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Abstract—Sleep apnea is a prevalent sleep problem marked by 

interruptions in breathing or superficial breaths while asleep. This 

frequently results in disrupted sleep patterns and can pose 

significant health risks such as cardiovascular issues and daytime 

exhaustion Rapid Eye Movement (REM) sleep stage is easily 

identifiable due to rapid eye movements, intense dreaming, and 

muscle immobility. This stage is vital for cognitive processes, the 

strengthening of memories, and the regulation of emotions. 

Detection of REM sleep is essential for understanding sleep 

architecture and diagnosing various sleep disorders. This paper 

proposes two machine learning models to detect these disorders 

from physiological signals. The study employs the Apnea-ECG 

dataset from PhysioNet for sleep apnea detection and the Sleep-

EDF dataset for REM detection. For sleep apnea, a ResNet-50 

deep learning model is adapted to process ECG signals, treating 

them as image-like representations. ResNet-50 is trained on the 

Apnea-ECG dataset, which provides annotated electrocardiogram 

recordings for supervised learning. For REM detection, Gradient 

Boosting, an ensemble machine learning technique, is applied to 

EEG signals from the Sleep-EDF dataset. Relevant features 

associated with REM sleep phases are extracted from EEG signals 

and used to train the model. This paper contributes to automated 

sleep disorder diagnosis by presenting tailored machine learning 

models for detecting sleep apnea and REM from physiological 

signals. 
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I. INTRODUCTION 

Sleep disorders, can alternatively be referred to as sleep-
wake disorders, encompass a range of issues related to sleep’s 
timing, quality, and duration resulting in daytime impaired 
functioning and distress. Disorders like these often coincide with 
medical conditions or various mental health or medical 
conditions issues like anxiety, depression or cognitive disorders. 
They encompass various types, with insomnia being the most 
frequent, along with parasomnias, obstructive sleep apnea, 
restless leg syndrome, and narcolepsy. 

Challenges with sleep impact both physical and emotional 
well-being, exacerbating existing mental health conditions and 
potentially indicating other mental health disorders. Insomnia is 
prevalent, affecting about a third of adults, with 6-10 percent 
crossing the scale for insomnia disorder. Sleep is essential for 
overall health, occurring in cycles throughout the night with 
REM sleep, related with dreaming, and Non-REM sleep, 
including deeper stages. The sleep timing is regulated by a 24-
hour circadian rhythm. 

Sleep needs vary by age and individual, with 
recommendations suggesting seven to nine hours of sleep per 
night for most adults. However, a significant portion of the 
population falls short of these guidelines, with many adults 
sleeping lower than six hours per night and only a minority of 
high school students achieving adequate sleep. Many Americans 
rate their sleep quality as poor, and millions struggle with 
chronic sleep disorders. 

Sleep apnea is a problem which creates interruptions in 
breathing during sleep, categorized into Central Sleep Apnea 
(CSA) and Obstructive Sleep apnea (OSA). Symptoms include 
loud snoring, abrupt awakenings, and daytime sleepiness, 
potentially leading to serious health issues if untreated. 
Diagnosis involves sleep studies, and treatments range from 
lifestyle adjustments to surgical interventions for severe cases. 

REM sleep is a distinct phase marked by increased brain 
activity, vivid dreaming, and rapid eye movement. It is essential 
for emotional regulation, learning, and memory consolidation, 
with disruptions affecting cognitive function and emotional 
well-being. Monitoring REM patterns is crucial for 
understanding sleep disorders and overall sleep health. 

While sleep apnea and REM sleep are interconnected aspects 
of sleep physiology, they represent distinct phenomena. Sleep 
apnea involves breathing interruptions during sleep, disrupting 
the sleep cycle, while REM sleep is a specific stage crucial for 
cognitive and emotional processes. 

With respect to REM sleep, individuals with sleep apnea 
often experience disruptions in this specific sleep stage. During 
REM sleep, the muscles become temporarily paralyzed (atonia) 
to prevent the acting out of dreams. In individuals with sleep 
apnea, the relaxation of throat muscles and partial or complete 
airway obstruction can lead to brief awakenings to resume 
normal breathing. These interruptions can fragment REM sleep, 
affecting the overall sleep architecture and potentially 
contributing to daytime sleepiness and other symptoms 
associated with sleep apnea. Monitoring REM patterns in sleep 
studies is essential for understanding the impact of sleep apnea 
on different sleep stages. 

