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Abstract—PCOS is a common endocrine disorder that impacts 

women in their reproductive years characterized by irregular 

menstrual cycles, hyperandrogenism, and polycystic ovaries. 

Polycystic Ovary Syndrome (PCOS) presents significant 

challenges in diagnosis due to its heterogeneous nature and varied 

clinical manifestations. This project aimed to develop a 

comprehensive system for PCOS detection, integrating ultrasound 

images and clinical data through advanced machine learning 

techniques, using Rotterdam criteria for diagnostic decisions. 

Feature extraction from ultrasound images was conducted using 

the ResNet-50 deep learning model, while clinical data underwent 

correlation-based feature selection. Three classification 

algorithms - Support Vector Machine (SVM), Random Forest and 

Logistic Regression - were used to categorize the extracted 

features from ultrasound images. The integration of image-based 

and clinical-based features was explored and evaluated to have 

better accuracy revealing the potential for enhancing PCOS 

diagnosis accuracy. The developed system holds promise for 

assisting doctors in PCOS diagnosis, offering a holistic approach 

that leverages both imaging and clinical information. 
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I. INTRODUCTION 

Polycystic Ovarian Syndrome (PCOS) is a prevalent 
hormonal condition affecting individuals in their reproductive 
years, with a global prevalence estimated to be between 8% and 
13%. This multifaceted condition is characterized by a range of 
symptoms, including irregular menstrual cycles, elevated levels 
of androgens (hyperandrogenism), and the appearance of 
multiple cysts on the ovaries as seen on ultrasound. Despite its 
widespread impact, PCOS diagnosis remains challenging, often 
requiring a multidimensional assessment of clinical, 
biochemical, and imaging data. However, current diagnostic 
approaches often rely on the interpretation of disparate data 
sources, leading to variability and potential delays in diagnosis. 
Current systems often lack clarity on the criteria used for 
diagnosis, leading to inconsistencies and potential 
misdiagnoses. 

In response to these challenges, this research aims to 
introduce an intelligent PCOS diagnostic system that leverages 
machine learning to integrate health records and ultrasound 
imaging. The integration of health records provides a rich 
source of clinical and biochemical data, encompassing 

information on menstrual patterns, hormonal levels, and other 
relevant patient history. Complementing this, the inclusion of 
ultrasound imaging allows for the examination of ovarian 
morphology, particularly the presence of multiple small 
follicles. By combining these diverse data modalities, the 
proposed system seeks to create a more comprehensive and 
accurate diagnostic framework. 

The main objective of this research is to enhance PCOS 
diagnosis, facilitating early identification and intervention. By 
harnessing machine learning algorithms, this study aims to 
develop a model that can identify nuanced patterns in the data, 
thus improving the accuracy and effectiveness of PCOS 
diagnosis. The integration of health records and ultrasound 
imaging serves as a strategic foundation, recognizing the 
importance of a holistic approach to reproductive health. 
Additionally, this research employs the Rotterdam criteria, a 
widely accepted standard in PCOS diagnosis, to ensure that the 
decision-making process is grounded in established clinical 
guidelines. The outcome of this research offers potential not 
just for reproductive health but also for the wider realm of 
personalized medicine and data-driven healthcare innovations. 

II. BACKGROUND 

PCOS is a multifaceted hormonal disorder impacting 
women during their reproductive years, noted for its varied 
clinical presentations and effects on metabolic health. The 
diagnosis of PCOS involves a multifaceted assessment of 
various criteria, reflecting the heterogeneity of the syndrome. 
The Rotterdam criteria, [1] frequently embraced in clinical 
practice, require the presence of a minimum of two out of three 
primary features for diagnosis: irregular menstrual cycles 
(oligo-anovulation), clinical or biochemical indicators of 
elevated androgens (hyperandrogenism), and the observation of 
multiple cysts on the ovaries during ultrasound examination. 

