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Abstract—Respiration monitoring is essential for diagnosing 

and managing a variety of diseases. It is a non-invasive, convenient 

and effective method to derive breathing from ECG signals. This 

paper proposes a new complementary ensemble empirical mode 

decomposition (NCEEMD) method for respiration extraction. By 

additional ensemble empirical mode decomposition (EEMD) of 

the auxiliary white gaussian noise, the noise residue of the 

corresponding respiratory band after the EEMD decomposition of 

original ECG signal is subtracted. The new IMF was selected for 

correlation analysis with the measured respiratory signal, and the 

optimal amplitude noise coefficient was determined adaptively by 

the principle of maximum correlation increment. Then IMF in the 

respiratory band is selected to reconstruct the respiratory signal 

which is ECG-derived respiration (EDR). A comparative 

experiment of respiration extraction was conducted using the data 

of the MIT-BIH Polysomnographic database. The experimental 

results show that compared with the complementary ensemble 

empirical mode decomposition (CEEMD) method, the proposed 

EDR extraction method reduces the average MSE by 3.95%, 

RMSE by 2.74%, and MAE by 2.52% and the physical 

significance of the IMF component is more explicit. This method 

has good accuracy, robustness and adaptability, and provides a 

new solution idea for the extraction of respiratory signals. 

Keywords—ECG; white gaussian noise; complementary 

ensemble empirical mode decomposition; ECG-derived respiration 

(EDR) 

I. INTRODUCTION 

Breathing is an important physiological parameter in the 
human body and is commonly associated with heart disease, 
sleep apnea syndrome and anxiety [16, 19], and a coupling 
between breathing and heart rate has been demonstrated [17, 
20]. However, monitoring breathing requires bulky equipment 
that may interfere with natural breathing. ECG-derived 
respiratory (EDR) from ECG signals can effectively reduce the 
cost of monitoring, improve user comfort, and be more suitable 
for outpatient and home monitoring. 

Scholars at home and abroad have carried out a lot of 
explorations and researches on the extraction of EDR based on 
ECG signals. EDR is extracted from the slope and angle of QRS 
complex wave of ECG signal, but this method only be used to 
estimate the respiratory rate, and can not obtain the respiratory 
waveform [2]. Millimeter wave radar technology is used to 
obtain ECG and respiratory signals in a non-contact manner, 
which is capable of real-time monitoring, but the signal quality 
can be affected by environmental factors, human movement and 
other interferences, and the scope of application is limited [1, 
22]. Linear principal component analysis (PCA) was used to 

extract EDR signals from ECG signals and extracted the main 
components by calculating eigenvectors and eigenvalues, but 
PCA could not capture the nonlinear relationship between ECG 
and respiratory signals, which resulted in distorted downscaling 
results [6]. Literature proposed kernel-based principal 
component analysis to introduce nonlinear feature extraction 
into PCA by introducing kernel tricks, but the optimization 
process of kernel parameters is complicated [28]. Researchers 
have found that the EDR extraction technique based on the 
principle of empirical mode decomposition (EMD) out-
performs the method based on the discrete wavelet transform, 
and it can be a better alternative method for indirect extraction 
of respiration  [4, 13], but it causes severe mode aliasing in time-
frequency distributions, which blurs the physical significance of 
the individual intrinsic modal functions [11, 14]. Wu and Huang 
proposed an ensemble empirical mode decomposition (EEMD) 
method  [25], which overcomes the mode mixing problem of 
EMD, but the superimposed white noise amplitude and the 
overall average number of iterations of this method rely on 
human empirical choices [3, 29], and the effect of the residual 
white noise after signal reconstruction is not negligible [15]. 

A complementary ensemble empirical mode decomposition 
(CEEMD) method is mainly used to add a pair of opposite white 
noise signals to the source signal and performing EMD 
decomposition. CEEMD reduces the reconstruction error caused 
by white noise compared to EEMD method  [26], but 
disadvantage is that the operation is doubled, and if the white 
noise amplitude and the number of iterations are not appropriate, 
more pseudo-components will be decomposed, which need to be 
recombined or processed subsequently for the IMF components. 

For improved EMD methods, the addition of auxiliary white 
noise may lead to energy shift and spectrum distortion in the 
decomposition results, reducing the accuracy and reliability of 
the decomposition results. For how to eliminate the added 
auxiliary white noise effect, it is necessary to find an effective 
method to distinguish and suppress the noise components in 
order to retain the useful information of the signal. Inappropriate 
noise amplitude parameters may mask or change the features in 
the original signal, making the accuracy and interpretability of 
IMFs decreased [5, 24]. The statistical and distribution 
characteristics of white noise make the estimation of auxiliary 
noise level subjective and uncertain [25]. Based on the 
resonance characteristics of the signal in the time-frequency 
plane, the noise residue in the corresponding frequency band can 
be eliminated during the original signal decomposition by 
leveraging the decomposition characteristics of white Gaussian 
noise itself, thereby reducing the mutual interference and 
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aliasing of energy dispersed between different Intrinsic Mode 
Functions [8, 12]. 