II. BACKGROUND 

Sleep apnea is a common sleep condition which entails 
constant interruptions in breathing throughout sleep, varying 
from partial to full obstructions of the airway. Central sleep 
apnea (brain signaling issue), obstructive sleep apnea (muscle-
related), and complex sleep apnea syndrome are main types in 
sleep apnea. Factors that increase the likelihood of risk 
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encompass age, sex, obesity, and familial medical background. 
Symptoms encompass snoring, daytime sleepiness, and 
concentration difficulties. Left untreated, sleep apnea poses risks 
like cardiovascular disease. Treatment options range from 
lifestyle changes to medical interventions, emphasizing the 
importance of professional diagnosis and intervention. Sleep 
apnea and rapid eye movement (REM) are critical aspects of 
sleep monitoring, impacting over-all health and well-being. 
Sleep apnea is identified by interruptions in breathing or 
superficial breaths while asleep, resulting in disturbances to 
typical sleep rhythms. REM sleep is a phase where vivid 
dreaming occurs and is crucial for cognitive function and 
emotional wellbeing. 

Conventional approaches to identifying sleep disorders 
typically depend on physiological indicators like 
electromyogram (EMG), electroencephalogram (EEG) and 
electrooculogram (EOG). These signals provide valuable 
information, but the complex interactions between different 
physiological factors can be challenging to capture effectively. 

Sleep Apnea and Rapid Eye Movement (REM) are linked 
because episodes of sleep apnea can happen both during REM 
sleep and other sleep phases. In the course of REM sleep phase, 
the body enters a phase where muscles experience a natural state 
of paralysis or atonia, believed to prevent individuals from 
physically acting out their dreams. This muscle relaxation 
during REM sleep can contribute to the occurrence of sleep 
apnea episodes. The muscles in the throat may become overly 
relaxed, leading to an increased likelihood of airway 
obstruction. 

III. LITERATURE REVIEW 

In their study, Soler A. et al. [1] aimed to automatically 
Identify when rapid eye movements (REM) commence within 
REM sleep from EEG data by utilizing EEG signals, 
electrooculogram (EOG), and sub-mental electromyograms 
(EMG) collected from eight participants. The researchers 
introduced an algorithm focused on three key EOG parameters 
associated with REM: amplitude, duration, and slope. They 
utilized a process of resampling the data to 80Hz, followed by 
employing a double derivative method to detect peaks within the 
data. In their research, Seongju Lee et al. [2] introduced a sleep 
scoring approach utilizing EEG signals. Their model endeavors 
to categorize successive single-channel EEG segments into 
different sleep stages, paying special attention to classifying the 
EEG segment marked as the target, denoted as the L-th input 
EEG segment. Díaz, C. H et al. [3] in their paper proposed a 
system which detects Rapid Eye Movement using Support 
Vector Machine using EOG signals which were recorded by 
placing electrodes placed at the right and left canthus. The 
recorded signals were first marked by an expert who marked 
which candidate corresponds to REM (Rapid eye movement) 
and then using SVM the signals were classified whether they 
correspond to REM or not. The results obtained from SVM were 
later compared to results marked by the expert. In their study, 
Bahrami, M et al. [4] conduct a thorough examination of neural 
network-based learning and computational learning algorithms 
applied to the PhysioNet ECG Sleep Apnea dataset. They begin 
by preprocessing and segmenting electrocardiogram (ECG) 
signals. Then, they employ a variety of conventional machine 