 Oligo-anovulation refers to irregular menstrual cycles or 
the absence of menstruation. This criterion 
acknowledges the hormonal dysregulation that often 
underlies PCOS and is crucial for diagnosis. 

 Hyperandrogenism manifests as elevated levels of 
androgens, leading to clinical symptoms such as acne, 
hirsutism (excessive hair growth), and male-pattern 
baldness. Biochemical evidence, including increased 
testosterone levels, supports this criterion. 
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 Ultrasound imaging plays a crucial role in the diagnosis 
of PCOS by providing a visual representation of the 
ovaries. The typical findings include the presence of 12 
or more small follicles (2-9 mm in diameter) in each 
ovary and/or an enlarged ovarian volume. 

Despite these established criteria, PCOS diagnosis remains 
challenging due to variations in symptom presentation and the 
potential overlap with other conditions. The reliance on clinical 
judgment, often subjective, underscores the need for objective 
and data-driven diagnostic approaches. This study aims to 
address this need by proposing an intelligent diagnostic system 
that leverages machine learning to integrate health records and 
ultrasound imaging, contributing to a more precise, timely, and 
personalized approach to PCOS diagnosis. The subsequent 
sections will delve into the methodology, data integration 
processes, and potential implications of this novel diagnostic 
framework. 

III. RELATED WORKS 

Many research papers focusing on PCOS detection 
predominantly center on the identification of cysts within 
ultrasound images through a variety of methodologies. The 
paper by M. Sumathi et al. [2] demonstrates the effectiveness 
of utilizing image processing techniques and classification 
algorithms such as DarkNet-19, AlexNet, SqueezeNet, and 
SVM for automated PCOS diagnosis. Gray Level Co-
Occurrence Matrix was used for extracting features from the 
images and classification with DarkNet-19 achieved 99% 
accuracy, thus improving performance metrics. PCO follicle 
detection through preprocessing, feature extraction, and 
classification phases proposed by Bedy Purnama et al. utilizes 
techniques like Gabor wavelets for feature extraction, [3] it 
employs SVM-RBF Kernel for classification, achieving 
82.55% accuracy for Dataset A and 78.81% for Dataset B, 
demonstrating its potential for enhancing PCOS diagnosis 
accuracy. Yinhui Deng et al. proposed object-growing 
algorithm [4] initially identifies multiple objects, likely 
follicles, with high probabilities from ultrasound images. It 
utilizes a cost map to differentiate the ovary from external 
regions and dynamically updates potential follicles based on 
their cost functions. This approach achieved an 89.4% 
recognition rate and a 7.45% misidentification rate on 31 actual 
PCOS ultrasound images, demonstrating superior performance 
compared to other methods. The method by Sharvari S 
Deshpande et al. uses ovarian ultrasound image processing, 
feature extraction, segmentation, and classification through 
Support Vector Machine (SVM), achieving a high accuracy of 
95%. [5] The research employs preprocessing techniques, 
including contrast enhancement and filtering, on ovarian 
ultrasound images. Feature extraction involves Multiscale 
morphological approach and Top-hat transform, while 
segmentation uses Canny edge detection. The approach 
proposed by SaymaAlma Suham et al. involves employing a 
CNN with transfer learning for feature extraction and a stacking 
ensemble machine learning model with XGBoost [6] as the 
meta-learner for classification. The proposed technique 
achieves accuracy improvement, reaching 99.89%, with 
reduced execution time compared to existing machine learning 
methods. The optimal performance is achieved by integrating 
the "VGGNet16" pre-trained model with CNN for feature 

extraction and utilizing "XGBoost" as the meta-learner for 
classification. An innovative machine learning approach was 
proposed by Pradeep Bedi et al., the Attention Residual UNet 
(AResUNet) Model, [7] for detecting PCOS. The model 
incorporates adaptive bilateral filter-based image pre-
processing with attention-guided residual UNet allowing it to 
effectively handle both 2D and multi-modal images. The results 
demonstrate that the AResUNet Model achieves high accuracy 
of 98%. The method proposed by Asma’ Amirah Nazarudin et 
al. combines Otsu’s thresholding with the Chan–Vese method 
[8] to create a binary mask and define follicle boundaries. 
Compared to the classical Chan–Vese method, the proposed 
approach demonstrated superior performance with an average 
sensitivity of 0.74, which was significantly higher than the 
sensitivity of 0.54 for the classical Chan–Vese method. 