This paper proposes a new complementary empirical 
ensemble mode decomposition (NCEEMD) method for breath 
extraction. By additional EEMD decomposition of the auxiliary 
white noise, the noise residue of the corresponding respiratory 
band after the original ECG decomposition is subtracted. And 
the optimal amplitude noise factor is selected adaptively. 

The structure of this paper is as follows: Section II proposes 
the EDR method based on NCEEMD and its evaluation 
performance index. It also  introduces the data set. Experimental 
results in Section III. Finally, the discussion and conclusion are 
given in Section IV and in Section V respectively. 

II. MATERIALS AND METHODS 

A. Datasets 

The MIT-BIH Polysomnographic Database (MBPD) 
includes 18 consecutive records from 16 male subjects 
diagnosed with sleep apnea syndrome [10]. Slp01a and slp01b 
are polysomnographic segments of the same patient, slp02a and 
slp02b are polysomnographic segments of another patient, and 
the remaining 14 data records belong to 14 different patients. 
Individual recordings in the database are between two and seven 
hours in length and are digitized at 250Hz and 12-bit resolution. 
The recorded physiological signals include electrocardiogram, 
electromyogram, electrooculogram, arterial blood pressure, 
respiration, and arterial oxygen saturation. 

In this study, we used ECG and respiratory signals measured 
synchronously by the MBPD. ECG signals measure and record 
the electrical activity of the heart via electrodes attached to the 
patient's chest and are used to detect heart abnormalities and 
assess heart function. Respiratory signals are recorded by an 
inductive plethysmograph or nasal thermistor, which records the 
amplitude of abdominal motion and changes in nasal airflow, 
thereby providing information about respiratory activity. The 
sampling frequency of the above physiological signals is 250Hz, 
and the sleep phase is marked every 30s. Fig. 1 is an example of 
time domain waveform of 60s ECG signal and respiratory signal 
recorded by slp01a in the database. 

 

Fig. 1. Examples of waveforms of ECG and respiratory signals recorded by 

slp01a. 

B. The Proposed NCEEMD Method 

The EMD method can be used to analyze nonlinear and non-
stationary signal sequences, which have a high signal-to-noise 
ratio and well time-frequency focus [9]. However, the defects of 
the method make the physical meaning of a single intrinsic mode 
function ambiguous, which will cause severe mode aliasing in 
the time-frequency dis-tribution. Compared with the original 
EMD, CEEMD has been greatly improved [26]. By 
superimposing multiple EMD decomposition of positive and 
negative white noise which are negative to each other, the 
problem of pattern aliasing is effectively solved by using the 
statistical property of Gaussian white noise with uniform 
frequency distribution. However, in the CEEMD decomposition 
method, the setting of the noise amplitude coefficient still 
depends on the human experience. Although the impact of noise 
on the results decreases with the increase of the overall average 
number of iterations, the time cost of the method also increases 
correspondingly, and the residue of white noise added cannot be 
ignored. Based on this, an NCEEMD method is proposed in this 
paper. In order to eliminate the residual white noise in the 
reconstructed signal to a certain extent, the EEMD 
decomposition of Gaussian white noise is first subtracted from 
the EEMD decomposition result of the original signal, and the 
noise residue in the signal decomposition is diluted or eliminated 
by using the characteristics of Gaussian white noise to improve 
the accuracy of the method. 

1) Suppose the original signal is y(t), gaussian white noise 

signal is g(t), the overall average number is preset to m, the 

noise amplitude coefficient is α; 

2) The white noise sequence with standard normal 

distribution added for the 𝑖th time is 𝑛𝑖(𝑡), then the noisy signal 

of the 𝑖th experiment is 𝑦𝑖(𝑡),  𝑔𝑖(𝑡); 

𝑦𝑖(𝑡) = 𝑦(𝑡) + 𝛼𝑛𝑖(𝑡)      𝑖 = 1,2, … , 𝑚     (1) 

𝑔𝑖(𝑡) = 𝑔(𝑡) + 𝛼𝑛𝑖(𝑡)      𝑖 = 1,2, … , 𝑚       (2) 

3) The 𝑖 th EMD process is conducted to 𝑦𝑖(𝑡), 𝑔𝑖(𝑡). The 

obtained multi-resolution features of the original signal can 

reflect more detailed scale information. Observing the detailed 

characteristics of gaussian white noise in each frequency band, 

which is used to simulate the error residue of white noise added 

by EEMD in reconstruction; 