learning as well as deep learning architectures for detecting 
sleep apnea. The dataset is divided into training, validation, and 
testing subsets to refine model parameters, hyperparameters, and 
evaluate model effectiveness. Through 5-fold cross-validation, 
the research reveals that hybrid deep learning models exhibit the 
most effective detection performance, achieving notable 
accuracy, sensitivity, and specificity. In their paper, Bernardini, 
A et al. [5] examine the significance of polysomnography (PSG) 
in diagnosing Obstructive Sleep Apnea Syndrome (OSAS), 
especially in individuals who have experienced a stroke. 
Traditionally, physicians manually identify OSAS episodes in 
PSG recordings, which is crucial due to the link between OSAS 
and increased mortality and neurological deficits in stroke 
patients. However, the limited availability of polysomnographs 
and healthcare professionals creates challenges in diagnosing 
OSAS, particularly in stroke patients. This research concentrates 
on data collected from 30 stroke patients treated at Udine 
University Hospital in Italy, with few exclusion criteria applied. 
The dataset comprises overnight vital signs from ECG, 
photoplethysmography, and PSG, along with expert annotations 
for OSAS. Despite the presence of noise and concurrent medical 
conditions within the data, the study endeavors to aid the 
creation of automated techniques for detecting Obstructive 
Sleep Apnea Syndrome (OSAS) using regularly monitored vital 
signs, applicable for practical use in real-world scenarios. Yoo, 
Y. et al. [6] in their paper presented an unsupervised method 
utilizing 61 GHz FMCW radar to detect three sleep stages which 
are wake sleep stage, REM sleep stage, and non-REM sleep 
stage by extracting characteristic breathing and movement 
information. Experimental results using clinical data show a 
68% average similarity to polysomnography (PSG)-observed 
sleep stages, indicating the potential of Frequency Modulated 
Continuous Wave (FMCW) radar as a substitute for 
polysomnography (PSG) for sleep-stage detection. In their 
research. Gulyani, Majumdar, et al. [7] offer a comprehensive 
review concentrating on rapid eye movement (REM) sleep and 
the importance of investigating its deprivation. They delve into 
the historical context of REM sleep research along with its 
physiological attributes. The review underscores the importance 
of studies involving REM sleep deprivation in comprehending 
its functional importance and emphasizes the necessity for 
additional research in this domain. Yetton et al. [8] introduce a 
novel machine-learning strategy aimed at automatically 
identifying rapid eye movements (REMs). Their method, 
designed to enhance REM detection in sleep research, presents 
promising prospects for refining REM identification processes 
using advanced computational techniques. Hong et al. [9] 
investigate the importance of quick and vivid eye movements 
during sleep as a distinct marker of consciousness. They posit 
that REM sleep presents a special avenue for scrutinizing 
consciousness, providing valuable insights into its neural 
mechanisms and operations. The study elaborates on how 
delving into REM sleep can enhance comprehension of 
consciousness and associated phenomena. Vallat et al. [10] 
present a publicly available tool for automated sleep staging, 
created to effectively analyze sleep EEG data. The tool is 
intended to deliver superior performance and precision in 
categorizing sleep stages, thereby aiding both research and 
clinical endeavors. It serves as a beneficial asset for individuals 
in the scientific and medical communities who require 
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dependable approaches for automated sleep staging. Abbasi et 
al. (2021) [11] present a comprehensive review of obstructive 
sleep apnea (OSA), covering its epidemiology, 
pathophysiology, clinical manifestations, diagnosis, and 
treatment options. The paper provides an overview of the current 
under-standing of OSA, highlighting its prevalence, risk factors, 
and associated health consequences. It serves as a valuable 
resource for healthcare professionals and researchers interested 
in OSA management and advancements in the field. Osman et 
al. [12] provide contemporary viewpoints on obstructive sleep 
apnea (OSA), covering its prevalence, underlying mechanisms, 
symptoms, diagnostic approaches, and treatment options. The 
article offers perspectives on recent progress in OSA research 
and therapeutic interventions, acknowledging the complex 
nature of the condition. It stands as a valuable asset for 
healthcare practitioners and researchers aiming to gain a 
thorough grasp of OSA. Hirani et al. (2023) [13] conduct a 
scoping review to assess the current status of knowledge 
regarding sleep apnea. They explore various aspects of the 
disorder, including its prevalence, risk factors, diagnostic 
methods, treatment options, and associated comorbidities. The 
review provides an overview of the existing literature on sleep 
apnea, highlighting areas of consensus, gaps in knowledge, and 
avenues for future research. Levy et al. [14] introduce a study 
utilizing deep learning methods to diagnose obstructive sleep 
apnea (OSA) by analyzing single-channel oximetry data. Their 
investigation centers on harnessing sophisticated computational 
techniques to create a precise and effective diagnostic solution 
for OSA. The study showcases the promise of employing deep 
learning methodologies to enhance the detection and treatment 
of disorders in sleep, notably OSA, using oximetry data. 
Djonlagic et al. [15] examine how OSA specifically associated 
to REM sleep influences motor memory consolidation and 
emotional well-being. Their investigation seeks to determine if 
REM-related OSA impacts the consolidation of motor memories 
differently compared to emotional health. By delving into these 
areas, they aim to clarify the importance of REM-related OSA 
in both behavioral and mental functioning when you sleep. Chen 
et al. [16] presented a model with the help of single-lead ECG 
signals, on spatio-temporal learning for identifying sleep apnea. 
Their study concentrates on employing sophisticated 
computational methods to devise a reliable technique for 
recognizing sleep apnea occurrences. The research adds to the 
field by presenting an innovative method that utilizes spatio-
temporal patterns in ECG signals to achieve precise sleep apnea 
detection, potentially enhancing diagnostic accuracy. 
Mukherjee et al. [17] carry out an experimental investigation 
centered on employing various deep learning models to identify 
and detect the apneas. Their study evaluates the efficacy of 
integrating various deep learning techniques to enhance the 
precision of sleep apnea detection. The research adds value to 
the field by showcasing the capability of ensemble methods in 
boosting the effectiveness of automated sleep apnea detection 
systems, offering significant insights for both future research 
endeavors and clinical implementations. Chang et al. [18] design 
a detection system for sleep apnea employing a single-lead ECG 
with a one-dimensional deep neural network model (CNN) 
architecture. Their study endeavors to devise an efficient 
technique for recognizing sleep apnea occurrences utilizing 
ECG data. The research adds to the field by offering a fresh 