Certain papers utilize clinical data, comprising information 
from manually recorded ultrasound images by radiologists, 
alongside other parameters crucial for PCOS detection. A 
balanced dataset was achieved Ejay Nsugbe by using synthetic 
sample generation software to mitigate bias in training 
prediction models. [9] Ten machine learning models were 
explored, revealing high-order SVM with a nonlinear decision 
boundary as the optimal classifier demonstrating superior 
performance. The research by Satish C. R Nandipati et al. aims 
to identify the most effective classification model and 
significant features for predicting PCOS, utilizing Python-
Scikit Learn and RapidMiner tools. The results in [10] indicate 
that Random Forest achieves the highest accuracy (93.12%, 
RapidMiner) with the complete dataset, KNN and SVM exhibit 
similar accuracy (90.83%, RapidMiner) with 10 selected 
features. ML is employed to construct a stacking ensemble 
model by Hela Elmannai et al. combining LR, RF, DT, NB, 
SVM, KNN, Xgboost, and Adaboost [11] at the base learner 
level, with RF at the meta-learner level, aiming to enhance 
single ML performance. The resulting Stacking ML, 
particularly with REF feature selection, achieved notable 
performance recording high accuracy 98.87%. The application 
of ensemble classifiers, including Ensemble Random Forest, 
Extra Tree, Adaptive Boosting (AdaBoost), and Multi-Layer 
Perceptron (MLP) for diagnosing PCOS is explored [12] by 
Homay Danaei Mehr et al. Subrato Bharati et al.'s study 
compares classifiers using holdout and cross-validation 
methods. Their results show that ensemble Random Forest, 
with feature subset selection [13], achieves the highest accuracy 
of 98.89% and sensitivity of 100%. RFLR demonstrates the 
highest testing accuracy of 91.01% and a recall value of 90% 
when using 40-fold cross-validation on these 10 most important 
features. A novel feature selection method proposed by Shazia 
Nasim et al., optimized chi-squared (CS-PCOS) [14] to select 
required features for detecting PCOS. Among ten hyper-
parameterized machine learning models, Gaussian Naive Bayes 
(GNB) excelled, achieving 100%. Employing MATLAB and a 
dataset from Kaggle, paper by Dana Hdain et al. [15] utilized 
seven classifiers, with Linear Discriminant exhibiting the 
highest accuracy and K-Nearest Neighbor showing the best 
sensitivity for detection of PCOS. The paper by Manjunathan 
Alagarsamy et al. employs preprocessing techniques, such as a 
heat map for feature correlation, and utilizes Support Vector 
Machine, K-Nearest Neighbors, Naive Bayes, and a Hybrid 
Algorithm [16] for classification. The proposed approach 
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demonstrates superior performance compared to other methods 
achieving high accuracies (97% for Ensemble, 95% for SVM, 
and 93% for Naive Bayes) in identifying PCOS-affected 
ovaries. The research by Amsy Denny et al. utilizes machine 
learning techniques, including Logistic regression, Naïve 
Bayes, and Random Forest Classifier (RFC), and identifies 
RFC [17] as the most accurate method with 89.02% accuracy. 
The machine learning models were implemented in Spyder 
Python IDE, and the system employed RFC after optimizing 
features with Principal Component Analysis (PCA). The article 
by Sayma Alam Suha et al. introduces a unique stacked 
ensemble approach [18]which combines weak traditional ML 
classifiers and boosting or bagging models, achieving 95.7% 
accuracy. It also explores feature selection techniques, with 
PCA identifying the top 25 features for effective forecasting. 