𝑦𝑖(𝑡) = ∑ 𝑥𝑖𝑗(𝑡)
𝑛

𝑗=1
+ 𝑟𝑖(𝑡)       𝑗 = 1,2, … , 𝑛    𝑔𝑖(𝑡) (3) 

= ∑ 𝑘𝑖𝑗(𝑡)
𝑛

𝑗=1
+ 𝑙𝑖(𝑡)       𝑗 = 1,2, … , 𝑛   (4) 

where, 𝑥𝑖𝑗(𝑡) is the average value of the 𝑗th IMF component 

obtained from the EMD decomposition of the original signal. 
𝑟𝑖(𝑡) is the average value of the residual item. It is the average 
value of the 𝑗 th IMF component obtained by EMD 
decomposition of gaussian white noise. 𝑙𝑖(𝑡)  is the average 
value of the residual item. 

4) Subtract the IMF components obtained in Eq. (3) and Eq. 

(4) in the corresponding frequency band to obtain a new IMF 

component 𝑊𝑖𝑗(𝑡), which is used to eliminate the white noise 

residue in the EEMD decomposition of the original signal. 
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𝑊𝑖𝑗(𝑡) = 𝑥𝑖𝑗(𝑡) − 𝑘𝑖𝑗(𝑡)        (5) 

𝑇𝑖𝑗(𝑡) = 𝑟𝑖(𝑡)  − 𝑙𝑖(𝑡)                (6) 

where, 𝑊𝑖𝑗(𝑡) is the newly obtained average value of the 𝑗th 

IMF component. 𝑇𝑖𝑗(𝑡) is the average value of the new residual 

item. 

5) Repeat the process of 3) and 4) until 𝑖 = 𝑚, the average 

value of the 𝑗th IMF component and the average value of the 

residual item obtained after the 𝑚th EMD decomposition are 

calculated, the functions are as follows. 

𝐴𝑗(𝑡) =
1

𝑛
∑ 𝑊𝑖𝑗(𝑡)              

𝑛

𝑖=1
 (7) 

𝐵𝑛(𝑡) =
1

𝑛
∑ 𝑇𝑖𝑗(𝑡)                           

𝑛

𝑖=1
(8) 

6) The final result 𝐶(𝑡)  after compound noise reduction 

with gaussian white noise is: 

𝐶(𝑡) = ∑ 𝐴𝑗(𝑡)
𝑛

𝑗=1
+ 𝐵𝑛(𝑡)                           (9) 

C. NCEEMD-based EDR Extraction Method  

To solve the defects of the noise amplitude coefficient in the 
CEEMD method that need to be set by human experience and 
reduce the introduced noise interference, considering that the 
correlation between signals will gradually increase with the 
decrease of the noise residue in the original signal 
decomposition, this paper proposes an EDR method based on 
NCEEMD in Fig. 2. By presetting different noise coefficients, 
the correlation between the IMF component obtained from 
CEEMD decomposition and NCEEMD decomposition and the 
original respiration was compared. The optimal amplitude noise 
coefficient α in the method was determined by the principle of 
maximum increment of the correlation coefficient, which was 
used to reconstruct respiratory signals and automatically adjust 
parameters according to data characteristics to improve the 
adaptability of the method. 

Selection of the IMF frequency range to reconstruct the 
respiration. Since respiration and heartbeat are in different 
frequency bands, respiration can be separated from the ECG 
signal by filtering or decomposition. Typically, the human 
respiratory rate ranges from 0.1 to 0.5 Hz, while the heart rate 
ranges from 0.8 to 2 Hz [7]. Considering that the patient has 

shortness of respiration or apnea, the respiratory frequency 
range selected in this paper is 0.07-0.75 Hz [3], and the IMF 
component in the frequency band is used as the component of 
reconstructed respiration. 

Calculation of the correlation between the IMF and the 
measured respiration signal. Multiple IMF components are 
obtained by decomposing the original signal by NCEEMD. In 
this paper, the Pearson correlation coefficient index is used to 
measure the correlation between the IMF component and the 
measured respiration. The size of the correlation coefficient 
reflects the degree of correlation between two signals. P is a test 
value, which is used to test whether the two variables have the 
same correlation as the sample in the population from which the 
sample comes. If P is less than 0.05, it is considered statistically 
significant, and the correlation R is considered significant. 

𝑅(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋⋅𝑌)

√𝑉𝑎𝑟[𝑋]𝑉𝑎𝑟[𝑌]
                   (10) 

where, 𝐶𝑜𝑣(𝑋 ⋅ 𝑌) is the covariance of 𝑋 and 𝑌, 𝑉𝑎𝑟[𝑋] is 
the variance of 𝑋, 𝑉𝑎𝑟[𝑌] is the variance of 𝑌. 