approach that harnesses automation of apnea detection using 
deep learning techniques, utilizing readily available ECG 
signals. Gabryelska et al. [19] investigated the relationship 
between REM phenotype, excessive daytime sleepiness (EDS), 
and the severity of obstructive sleep apnea (OSA). Their 
investigation investigates whether there exists a link be-tween 
the severity of OSA and the occurrence of EDS, with a particular 
focus on analyzing the REM phenotype as a potential 
influencing factor. The study aims to clarify the interaction 
among these variables, offering understanding into the clinical 
consequences of REM-related sleep disruptions in OSA 
patients. 

IV. PROPOSED SYSTEM 

The proposed system aims to detect sleep apnea and REM 
(Rapid Eye Movement) sleep using machine learning models 
trained on physiological signals. Two separate models will be 
developed: one for detecting sleep apnea from ECG signals and 
another for detecting REM from EEG signals. 

For detecting Sleep Apnea ResNet-50 algorithm is used 
which is a deep learning model. The dataset used is Apnea-ECG 
dataset from physionet. The dataset comprising of ECG 
recordings collected for 7-10 hours. The R-R interval from ECG 
recordings is extracted and saved as images. From this R-R 
interval heart rate is calculated and the plots are saved as images. 
To this image data ResNet-50 algorithm is employed and the 
data is classified into two categories: sleep apnea, non-sleep 
apnea and the result is displayed in terms of accuracy. 

For detecting REM (Rapid Eye Movement) Gradient Boost 
is used which is a ma-chine learning algorithm. The dataset used 
is Sleep-EDF dataset from physionet. The dataset comprises of 
polysomnographic data which includes EMG, EEG and EOG 
signals. EEG (electroencephalogram) Fpz-Cz is extracted from 
the data and stored in npz file format. These recordings are 8 to 
10 hours long which are later divided into 30 seconds interval. 
The data is stored in array format in npz file from which da-
ta(frequency) and label (sleep stage) is given as input for 
Gradient boost algorithm. Data is split into 70 percent training 
data and 30 percent testing data. The data is classified into two 
categories: REM and Non-REM sleep stage. The metrics used is 
displayed in terms of accuracy. Fig. 1 shows different phases 
and modules of the proposed system explained above. 

A. Modules 

1) Data acquisition and pre-processing: To change the 

default, adjust the template as follows. 

a) Sleep apnea: The Apnea-ECG dataset, sourced from 

PhysioNet, is utilized for sleep apnea detec-tion, focusing on 

ECG signals. It includes 70 entries divided into a training set of 

35 records namely (a01 to a20, b01to b05, and c01 to c10) and 

a test set of 35 records (x01 to x35). Each record includes 

continuous digitized ECG signals, human-expert-generated 

apnea annotations based on simultaneous respiration signals, 

and QRS annotations generated by machine. Eight recordings 

(file of a01 to a04, b01, and c01 to c03) also feature additional 

signals such as respiratory effort (Resp C and Resp A), oral-

nasal airflow (Resp N), and oxygen level (SpO2). Multiple files 

are associ-ated with each recording, with specific data formats 
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detailed in corresponding .hea text header files. Binary 

annotation files (.apn) indicate the occurrence or ab-sence of 

apnea per minute in the training set recordings., while machine-

generated QRS annotation files (.qrs) offer convenience for 

those not using their own QRS detectors. The dataset 

encompasses three subjects (a, b, c) and includes ECG signals 

classified into severe sleep apnea (Class A), moderate sleep 

apnea (Class B), and normal sleep (Class C). The model 

initially plots ECG signals and stores results in pkl file format, 

subsequently extracting heart rates from the recordings. Fig. 2, 

3, and 4 depict plots of ECG signals from patients in Class A, 

B, and C, respectively. 