The paper by Jay Jojo Cheng et al. aimed to develop ML 
algorithms for classifying polycystic ovary morphology in 
pelvic ultrasounds, [19] utilizing electronic medical records. 
Pelvic ultrasound reports from 39,093 patients were analyzed. 
The classifiers Gradient Boosted Tree text classifier and rule-
based text classifier achieved high accuracy, with rates of 
97.6% and 96.1% on the evaluation set of 1000 ultrasound 
reports. The paper by Victor Castro et al. aims to enhance the 
accuracy of identifying PCOS subjects [20] by utilizing 
electronic medical records text and data, compared to the 
conventional use of International Classification of Diseases 9 
codes. A natural language processing approach was employed 
to identify PCOS subjects in electronic medical records, and an 
algorithm was developed using 32 terms to categorize definite 
PCOS cases based on Rotterdam criteria. The algorithm 
demonstrated a 64% confirmation rate for definite PCOS cases 
with a 9% false positive rate, comparable to the 66% 
confirmation rate using ICD-9 codes with an 8.5% false 
positive rate. 

The work by Alamoudi et al. utilized [21] fine-tuned 
Inception architecture to classify ultrasound images, achieving 
84.81% accuracy. Additionally, a study combining image and 
clinical features through deep learning showed promising 
results, with joint fusion type I outperforming, highlighting the 
significance of clinical data in PCOS diagnosis. 

The above studies utilizes either ultrasound or clinical data 
to predict PCOS and lacks a standardized prediction basis. In 
contrast, this research employs a hybrid dataset and utilizes the 
Rotterdam criteria, endorsed by the NIH and widely used by 
medical professionals for diagnosing PCOS. This approach 
integrates both clinical and ultrasound data, providing a more 
comprehensive and validated method for PCOS prediction. 

IV. PROPOSED SYSTEM 

The proposed PCOS detection system strategically 
combines deep learning and traditional machine learning 
methodologies for a thorough examination of ultrasound 
images and clinical data as shown in Fig. 1 below. The initial 
phase involves the application of a ResNet50 deep learning 
model to meticulously extract intricate features from ultrasound 
images leveraging the model's prowess in intricate pattern 
recognition.  

 
Fig. 1. System architecture to detect PCOS through ML and MMI. 

These extracted features are pivotal for subsequent image 
classification, a crucial step in discerning whether the 
ultrasound images exhibit the characteristic traits of polycystic 
ovaries. Various classification models such as Support Vector 
Machines, Random Forest, and Logistic Regression are 
compared to find the best suited model. 

Simultaneously, the clinical dataset undergoes meticulous 
curation through the selection of significant features, a process 
driven by correlation coefficients. This ensures that the 
subsequent analyses are streamlined, focusing on the most 
relevant clinical indicators. The chosen features are then 
segregated into two distinct categories: Oligo/anovulation 
features and hyperandrogenism features. For anovulation or 
oligo features, a decision tree model is deployed, bringing a 
level of interpretability to the assessment of irregular ovulation 
patterns. Concurrently, hyperandrogenism features undergo a 
nuanced analysis, with an averaging mechanism applied to 
gauge the extent of androgen excess. 

The culmination of these diverse analyses leads to three 
distinct outputs, each providing a critical aspect of the PCOS 
diagnosis. The late fusion model, a mechanism that assigns 
weighted averages to the outputs, orchestrates the integration of 
these results. This step is pivotal, allowing for a nuanced 
combination of image-based evidence and clinically derived 
insights. The result of this intricate fusion process is the 
ultimate determination of whether the patient is affected with 
PCOS. 