Determination of the optimal magnitude noise coefficients. 
The increment of the correlation coefficient between the 
CEEMD decomposition component 𝑥𝑖𝑗(𝑡) , the NCEEMD 

decomposition component 𝑊𝑖𝑗(𝑡), and the measured respiratory 

signal are compared respectively. The optimal amplitude noise 
coefficient 𝛼 is determined by the principle of the maximum 
increment of the correlation coefficient, which is used to 
reconstruct the respiratory signal. 

D. Evaluation Metrics 

To quantify the error between EDR and original respiration, 
this paper evaluates the method by calculating mean square error 
(MSE), root mean square error (RMSE), and mean absolute 
error (MAE) accuracy. 

𝑀𝑆𝐸 =
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1                     (11) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1                    (12) 

𝑀𝐴𝐸 =
1

𝑛
∑ |�̂�𝑖 − 𝑦𝑖|                        𝑛

𝑖=1 (13) 

where, �̂�𝑖 is the predicted value and 𝑦𝑖  is the actual measured 
value. 

 
Fig. 2. Overview of the proposed NCEEMD method for respiratory extraction. 
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III. RESULTS 

A. NCEEMD Method for ECG Signal 

Taking the first 60 seconds of slp01a data in MBPD as an 
example, NCEEMD decomposition of the raw ECG signal was 
done to obtain different IMF components, as shown in Fig. 3. 

Gaussian white noise is a kind of noise with zero mean in 
time domain and uniform distribution of power spectral density 
in frequency domain [5]. Each sample is independent from each 

other and exhibits Gaussian distribution characteristics. EEMD 
decomposition of Gaussian white noise is performed below, as 
shown in Fig. 4. 

Subtract the IMF components obtained in EEMD 
decomposition of ECG signals and Gaussian white noise signal 
in the corresponding frequency band to obtain a new IMF 
component, which is used to eliminate the white noise residue 
in the EEMD decomposition of the original signal, as shown in 
Fig. 5. 

  
(a) Decomposition detail of IMF1~IMF6 (b) Decomposition detail of IMF7~IMF13 

Fig. 3. EEMD decomposition of ECG signals. 

  
(a) Decomposition detail of IMF1~IMF6 (b) Decomposition detail of IMF7~IMF13 

Fig. 4. EEMD decomposition of Gaussian white noise signal. 
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(a) Decomposition detail of IMF1~IMF6 (b) Decomposition detail of IMF7~IMF13 

Fig. 5. NCEEMD method decomposition detail diagram. 

B. Respiratory Extraction Method 

The original ECG signals were decomposed by EMD, 
EEMD, CEEMD and NCEEMD methods to obtain different 
IMF components, and the IMF components in the respiratory 
band (0.07 ~ 0.75 Hz) were calculated by FFT technology as 
shown in Fig. 6 and Table I below. In the NCEEMD 
decomposition results, the maximum centre frequency of 
IMF8~IMF10 is within the range of 0.07-0.75Hz in the 
respiratory band. 

As can be seen from Table I, the components in the 
respiratory band obtained by EMD decomposition are: IMF5~ 
IMF 8; The components in the respiratory band obtained by 
EEMD/CEEMD/NCEEMD decomposition are IMF8~IMF 10. 

The P and R values of IMF and measured respiratory signals 
in the respiratory band were calculated in Table II and Table III. 
The increment of the correlation coefficient between the 
CEEMD decomposition component, the NCEEMD 
decomposition component and the measured respiratory signal 
are compared respectively. The optimal amplitude noise 
coefficient 𝛼 is determined by the principle of the maximum 
increment of the correlation coefficient, the optimal amplitude 

coefficient is used for the final reconstruction of the respiratory 
signal. 

 
Fig. 6. The Spectrum of IMF_RESP of NCEEMD method. 

TABLE I.  CORRESPONDING RESPIRATORY BAND FREQUENCY IMF

Method 
Frequency (Hz） 

IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 

EMD 0.45 0.3 0.15 0.075 0.025 / 

EEMD 3.3 1.125 1.125 0.4 0.15 0.075 

CEEMD 3.3 1.125 1.125 0.4 0.15 0.075 

NCEEMD 3.3 1.125 1.125 0.325 0.2 0.1 
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TABLE II.  COMPARISON OF P VALUES BETWEEN DIFFERENT IMF COMPONENTS AND ORIGINAL RESPIRATION 