 

Fig. 1. System diagram. 

 

Fig. 2. Class A patient ECG signal plot. 

 
Fig. 3. Class B patient ECG signal plot. 

 

Fig. 4. Class C patient ECG signal plot. 

ECG signals will have three waveforms which is P, QRS 
complex and T waves. The P waveform is depolarization of atria 
which is contraction of myocardial muscle. The QRS complex 
is depolarization of ventricles. The Q wave succeeds the P wave 
and begins with a slight downward deviation. The R wave 
follows Q wave and it is a sharp peak in the wave which is then 
followed by S wave which is small deflection downwards. If the 
QRS complex is 80-120ms then the heart is functioning 
properly. The t wave is repolarization of ventricles. The model 
will calculate heart rate from R-R interval. R-R interval is time 
lapse between two R waves. By dividing R-R interval from 60 
it will get heart rate. 

From the pkl files which were created the model will be 
extracting r-r interval and calculate the heart rate from it. It will 
extract the heart rate signal images and store them in a folder. 
Biosppy library in python is used to extract R-R inter-vals from 
ECG signal recordings. The biosppy library is a toolbox used for 
bio signal processing in python. The model will calculate heart 
rate by dividing r-r interval from 60. The heart rate is stored in 
mage format. Fig. 5, 6 and 7 shows heart rate plots of different 
patients belonging to A, B and C classes respectively where 
heart rate is in beats per second (BPS) and time is in seconds. 
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Fig. 5. Class A patient heart rate plot. 

 
Fig. 6. Class B patient heart rate plot. 

 

Fig. 7. Class C patient heart rate plot. 

b) Rapid eye movement: The Sleep-EDF dataset sourced 

from PhysioNet includes 197 full-night polysomnographic 

sleep recordings, including event markers, EEG, chin EMG, 

and EOG. Data on body temperature and respiration are also 

included in certain record-ings. Trained technicians manually 

scored hypnograms corresponding to these re-cordings, 

detailing sleep patterns based on the Rechtschaffen and Kales 

manual. These annotated hypnograms are available within the 

database. From the Sleep-EDF data, the model extracts EEG 

Fpz-Cz signals and stores them in array format in npz files. A 

total of 39 recordings, each lasting 8 to 10 hours, are extracted. 

This data is then segmented into 30-second intervals, and the 

frequency and labels, stored in array format, are extracted and 

utilized as input data. This input data is divided into testing and 

training sets in a 30:70 ratio. Fig. 8 shows plots of EOG, EMG, 

and EEG signals from the data of Sleep-EDF procured from 

PhysioNet. 

 

Fig. 8. EEG, EOG and EMG signals. 

2) Implementation: 

a) ResNet-50 for sleep apnea detection: The model will 

utilize the ResNet-50 architecture for sleep apnea detection, 

employing transfer learning. Transfer learning involves 

repurposing a model trained on one task (the source task) for 

another related task (the target task). Usually, this involves 

adjusting the pre-existing model using a smaller set of data 

tailored to the particular task at hand. This approach leverages 

the insights acquired from the original task to improve 

performance on the new task, particularly in situations where 

there is limited labeled data available for training. The model 

will be using pre-trained ResNet-50 model. ResNet-50 

algorithm is employed to detect sleep apnea from heart rate 

images. ResNet-50 operates by incorporating residual 

connections into the architecture, which serves to maintain 

continuous information flow and mitigate gradient vanishing 

issues. The residual connection, functioning as a shortcut, 

allows information to bypass one or more layers, reaching the 

output directly. By learning residual functions, the network can 

efficiently make incremental parameter updates, facilitating 

faster convergence and enhanced performance. This approach 

is grounded in the concept that learning the residual function, 
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which maps inputs to desired outputs, is more straightforward 

than mastering the intricate mapping between inputs and 

outputs. ResNet-50 is organized as a series of residual blocks, 

each comprising layers of convolution, activation using ReLU, 

batch normalization, and incorporating skip connections. 

ResNet-50 model is built on following layers to detect Sleep 

Apnea. Let 𝑥_𝑖 be the input to the model where ⅈ indexes the 

elements in the input vector (features). The ResNet-50 model 

generates an output labeled as 𝑥, which undergoes processing 

through a Global Average Pooling layer, denoted as 𝐺𝐴𝑃(𝑥). 