A. Ultrasound Feature Extraction 

In the feature extraction process using the ResNet-50 model 
for ultrasound images, the aim is to capture and distill complex 
hierarchical features that are essential for subsequent 
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classification tasks. The ResNet-50 model, pre-trained on the 
ImageNet dataset, is employed as a feature extractor due to its 
proficiency in discerning intricate patterns and    representations 
within images. The model, consisting of 50 layers, is well-
suited for this task as it possesses a deep architecture that allows 
for the extraction of high-level features. The dataset consists of 
3200 ultrasound images for training and 1468 images for 
testing. Each ultrasound image is loaded and resized to a 
standard size of 224x224 pixels. It is then converted into a 
numerical array and preprocessed to meet the ResNet-50 
model's specifications. The pre-trained ResNet-50 model is 
then utilized to predict the features present in the image. 
ResNet-50 operates by passing the input image through a series 
of convolutional layers, pooling layers, and activation 
functions. The convolutional layers within ResNet-50 are 
designed to learn hierarchical features of increasing 
complexity. Lower layers of the network learn simple patterns 
like edges and textures, while deeper layers gradually extract 
more complex and distinctive features relevant to the task. 

In each convolutional layer, the operation can be 
represented mathematically as a convolution operation 
followed by a non-linear activation function. Let us denote the 
output of the convolutional layer as Hl where l is the layer 
index. The mathematical operation for a single convolutional 
layer can be represented in Eq. (1): 

 𝐻𝑙  =  σ (𝑊𝑙  ∗  𝐻𝑙−1  +  𝑏𝑙)  

where, Wl is the set of learnable weights (filters for layer l, 
Hl-1 is the input feature map from the previous layer, bl is the 
bias term, σ is the activation function (commonly ReLU). 
Throughout the network, the Rectified Linear Unit (ReLU) 
activation function is frequently employed to add non-linearity 
following each convolutional layer. ReLU function is defined 
as shown in Eq. (2). 

 𝑓(𝑥) = max(0, 𝑥)   

 ResNet-50 makes use of residual blocks, which alleviate 
the vanishing gradient issue and facilitate the training of deep 
networks by introducing skip connections. Each residual block 
within the network contains a shortcut connection, allowing the 
input to bypass certain layers and directly propagate to deeper 
layers. Residual block is mathematically represented as shown 
in Eq. (3) 

 H𝑙  =  F(𝐻𝑙−1 , { 𝑊𝑙,𝑖} ) + 𝐻𝑙−1 

where F represents the residual function {Wl, i} denotes the 
set of learnable weights specific to the residual block and Hl-1 
is the input to the block. Global average pooling is used to 
transform the spatial data into a vector representation at the end 
of the convolutional layers. It is indicated mathematically 
through Eq. (4). 

     𝑣 =
1

𝑁
∑ 𝐻𝑖

𝑁
𝑖=1  

where v is the vector representation of the image features, 
N is the number of elements in the feature map and Hi represents 
the individual elements of feature map. For ultrasound images, 
these features might include distinctive patterns related to 
ovarian structures, cysts, or other relevant characteristics 
indicative of polycystic ovaries. The resulting feature vector is 

flattened to create a one-dimensional array, capturing the 
essence of the image's intricate characteristics. The features are 
then saved in a NumPy (.npy) file format, creating a reusable 
and compact representation that can be easily utilized in 
subsequent stages of the PCOS detection system, such as model 
training and classification. 

B. Ultrasound Image Classification 

The objective extends beyond a binary determination of the 
presence or absence of polycystic ovaries. Specifically, the 
classification system aims to discern nuances within the 
ultrasound images, including the identification of minimal and 
small-sized cysts, which are categorized as healthy and 
unhealthy ovaries are denoted with a greater number of cysts 
which are bigger in size. Three distinct classification models, 
namely Support Vector Machines (SVM), Random Forest, and 
Logistic Regression, are employed to discern patterns within 
these features and make predictions based on the labeled 
training data. 