Method 
Significance P value 

IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 

EMD 0.2033 0 0 0 0.5684 / 

EEMD 0.5411 0.4435 0.0252 0 0 0 

CEEMD 0.4646 0.1196 0.6107 0 0 0 

NCEEMD 0.5412 0.4385 0.0234 0 0 0 

TABLE III.  COMPARISON OF R VALUES BETWEEN DIFFERENT IMF COMPONENTS AND ORIGINAL RESPIRATION 

Method 
Correlation coefficient R value 

IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 

EMD 0.0127 0.0826 0.0889 0.0416 0.0057 / 

EEMD -0.0061 -0.0077 -0.0067 0.1628 0.2198 0.0787 

CEEMD 0.0073 0.0156 -0.0051 0.1413 0.1945 -0.174 

NCEEMD 0.0111 -0.0136 -0.1635 0.2261 0.2338 0.0876 
 

With a statistically significant P-value<0.05, the correlation 
coefficient R-value of NCEEMD with original respiration was 
the largest among components IMF7 to IMF10 (see the bolded 
portion in Table III), indicating that the IMF component 
decomposed by this method had the strongest correlation with 
original respiration. The changes in the incremental correlation 
coefficients of NCEEMD-IMF with original respiration were 
calculated comparing the CEEMD decomposition method under 
different amplitude noise factor 𝛼, as shown in Fig. 7 below. 

 

Fig. 7. IMF correlation coefficient increment at different noise coefficient 𝛼. 

As shown in Fig. 7, under the noise amplitude coefficient 
𝛼 = 0.55 , the correlation coefficient of each component is 
increased and the correlation coefficient of IMF8 component has 
the largest increment. The frequency of IMF8 component is 
0.4Hz, which is also the closest to the original respiratory 
frequency of 0.3Hz, indicating that the decomposed component 
of this method highlights the respiratory feature information 
more. Under other different noise coefficients, the correlation 
between IMF5 and IMF10 decreases, which may be since the 
IMF5 component carries the characteristic information of the 
ECG signal, and the IMF10 component carries part of the 

characteristic information of the baseline drift, which makes its 
correlation with the respiration weakened, which is manifested 
in the decreasing increment of the correlation coefficient [23]. 
The method proposed in this paper has good adaptability in 
determining the noise amplitude coefficient. 

C. Compare EDR Extraction with Other Methods 

As can be seen from Table I, the components in the 
respiratory band obtained by EMD decomposition are: IMF5~ 
IMF 8; The components in the respiratory band obtained by 
EEMD/CEEMD/NCEEMD decomposition are IMF8~ IMF 10. 
Based on the above determination of the optimal noise 
amplitude coefficient, slp01a data in the first 60 seconds of 
MBPD is taken as an example to compare EDR signals obtained 
by EMD, EEMD, CEEMD, and NCEEMD decomposition 
methods, respectively, and compare them with the measured raw 
respiration in the database in Fig. 8. 

 
Fig. 8. Example of a comparison of the different EDRs recorded by slp01a 

with the original respiration. 
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Fig. 8 shows an example of an abdominal respiration 
fragment recorded using slp01a over a period of 60 seconds. 
Each of the above EDR techniques provides information on the 
peaks and valleys of inhalation and exhalation, as well as 
respiration rates. In the red box in the figure above, firstly, the 
respiratory peaks and trills of EMD-EDR and EEMD-EDR are 
inconsistent with the original respiratory signals, and the 
respiratory waveforms of the whole minute are incomplete, 
resulting in poor respiratory extraction effect. Second, although 
CEEMD-EDR retains part of the characteristics of the 
respiratory cycle, the overall waveform is too smooth, and the 
detailed information between the crest and the trough is covered, 
and the characteristic information of the respiratory rhythm 
cannot be highlighted. The respiration extracted based on the 
NCEEMD-EDR method is more morphologically like the 
original respiration. This means that the NCEEMD algorithm 
can retain the morphological characteristics of the original 
breathing signal more accurately when extracting EDR. The 
NCEEMD method significantly reduces noise residue by 
incorporating additional EEMD decomposition of white noise, 
which effectively separates signal and noise, reducing mode 
mixing. Compared to traditional techniques like low-pass 
filtering or wavelet transform, NCEEMD excels in handling 
non-stationary and nonlinear signals, preserving the physical 
significance of the signal more accurately. Our experimental 
results indicate that NCEEMD maintains high signal extraction 
accuracy even in noisy environments.(Q3: Can you elaborate on 
the advantages of the noise residue removal process in the 
NCEEMD method compared to other noise removal techniques? 
Specifically, how does this method compare with other recent 
noise removal techniques?) 

After the ECG derived respiratory EDR is obtained by 
different decomposition methods, Hilbert-Huang transform is 
applied to the original time-domain sequential signal in Fig. 9, 
and the obtained Hilbert spectrum represents the distribution and 
characteristics of the signal in time-frequency domain [9]. In the 
Hilbert spectrum, the main frequency variation is restricted to a 
narrow range of about 0 to 1.5Hz. By analysing the Hilbert 
spectrum, the characteristics and variation modes of the signal 

in the time-frequency domain can be obtained. It can help reveal 
features such as frequency components, frequency jumps, 
harmonics, nonlinear vibrations, and resonances in the signal. 

