy. The performance of the GPR and GPIM 
models is similar, with slightly lower precision and higher 
inaccuracy, even though their data points are farther from the 
centreline. A wider dispersion of the data points suggests a 
slightly higher inaccuracy and lower precision when compared 
to the GPWD model. 

TABLE III.  RESULT OF THE HYPERPARAMETER 

Models 
Hyperparameter 

n_restarts length_scale alpha 

GPWD 120 685.0302031 0.896335693 

GPIM 55 112 1.4 
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TABLE IV.  RESULT OF DEVELOPED MODELS FOR GPR 

Model Phase 
Index values 

RMSE R2 MSE FB IOA 

GPR 

Train 1.630 0.971 2.658 0.002 0.993 

Validation 2.208 0.955 4.874 0.024 0.988 

Test 1.782 0.970 3.177 0.032 0.991 

All 1.751 0.967 3.067 0.010 0.992 

GPWD 

Train 1.004 0.990 1.007 -0.007 0.997 

Validation 1.402 0.984 1.965 -0.003 0.995 

Test 1.443 0.980 2.081 -0.008 0.994 

All 1.145 0.988 1.311 -0.006 0.996 

GPIM 

Train 1.332 0.981 1.774 -0.006 0.995 

Validation 1.659 0.975 2.753 -0.005 0.993 

Test 1.839 0.966 3.384 -0.010 0.990 

All 1.470 0.978 2.162 -0.006 0.994 

  

 

Fig. 3. The line plot for developed models’ comparison according to metrics. 
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Fig. 4. Plotting the dispersion of evolved hybrid models. 

In Fig. 5, a vertical drop line graph illustrates the 
percentages of error related with the created models. Notably, 
the GPWD model stands out with the lowest error of 23.18%. 
The graph indicates that the majority of values for GPWD are 
clustered around the 10% range. In contrast, the error 
percentages for GPR and GPIM exhibit a broader distribution, 
with a significant concentration of values higher than 36.85% 
and 25.79%, respectively. It is noteworthy that both the GPR 
and GPIM distributions are right-skewed, indicating a 
significant number of data points which increased rates of 
error. This results highlights the great accuracy of GPWD and 

effectively showcases the percentage of error distributions in 
developed models, as depicted in the plot. 

The study shows the respective error percentages for the 
three models in Fig. 6, which is a box normal plot. The GPWD 
model showed remarkable performance, with errors under 10% 
and little dispersion. The GPR model's dispersion had a 
monotonous distribution with a topmost value of 20% and was 
constant across all phases. The GPIM model had the most 
significant differences between the models during the 
assessment stage, with one outlier data point accounting for 
more than 15% of the data. 
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Fig. 5. The error percentage of the models is based on the vertical drop line plot. 

 
Fig. 6. The box normal plot errors of proposed models. 
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IV. DISCUSSION 

A. Comparison 

Table V compares the best-performing models from the 
present study with those from related literature, highlighting 
their RMSE and R² values. The study by Moradzadeh et al. 
using the Support Vector Regression (SVR) model achieved an 
RMSE of 0.9887 and an R² of 1.7389. Roy et al. employed the 
Multivariate Polynomial Multiple Regression (MPMR) model, 
which resulted in an RMSE of 0.0791 and an R² of 0.99. Afzal 
et al. utilized the Particle Swarm Optimization with Grey Wolf 
Optimization (PSOGWO) model, attaining an RMSE of 1.9275 
and an R² of 0.9590. In the present study, the GPWD model 
demonstrated an RMSE of 1.004 and an R² of 0.990. Despite 
the GPWD model not having the lowest RMSE, its high R² 
value signifies strong predictive accuracy and robustness. 
Comparing these results illustrates the competitive 
performance of the GPWD model against other advanced 
techniques in the literature, confirming its efficacy in 
forecasting cooling loads. The comparison underscores the 
potential of the GPWD model in achieving reliable predictions, 
essential for energy-efficient building management. 