The result of this pooling layer is a fixed-length vector, termed 

as g. The subsequent layers consist of fully connected (dense) 

layers followed by dropout layers: 

ℎ_𝑖 =  𝜎(𝑤_𝑖. 𝑔 + 𝑏_𝑖 )      (1) 

where, 𝑤_𝑖  represents the weight matrix, denotes the bias 
vector, σ stands for the activation function which is ReLu for 
ResNet-50 and g is output of previous layer. 

First fully connected layer: ℎ_1 =  𝜎(𝑤_1. 𝑔 + 𝑏_1)  

First Dropout layer: ℎ_2 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(ℎ_1) where ℎ_2 is the 
output after applying dropout to ℎ_1  

Second fully connected layer: ℎ_3 =  𝜎(𝑤_2. ℎ_2 + 𝑏_2) 

Second Dropout layer: ℎ_4 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(ℎ_3) 

Third fully connected layer: ℎ_5 =  𝜎(𝑤_3. ℎ_4 + 𝑏_3) 

Third Dropout layer: ℎ_6 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(ℎ_5) 

Fourth fully connected layer: ℎ_7 =  𝜎(𝑤_4. ℎ_6 + 𝑏_4) 

Fourth Dropout layer: ℎ_8 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(ℎ_7) 

Output layer (softmax): 𝑦 ̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤_5. ℎ_8 + 𝑏_5) , 
where 𝑦 ̂ is the predicted output vector. 

The softmax function calculates the probability distribution 
across the output classes. The ReLU activation function brings 
non-linearity to neural networks, enabling them to capture 
intricate patterns within the data. It is a commonly employed 
component in deep learning models because of its 
straightforwardness and efficacy in mitigating the vanishing 
gradient issue during training. 

𝑓(𝑥) = (0, 𝑥)   (2) 

The sparse categorical cross entropy loss function is used to 
compute loss. Rather than using one-hot encoded vectors, this 
function is frequently employed in classification problems when 
the target labels are integers. It is suitable when the classes are 
mutually exclusive (each sample belongs to exactly one class). 

b) Gradient boost for REM detection: For REM 

detection, Gradient Boosting is utilized to identify the sleep 

stage. Gradi-ent Boosting functions through iterative steps: it 

starts with a simple base model, typically a decision tree or a 

constant prediction, and sequentially fits fresh models to the 

prior models' residuals. A fresh weak learner is taught to reduce 

the mistakes produced by the collection of models that have 

already been built in each epoch. Residuals, indicating the 

differences between the actual and predicted values, are 

computed and utilized as the target for subsequent models. The 

predic-tions of each new model are integrated with those of the 

previous ones, gradually refining the ensemble's  predictions. 

Techniques like regularization, includ-ing shrinkage and tree 

constraints, are applied to prevent overfitting and improve 

generalization. Through this iterative process, Gradient 

Boosting maximizes a given loss function, such cross-entropy 

in classification or mean squared error in regres-sion., 

ultimately generating a robust predictive model capable of 

accurately capturing intricate patterns in the data. 

3) Model evaluation and final result: After the models are 

built and they are trained with the training data created in the 

data pre-processing module. The performance of the models is 

checked using accuracy as the performance metrics. The 

hyperparameters of models are refined based on the accuracy 

achieved. The best accuracy is considered as the final result.  

Accuracy is a commonly used measure in machine learning 
to evaluate how well a classification machine learning or deep 
learning model performs. It quantifies the ratio of accurately 
classified instances to the total instances. 

Mathematically, it is calculated as: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑜 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
∗ 100    (3) 

The count of correct predictions refers to instances where the 
model's prediction aligns with the actual target label. The total 
number of predictions denotes the overall count of instances 
present in the dataset. 

V. EXPERIMENTAL SETUP 

The proposed system is deployed on a DELL laptop of 
Inspiron 5490 model equipped with an Intel(R) Core (TM) i5-
10210U processor. The CPU boasts a base clock speed of 
1.60GHz, indicating its capability to execute tasks at a consistent 
rate. Furthermore, it features a maximum clock speed of 
2.11GHz, which suggests enhanced performance potential, 
particularly during more demanding computational tasks. The 
device is efficient enough and has the ability to handle more 
intensive workloads, making it suitable for running the 
computational models for sleep apnea and REM detection 
effectively. 