In Fig. 10, EMD-EDR has the sparsest Hilbert spectrum, 
meaning that the breathing related waveforms in the signal have 
fewer discrete frequency components in a specific frequency 
range. The frequency of the Hilbert spectrum of EEMD-EDR 
and CEEMD-EDR is within the range of 0 to 1.5Hz, but the 
signal amplitude remains constant throughout the period, there 
is no significant amplitude modulation, and the energy 
distribution in the frequency space is weaker. The Hilbert 
spectrum energy of NCEEMD-EDR has a good locality in both 
frequency domain and time domain, and the extracted EDR 
signal has a similar instantaneous frequency change to the 
original breathing signal, reflecting the local characteristics of 
important events and sudden activities of the signal. 

Compared with other algorithms, NCEEMD is more 
accurate and effective in extracting respiratory features from 
ECG signals. 

 

Fig. 9. Hilbert spectrum of raw respiratory signals by slp01a data. 

 
 

(a) Hilbert Spectrum of EMD-EDR (b) Hilbert Spectrum of EEMD-EDR 
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(c) Hilbert Spectrum of CEEMD-EDR (d) Hilbert Spectrum of NEEMD-EDR 

Fig. 10. Compare the Hilbert Spectrum of different EDR extraction methods.

The error comparison of all records is listed below in Table 
IV. In Table IV, taking the slp01a record in MBPD as an 
example, the EDR extracted by this method has the smallest 
error in MSE, RMSE, and MAE of the original breath, and 
compared with CEEMD method, the average MSE is reduced 
by 3.95%, the average RMSE is reduced by 2.74%, and the 

average MAE is reduced by 2.52%. In most cases, the EDR 
extracted by the NCEEMD method minimizes all kinds of errors 
with respect to the original respiration (see the bolded part in 
Table IV), and the NCEEMD-based EDR method has a higher 
accuracy. 

TABLE IV.  COMPARISON BETWEEN DIFFERENT EDR AND MEASURED RESPIRATION ERRORS FOR ALL RECORDS 

Record 
EMD EEMD CEEMD NCEEMD 

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE 

Slp01a 0.1674 0.4091 0.3696 0.1686 0.4106 0.3704 0.1682 0.4101 0.3704 0.1668 0.4084 0.3681 

Slp01b 0.2518 0.5018 0.4314 0.2521 0.5021 0.4315 0.2528 0.5027 0.4322 0.2431 0.4931 0.4313 

Slp02a 0.2206 0.4697 0.3898 0.2176 0.4665 0.3881 0.2178 0.4667 0.3877 0.2158 0.4645 0.3861 

slp02b 0.1946 0.4411 0.3821 0.1945 0.441 0.3816 0.194 0.4404 0.3816 0.1932 0.4395 0.3816 

Slp03 0.0604 0.2458 0.196 0.0616 0.2482 0.1991 0.061 0.2469 0.1971 0.06 0.2449 0.1948 

Slp04 0.0223 0.1493 0.1204 0.0313 0.1769 0.1412 0.0259 0.161 0.1314 0.024 0.1549 0.1143 

Slp14 0.0296 0.172 0.1451 0.0313 0.1769 0.1424 0.0285 0.169 0.1414 0.0266 0.1651 0.1321 

Slp16 0.0414 0.2035 0.1719 0.0468 0.2163 0.1766 0.0415 0.2038 0.1712 0.0406 0.2015 0.1697 

Slp32 0.098 0.313 0.2524 0.1063 0.326 0.2641 0.1021 0.3196 0.2577 0.1002 0.3112 0.2487 

Slp37 0.0322 0.1794 0.1697 0.0337 0.1836 0.1707 0.0321 0.179 0.1692 0.0281 0.1619 0.1696 

Slp45 0.0616 0.2482 0.218 0.0769 0.2773 0.2394 0.0707 0.2658 0.2315 0.0588 0.2425 0.2282 

Slp48 0.0899 0.2998 0.2587 0.092 0.3033 0.2617 0.091 0.3016 0.2608 0.0805 0.2837 0.2408 

Slp60 0.0313 0.1769 0.1478 0.0338 0.1838 0.1515 0.0335 0.1831 0.151 0.0304 0.1744 0.1369 

Slp61 0.0544 0.2332 0.1939 0.0551 0.2347 0.1946 0.0546 0.2336 0.194 0.0542 0.2328 0.1919 

Slp66 0.0176 0.1327 0.1114 0.0191 0.1382 0.1153 0.0183 0.1354 0.1134 0.0165 0.1285 0.1136 