SVM, Random Forest, and Logistic Regression all analyze 
ResNet-50 features extracted from ultrasound images. SVM 
finds an optimal separation line, Random Forest combines 
multiple decision trees for complex patterns, and Logistic 
Regression estimates the likelihood of PCOS. Comparing their 
performance helps identify the best model for accurate PCOS 
classification, improving your overall detection framework. 

C. Clinical Feature Selection and Analysis 

A systematic and data-driven approach is employed to 
distill relevant information from a dataset comprising 39 
features. The initial step involves a careful consideration of 
feature correlation coefficients, allowing for the identification 
and subsequent removal of features with less impact on the 
overall analysis. Correlation coefficients are statistical 
measures that quantify the direction and strength of the 
relationship between two variables. This curation process is 
crucial as it optimizes the dataset, focusing on attributes that 
exhibit stronger relationships with the outcomes of interest. The 
Pearson correlation coefficient is the default approach used by 
Python's corr() method to determine the correlation between 
columns in a Data Frame containing numerical data. The linear 
relationship between two continuous variables is measured by 
the Pearson correlation coefficient. Given two variables X and 
Y, with observations (xi, yi) for I =1, 2, 3, ……n, the Pearson 
coefficient r, is calculated as shown in Eq (5). 

 𝑟 =  
𝛴(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)

√𝛴(𝑥𝑖−�̅�)2√𝛴(𝑦𝑖−�̅�)2
 

The features that survive this correlation-based filtering are 
then categorized into two distinct sets: those features 
contributing to oligo/anovulation and those features associated 
with hyperandrogenism. 

1) Ovarian dysfunction: The irregular menstrual cycles that 

characterize oligo/anovulation can be attributed to either 

infrequent periods (oligomenorrhea) or the total lack of 

ovulation and menstruation (anovulatory cycles). The main 

feature is the irregularity in cycle duration, which differs from 

the normal range of 21 to 35 days for menstrual periods. From 

the selected features after correlation analysis, features related 
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to menstrual cycle like cycle length(days), irregular cycles etc 

are grouped together into this category. For the set of features 

contributing to oligo/anovulation, a decision tree model is 

utilized. Decision trees are particularly effective in scenarios 

where complex decision-making processes depend on multiple 

factors. In the context of PCOS detection system, the decision 

tree scrutinizes the features relevant to oligo/anovulation, 

aiming to create a clear and interpretable decision path. The 

flow of decisions that decide if the person has ovarian 

dysfunction is shown in Fig. 2. This model facilitates the 

determination of whether an individual has a likelihood of 

PCOS based on the presence of oligo or anovulation, providing 

valuable insights into menstrual irregularities that are 

characteristic of the syndrome. 

 
Fig. 2. Flow of decisions for features grouped into oligo/anovulation. 

2) Hyperandrogenism features: Simultaneously, the 

features associated with hyperandrogenism undergo a distinct  

analytical process determined by averaging out the contributing 

factors. Features related to hyperandrogenism is grouped into 

this category after correlation analysis like skin  darkening, 

pimples, hair loss etc. This approach acknowledges the 

multifactorial nature of hyperandrogenism, where diverse 

clinical indicators collectively contribute to the   assessment of 

androgen excess. Averaging allows for a comprehensive and 

nuanced evaluation, providing a more accurate representation 

of the overall hyperandrogenic status. The integration of these 

clinical insights with the earlier image-based classification 

results in the final determination of PCOS presence, 

contributing to a holistic and robust diagnostic framework. 

D. Data Integration and Final Prediction 

In the data integration and final prediction stage of your 
PCOS detection system, the diverse outputs obtained from the 
ultrasound image SVM classifier, the oligo/anovulation 
decision tree, and the hyperandrogenism assessment are 
harmonized to yield a comprehensive and conclusive diagnosis. 
The distinct sources of information are treated as 

complementary dimensions contributing to the overall 
understanding of PCOS. 