The proposed system was developed and executed using 
Google Colaboratory, a no-cost, cloud-based platform created 
by Google. It offers a collaborative environment based on 
Jupyter notebooks for coding in Python. Google Colaboratory 
pro-vides access to GPUs and TPUs for performing high-
performance computing tasks and train machine learning 
models efficiently. Integrated with Google Drive, Colab allows 
seamless saving and sharing of notebooks and for storage of 
extracted data. Google Colaboratory is pre-installed with 
popular libraries like TensorFlow and NumPy. It supports data 
analysis and machine learning workflows. Further-more, Colab 
offers access to various Google services such as Cloud Storage 
and BigQuery, enhancing its versatility and integration 
capabilities for a wide range of projects and applications. 

A. Dataset Size 

For sleep apnea the heart rate images are extracted from 
ECG signals. The R-R intervals of ECG signals which are 
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recorded for 7 to 10 hours have been divided in 60 seconds 
intervals to calculate heart rate. These heart rate images are 
stored as training, validation and testing data. Fig. 9, 10 and 11 
shows the training data, validation data and testing data sizes 
respectively which are used to train and test the model 
developed. 

20099 images from both classes belong to training data. 

 
Fig. 9. Training data size for sleep apnea. 

The validation data consists of 6741 images in both classes. 

 
Fig. 10. Validation data for sleep apnea. 

Testing data consists of 6291 images in both classes. 

 
Fig. 11. Testing data for sleep apnea. 

For REM the dataset size consists of X and Y. X consists of 
data and Y consists of labels which is shown in Fig. 12. 

 
Fig. 12. Dataset size for REM detection. 

VI. RESULT AND DISCUSSION 

ResNet-50 and Gradient boost algorithms were used to 
detect sleep apnea and REM (Rapid eye Movement) 
respectively. Accuracy is the metric employed to assess and 
contrast the outcomes of the proposed model with those of other 
models. ResNet-50 model classified heart rate images and 

detected the presence of sleep apnea. The model demonstrated 
validation accuracy of 90.21 and test accuracy of 90.001. 

To visualize the performance of the model, few graphs were 
plotted. 

Fig. 13 shows loss curve which depicts the change in the loss 
function's value over time (epochs or iterations) during the 
training of a machine learning model. The loss function 
evaluates the difference in variability between the predicted 
values and the actual target values, acting as an indicator of the 
model's effectiveness. Training loss and validation loss of each 
epoch is plotted using line graph. 

 

Fig. 13. Loss curve. 

Fig. 14 shows accuracy curve. The testing and validation 
accuracy of each epoch is plotted using a line graph. 

 

Fig. 14. Accuracy curve. 

Fig. 15 and Fig. 16 shows the bar graph plot of duration in 
minutes where each patient doesn’t experience Sleep Apnea and 
duration in minutes where each patient experiences Sleep 
Apnea. 
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Fig. 15. Non-Apnea duration for each patient. 

 
Fig. 16. Apnea duration for each patient. 

Fig. 17 shows overall duration in minutes from all the 
recording of patients where sleep apnea was detected and 
duration in minutes when sleep apnea is not present in the 
recordings. This plot shows the sum of duration in minutes of 
sleep apnea and duration when patients didn’t experience sleep 
apnea from each ECG signal recording. 

Feature correlation for each feature in the dataset has been 
calculated to find out which features are more important. Fig. 18 
shows a bar graph where each feature of the data along with its 
importance according to the feature correlation calculated is 
plotted. 

Table I gives an insight into other machine learning and deep 
learning models and the accuracies of each model compared 
with the ResNet-50 model. The accuracies have been referred 
from Bahrami, M et al. [4]. 

 
Fig. 17. Total Apnea and non-Apnea duration. 

TABLE I.  COMPARING THE ACCURACY PERFORMANCE OF THE RESNET-
50 MODEL WITH THAT OF OTHER MODELS. THE MODEL ACCURACIES HAVE 

BEEN REFERRED FROM [4] 

Model Accuracy (%) 