Slp67x 0.0265 0.1628 0.1539 0.0278 0.1667 0.1513 0.0264 0.1624 0.1526 0.0249 0.154 0.1424 

Average Error 0.0875 0.2711 0.232 0.0905 0.2783 0.2362 0.0887 0.2738 0.234 0.0852 0.2663 0.2281 

TABLE V.  COMPARISON OF EEMD, CEEMD AND NEEMD INDICES RECORDED BY SLP01A 

Method Added noise amplitude：𝜶 Number of added noises：𝑵𝒆 Method computation time /𝒔 Orthogonality index [27] 

EEMD 0.2 100 21.01 0.21 

CEEMD 0.2 100（50×2） 40.23 0.26 

NCEEMD 0.2 100 25.14 0.01 
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The methods were run on a computer with a CPU model i7-
11800H, 16GB of memory, and an RTX3050Ti graphics card. 
In Table V, under the same noise amplitude coefficient and 
number of noises, the computation time of this method is 25.14s, 
which is 37.5% faster than the CEEMD method. The 
orthogonality index of this method is only 0.01, and its 
decomposition components have higher independence, which 
can effectively extract the independent features or components 
in the data, and the physical meaning of IMF components is 
more explicit. 

IV. DISCUSSION 

A. Significance Test of IMFs of White Noise 

"Significance test of IMFs of white noise" aims to determine 
if the IMFs extracted from a given signal exhibit characteristics 
that can be attributed to random white noise or if there is a 
significant departure from randomness [24]. The IMF 
significance test for white noise has several purposes: 

1) Verify the IMF extraction method: By resolving the IMF 

from white noise, it is possible to assess whether the chosen 

method can accurately decompose the signal into its inherent 

components. 

2) Assess the randomness of the IMF: White noise is a 

random signal of equal intensity across all frequencies. If the 

IMF of white noise is found to be statistically significant, it 

indicates that the extracted components have some 

characteristics that deviate from random behaviour. This could 

indicate a non-random pattern or underlying structure in the 

signal. If the significance test shows that the IMF of white noise 

is not statistically significant, this means that the extracted 

components are likely random and do not contain any 

meaningful patterns or structures. Despite the increased 

computational complexity of the proposed NCEEMD method 

compared to existing EEMD and CEEMD methods, 

optimizations such as parallel computing and efficient 

programming techniques can significantly reduce computation 

time. Our experiments indicate that while the complexity is 

higher, the NCEEMD method remains manageable in terms of 

computational resources and offers significant advantages in 

accuracy and robustness, which are crucial for practical 

applications.(Q1: The proposed NCEEMD method adds 

complexity compared to existing EEMD and CEEMD methods. 

How do you address the increased computational cost and 

practical applicability of this method?) 
The relationship between energy density and average period 

of Gaussian white noise. The horizontal coordinate is the natural 
logarithm of the mean period of IMFs, the curve is the natural 
logarithm of the mean energy of the significance line, and the 
red dot is the natural logarithm of the mean energy of all IMFs. 

As can be seen from the figure, the natural pair value of the 
average energy of all IMF (the midpoint in the Fig. 11) is near 
the natural logarithm of the average energy of the significance 
lines (95% and 99% confidence intervals), and the IMF is 
statistically significant, that is, it is not produced by pure 
randomness. This shows that IMFs derived from Gaussian white 

noise decomposition contain some non-random patterns or 
structures. The residual of auxiliary white noise added to the 
original signal affects the decomposition results and physical 
significance of different IMFs. Based on the above analysis, the 
same decomposition of Gaussian white noise and the 
elimination in the frequency band of the IMFs corresponding to 
the original signal can eliminate or reduce the influence of noise 
residue on the reconstructed EDR. 

 

Fig. 11. Significance test of IMFs of white noise. 

B. Cycle Comparison of NCEEMD-EDR and Original 

Respiration 

The time of breath detected in the EDR signal is compared 
with the time of the corresponding reference breath signal in Fig. 
12. The time window for determining the reference breath 
corresponding to the EDR is two seconds. Each breathing peak 
or trough is labelled to define the breathing beat. 

 
Fig. 12. Comparison of NCEEMD-EDR recorded by Slp03 with original 

respiration. 