The SVM classifier, trained on the extracted features from 
ultrasound images, provides a binary classification output, 
discerning between individuals with and without polycystic 
ovaries. This classification serves as a foundational element in 
the final prediction, capturing crucial insights derived from the 
imaging data. Simultaneously, the decision tree model for 
oligo/anovulation offers a nuanced perspective on menstrual 
irregularities, helping identify individuals who exhibit 
characteristics associated with PCOS. This element enriches the 
diagnostic process by incorporating clinical indicators related 
to reproductive health aligning with the multifaceted nature of 
the syndrome. The hyperandrogenism assessment, determined 
through averaging clinical features, contributes a continuous 
and graded evaluation of androgen excess. This dimension 
acknowledges the spectrum of androgenic manifestations, 
offering a more refined understanding of the hormonal aspects 
of PCOS. The integration of these three outputs is orchestrated 
through a late fusion model, specifically a weighted average. 
The late fusion model allows for the consideration of the 
diverse nature of the inputs, assigning appropriate weights to 
each source based on their relative significance in the 
diagnostic process. But in this scenario as per Rotterdam 
criteria, equal weights have been assigned to the different 
inputs. Upon applying the weighted average, a continuous score 
is generated, reflecting the amalgamated insights from the 
image-based classification, reproductive health assessment, and 
hormonal evaluation. To finalize the prediction, a threshold is 
established, delineating the boundary between a positive and 
negative diagnosis for PCOS. This threshold serves as a 
decision criterion, guiding the system to categorize individuals 
based on the combined evidence from ultrasound images and 
clinical data. 

The different phenotypes of PCOS are based on the 
presence or absence of these three features. 

 Type A: This phenotype is the most prevalent and is 
distinguished by the presence of all three features: excess 
androgen levels, ovarian dysfunction, and polycystic 
ovarian morphology. 

 Type B: This phenotype is defined by elevated androgen 
levels and ovarian dysfunction, although the ovaries do 
not exhibit the typical morphology associated with 
PCOS. 

 Type C: This phenotype is marked by elevated androgen 
levels and the presence of polycystic ovarian 
morphology, despite normal ovarian function. 

 Type D: This phenotype is distinguished by ovarian 
dysfunction and polycystic ovarian morphology, without 
the presence of elevated androgen levels. 

These are just four of the many possible phenotypes of 
PCOS. The condition can vary greatly from woman to woman, 
and some women may have symptoms that do not fit neatly into 
any one category. The number of people affected with each 
phenotype is calculated to understand the diversity of the 
syndrome. 
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V. RESULTS AND DISCUSSION 

ResNet-50 extracted features from both training and testing 
datasets, yielding arrays of 100352 dimensions (224,224,2). 
Subsequently, three classification models – Support Vector 
Machine (SVM), Random Forest and Logistic Regression - 
were utilized to categorize the extracted features. Evaluation 
metrics were computed for each model to gauge their 
effectiveness. For SVM, the results demonstrated high accuracy 
(0.99), precision (0.99), and F1-score (0.98), along with a 
respectable AUC-ROC value of 0.98. Random Forest exhibited 
slightly lower accuracy (0.95) and AUC-ROC (0.89), but still 
showed strong precision (0.97) and F1-score (0.87). Logistic 
Regression performed consistently well across metrics, with 
accuracy at 0.97, precision at 0.92, recall at 0.92, F1-score at 
0.92, and AUC-ROC at 0.95. 