ResNet-50 90.001 

LSTM (Long Short-term memory) 82.52 

BiLSTM 82.45 

GRU (Gated Recurrent Unit) 82.93 

ZFNet 87.36 

AlexNet 87.09 

VGG16 87.26 

VGG19 86.75 

VGG16-LSTM 88.02 

VGG16- GRU 87.78 

VGG16- BiLSTM 88.01 

VGG19- LSTM 87.06 

VGG19- GRU 86.62 

VGG19- BiLSTM 86.92 

AlexNet- LSTM 87.32 

AlexNet- GRU 87.11 

AlexNet- BiLSTM 87.43 

ZFNet- LSTM 87.84 

ZFNet- GRU 87.43 

ZFNet- BiLSTM 88.13 

LDA (Linear Discriminant Analysis) 76.77 

QDA (Quantitative Descriptive Analysis) 75.54 

LR (Logistic Regression) 76.91 

GNB (Gaussian Naïve Bayes) 75.96 

GP (Gaussian Process) 77.26 

SVM (Support Vector Machine) 78.44 

KNN (K-nearest neighbours) 77.85 

DT (Decision Tree) 74.47 

RF (Random Forest) 77.79 

ET (Extra Tree) 78.33 

AB (AdaBoost) 77.09 

GB (Gradient Boosting) 77.52 

MLP (Multi-Layer perceptron) 78.52 

MV (Majority Vote) 79.39 
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Fig. 18. Feature importance plot (max_r_5min, max_hr_1min, min_hr_5min 

etc.). 

For REM the model used Gradient Boosting algorithm. The 
gradient boost algorithm has classified the sleep dataset into two 
stages: Non-REM and REM. The metrics used to validate the 
model is accuracy. The model has demonstrated an accuracy of 
81.65% and precision of 50.77%, area under ROC curve is 
54.39% recall score is 1.0. 

The Receiver Operating Characteristic (ROC) curve visually 
represents the diagnostic effectiveness of a binary classifier 
system as it adjusts its discrimination threshold. 

To visualize the model performance, ROC curve has been 
shown in Fig. 19. 

 

Fig. 19. ROC curve for REM detection using Gradient Boost. 

The SHAP (SHapley Additive exPlanations) plot is a visual 
tool utilized for interpreting the results of machine learning 
models, particularly those with intricate decision making 
mechanisms such as tree-based models or deep neural networks. 
SHAP plots aid in comprehending the significance and impact 
of various features in the prediction process. SHAP values were 
plotted for all instances of the dataset. Fig. 20 shows shap plot 
where each feature of the data is plotted against its calculated 
SHAP value. 

To visualize precision and recall scores, precision-recall 
curve was plotted. Fig. 21 shows precision score on y-axis and 
recalls core on x-axis. 

 
Fig. 20. SHAP plot for REM. 

 

Fig. 21. Precision-recall curve REM. 

VII. CONCLUSION AND FUTURE WORK 

In conclusion, this paper aimed at developing a 
comprehensive system to detect Sleep Apnea and Rapid Eye 
Movement (REM) using a multi model approach using ECG 
signals dataset from Apnea-ECG dataset from physionet and 
EEG signals data from Sleep-EDF data from physionet. 

This provides a complete sleep analysis as the system is 
detecting sleep stage which is REM and sleep disorder Sleep 
apnea. For sleep apnea detection heart rate was extracted from 
ECG signals and ResNet-50 model was employed to detect 
Sleep apnea. Loss and accuracy curve was plotted to visualize 
the model performance. For REM EEG signals have been 
extracted from polysomnographic data which is Sleep-EDF data 
and Gradient Boost model was employed to detect the REM 
sleep stage. ROC curve, SHAP plot and precision-recall curves 
have been plotted to visually assess the model's effectiveness. 
Both the models have been validated using accuracy as the main 
performance metric. 

Sleep apnea, both obstructive and central, can occur during 
REM sleep. During REM sleep, the muscles of the upper airway, 
including those in the throat, tend to relax more, which can 
exacerbate breathing difficulties in individuals with sleep apnea 
disorder. With reference to REM sleep, individuals suffering 
with sleep apnea often experience disruptions in this specific 
sleep stage. During REM sleep stage, the muscles become 
temporarily paralyzed (atonia) to prevent the acting out of 
dreams. In individuals with sleep apnea, the relaxation of throat 
muscles and partial or complete airway obstruction can lead to 
brief awakenings to resume normal breathing. These 
interruptions can fragment REM sleep, affecting the overall 
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sleep architecture and potentially contributing to daytime 
sleepiness and other symptoms associated with sleep apnea. 

Future work could involve further investigation and 
validation to improve the system, facilitating its integration into 
clinical practice and enhancing the detection and treatment of 
sleep apnea and REM disorders, ultimately improving patient 
care. One promising direction is to develop a real-time 
implementation of the model that can run on edge devices, 
enabling the detection of sleep apnea and REM in home 
environments. This can be complemented by creating a mobile 
application that utilizes the trained models to provide immediate 
feedback and alerts to users, making sleep health monitoring 
more convenient. To ensure accessibility and user satisfaction, 
it is essential to design an intuitive, user-friendly interface 
suitable for non-technical users. Additionally, incorporating 
educational materials into the app can help users better 
understand their sleep patterns. 
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