Based on the NCEEMD-EDR method, the number of 
respirations was extracted and compared with the measured 
number of respirations in the database in Table VI. 
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TABLE VI.  CYCLE COMPARISON OF NCEEMD-EDR AND ORIGINAL RESPIRATION 

Record Age Gender This method respiration times/min Measured respiration times/min Errors/min 

Slp01a 44 M 13 12 1 

Slp01b 44 M 11 10 1 

Slp02a 38 M 20 21 -1 

slp02b 38 M 19 21 -2 

Slp03 51 M 17 16 1 

Slp04 40 M 9 10 -1 

Slp14 37 M 13 15 -2 

Slp16 35 M 22 21 1 

Slp32 54 M 7 7 0 

Slp37 39 M 18 18 0 

Slp45 42 M 12 12 0 

Slp48 56 M 13 11 2 

Slp60 49 M 13 13 0 

Slp61 32 M 17 18 -1 

Slp66 33 M 15 18 -3 

Slp67x / M 14 15 -1 

Average error  -0.3125 
 

As can be seen from Table VI, compared with the respiration 
cycle of NCEEMD-EDR and the original measured respiration, 
the error times were all less than two times/min, except for some 
data with large deviations. For patients with shortness of 
respiration (Slp16 record: 21 times/min) and slow respiration 
(Slp32 record: 7 times/min), the error times were 1 time/min and 
0 times/min, and the total average error was about ±0.31 
times/min. The EDR method based on NCEEMD had stronger 
robustness. 

The respiratory signals extracted based on the method in this 
paper can be used in respiratory-related research and clinical 
applications. The analysis of respiratory signals can reveal 
respiratory rhythm and variability, help evaluate respiratory 
function and abnormalities, and monitor the progress and 
treatment effects of respiratory diseases. The NCEEMD-EDR 
method was applied to the extraction of ECG-derived breathing 
signals, and the accuracy and reliability of the method were 
evaluated by comparing the error accuracy and breathing period 
with the real breathing signals. The effectiveness of this method 
for measuring respiratory cycles has been proven and does not 
hinder its use in patient populations. In addition, it is an easy 
method to implement. The method proposed in this paper is 
feasible and effective in extracting respiratory rate and detecting 
respiratory activity during sleep, but the limitation is that this 
method cannot distinguish between obstructive apnea and 
central apnea, and can only provide reference guidance such as 
AHI index. A significant decrease in EDR signalling during 
apnea events is a sensitive feature for identifying obstructive 
apnea [18, 21]. The use of EDR technology to distinguish 
obstructive apnea from central apnea needs further research in 
the future. 

The NCEEMD method offers several advantages in practical 
medical applications, including non-contact monitoring, which 
enhances patient comfort and compliance, and its robustness in 
detecting respiratory abnormalities such as sleep apnea. 
However, the method's higher computational complexity 

requires high-performance computing resources, potentially 
increasing costs. Implementing this method in hospital or home 
settings requires consideration of real-time data processing 
capabilities and system portability. Additionally, training 
medical personnel is essential to ensure accurate usage and 

interpretation of results. （ Q4: What are the benefits and 

limitations of applying the proposed method in real-world 
medical environments? For instance, what additional 
considerations are needed when implementing this method in 
hospitals or homes?) 

V. CONCLUSION 

We compared four different methods to calculate EDR and 
found that they lead to different results. In this paper, a new 
complementary empirical ensemble mode decomposition 
respiration extraction method for deriving respiration signals 
from ECG signals is proposed, which does not require 
preprocessing of ECG data to obtain good EDR signals. As 
analyzed by experimental comparison, the NCEEMD 
decomposition yields more detail scales than the EMD 
decomposition and less residual noise in the IMF component 
than the EEMD and CEEMD decompositions. The NCEEMD-
based breath extraction method proposed in this paper reduces 
the average MSE by 3.95%, the average RMSE by 2.74%, and 
the average MAE by 2.52%, while the computational time 
consumed is reduced by 37.5%, and the orthogonality of the 
obtained IMF decomposition components is better when 
compared with the CEEMD method. The EDR signal obtained 
by this method has a high similarity to the respiratory signal 
synchronously recorded by commercial instruments, which can 
be used for different applications such as sleep apnea detection 
and home-based respiratory monitoring. 

Currently, our research is primarily based on the MIT-BIH 
database. However, we acknowledge the necessity of validating 
the method across various datasets to ensure its broad 
applicability and generalization. Future work will include 
testing the NCEEMD method on different physiological signal 
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datasets to further evaluate its performance under diverse 
conditions. In the initial phase of our research, we focused 
primarily on comparing the NCEEMD method with the most 
commonly used EEMD and CEEMD methods to validate its 
effectiveness. However, we plan to extend the scope of 
comparisons to include other recent respiration signal extraction 
methods, such as those based on machine learning and deep 
learning techniques, in future studies. This will help establish the 
relative superiority of the NCEEMD method in various 
scenarios and applications. (Q2: Have you validated the 
performance of the proposed method on datasets other than the 
MIT-BIH database? If not, do you think it is necessary to 
validate it across a variety of datasets? Q5: Why did you not 
include additional performance comparisons with other recent 
respiration signal extraction methods? Do you have any plans to 
provide more comparisons to better establish the relative 
superiority of the proposed method?) 
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