TABLE V.  THE STUDY COMPARES THE BEST-PERFORMING MODELS 

RESULTS WITH RELATED LITERATURE 

Articles 
Index values 

Models RMSE R2 

Moradzadeh et al. [14] SVR 0.9887 1.7389 

Roy et al. [32] MPMR 0.0791 0.99 

Afzal et al. [33] PSOGWO 1.9275 0.9590 

Present Study GPWD 1.004 0.990 

B. Limitation 

Despite the promising results, this study has several 
limitations. First, a particular dataset was used to train and 
validate the models, potentially limiting their generalizability 
to other contexts or buildings with different characteristics. The 
dataset's scope and quality may influence the models' 
performance, necessitating further testing on diverse datasets. 
Second, the study focused primarily on a controlled 
environment, which might not capture the variability of real-
world conditions, such as unexpected occupancy changes or 
extreme weather events. Additionally, while the integration of 
meta-heuristic algorithms with the Gaussian Process 
Regression model enhanced prediction accuracy, it also 
increased computational complexity, potentially posing 
challenges for real-time applications. Lastly, the study did not 
consider the economic aspects of implementing these advanced 
ML models in existing systems, which could impact their 
practical feasibility and adoption. Further research is needed to 
address these limitations and validate the models in various 
real-world scenarios. 

V. CONCLUSION 

To sum up, precise cooling load prediction is critical to 
enhancing the energy efficiency of cooling systems and 
maximizing the functionality of air conditioning controls and 
chillers. Within this field, machine learning (ML) models have 

become extremely powerful instruments, outperforming 
traditional methods and regression analysis because of their 
ability to identify complex patterns impacted by a variety of 
variables, including occupancy, construction materials, and 
meteorological conditions. Machine learning models provide 
dynamic forecasts that improve energy efficiency and enable 
effective building administration; they are data-scalable and 
scenario-adaptive. This research has shed light on the 
intricacies of cooling load systems, and the challenges entailed 
in energy optimization. To address these challenges, the study 
employed a comprehensive research methodology and 
innovative problem-solving approaches. The integration of the 
Weevil Damage Optimization Algorithm (WDOA) and the 
Improved Manta-Ray Foraging Optimizer (IMRFO), both 
meta-heuristic algorithms, with the Gaussian Process 
Regression (GPR) model was seamlessly executed to augment 
prediction accuracy. Rigorous validation, including stability 
tests, was performed on the cooling load data employed in 
these algorithms to certify the reliability of the outcomes 
obtained. 

The study presented three distinct models: GPWD, GPIM, 
and an independent GPR model. Each model provided valuable 
intuitions for the exact prediction of cooling load. Among these 
models, the GPWD model exhibited exceptional performance, 
surpassing the others in terms of accuracy. Boasting an RMSE 
value of 1.004 and an impressive R2 value of 0.990, the GPWD 
model demonstrated its prowess in forecasting cooling loads 
with remarkable precision, thereby indicating its practical 
applicability in real-world building management scenarios. The 
findings of this research underscore the superiority of ML 
models, particularly the GPWD model, in the prediction of 
cooling load. By harnessing complex algorithms and 
incorporating diverse factors, these models offer insights that 
contribute to energy optimization and efficient building 
management. 

Nevertheless, it is essential to acknowledge that the results 
obtained in this study are specific to the dataset and training 
phase. Further analysis and evaluation are imperative to 
validate the performance of these models across different 
contexts and real-world scenarios. In conclusion, the study 
underscores the potential of ML models, particularly the 
GPWD model, in accurately predicting cooling load. This 
research contributes to the expanding body of information in 
the discipline of energy optimization and emphasizes the 
significance of leveraging advanced techniques to enhance the 
efficiency of cooling systems. Ongoing research and 
development efforts in this area are critical for advancing 
energy optimization and sustainable building management. 
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