TABLE I.  COMPARISON OF EVALUATION METRICS FOR DIFFERENT 

CLASSIFICATION MODELS 

Evaluation 

Metrics 
SVM Random Forest 

Logistic 

Regression 

Accuracy 99 95 97 

Precision 99 97 92 

Recall 96 79 92 

F1 - score 98 87 92 

Furthermore, Receiver Operating Characteristic (ROC) 
curves were plotted for all three models, providing visual 
insights into their performance. The ROC curve illustrates the 
true positive rate (TPR) on the y-axis against the false positive 
rate (FPR) on the x-axis, as depicted in Fig. 3. The area under 
the ROC curve (AUC) is a metric indicating the model's ability 
to differentiate between positive and negative cases. A perfect 
model would have an AUC of 1. In the provided ROC curve, 
the SVM model has the highest AUC (0.98), followed by the 
Logistic Regression model (0.95) and the Random Forest 
model (0.89). This suggests that the SVM model is the most 
effective at distinguishing between positive and negative cases 
in this scenario. The summarized results are mentioned in Table 
I. 

 
Fig. 3. ROC curve for three classification models. 

The analysis also included SHAP interpretability plots for 
each model, enhancing the understanding of feature importance 
and contribution to classification decisions. Fig. 4, Fig. 5 and 

Fig. 6 displays the mean magnitude of SHAP values for each 
feature, showing both the direction and strength of the impact. 
Each dot represents a specific instance, and the color indicates 
the feature value (red for high values, blue for low values). 
Features are ordered by their importance based on the mean 
absolute SHAP values across all instances. The most influential 
features are located at the top. The horizontal position of each 
dot reflects the impact of the corresponding feature on the 
model's prediction for a specific instance. Dots positioned to the 
left contribute negatively, while those on the right contribute 
positively. The summary plot helps you understand the 
contribution of each feature to the model's predictions across 
different instances in your dataset. 

 

Fig. 4. SHAP interpretability of SVM classifier. 

 
Fig. 5. SHAP interpretability of Random Forest classifier. 

In the feature extraction process for clinical data, correlation 
coefficients were computed for various features, including Age 
(yrs), Weight (Kg), Height (Cm), BMI, Blood Group, Pulse rate 
(bpm), and others, which is plotted in x-axis. The y-axis shows 
the correlation coefficient, which is a measure of how strong 
the relationship is between a particular feature and PCOS. It can 
range from -1 to 1, where -1 indicates a perfect negative 
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correlation, 0 indicates no correlation, and 1 indicates a perfect 
positive correlation. Features with correlation coefficients 
above 17% were considered significant and selected for further 
analysis. The selected features include Weight (Kg), BMI, 
Cycle (R/I), Cycle length (days), Weight gain (Y/N), Skin 
darkening (Y/N), hair growth (Y/N), Hair loss (Y/N), Pimples 
(Y/N) and Fast food (Y/N). These features exhibit substantial 
correlations with the target variable or are deemed clinically 
relevant for PCOS diagnosis, thereby enhancing the 
effectiveness of subsequent analysis and modeling efforts. 

 

Fig. 6. SHAP interpretability of Logistic regression classifier. 

The selected features are grouped into two categories, 
features contributing to hyperandrogenism and 
oligo/anovulation as shown below in Fig. 7. A decision tree 
helps assess irregular periods and Rotterdam criteria. Irregular 
periods with abnormal cycle length (less than 19 or more than 
35 days) suggest oligomenorrhea, while normal cycle length 
(19-35 days) indicates healthy ovaries. Regular periods also 
suggest healthy ovaries. In the hyperandrogenism assessment, 
the features skin darkening, pimples, hair growth, hair loss, and 
fast-food consumption are collectively evaluated. Averaging 
these features provides a holistic perspective on the presence of 
hyperandrogenism, a common manifestation of PCOS. By 
combining these indicators, the analysis aims to capture the 
overall pattern of hyperandrogenic symptoms, offering a 
simplified yet comprehensive approach to assessing this aspect 
of PCOS. 

The late fusion model integrates outputs from three distinct 
features- polycystic ovaries, hyperandrogenism, and 
oligo/anovulation to provide a unified assessment of PCOS 
diagnosis. Utilizing weighted averaging, each feature is 
assigned equal importance based on Rotterdam criteria, 
ensuring a balanced consideration of all contributing factors. If 
more than two inputs indicate the presence of PCOS, the 
individual is classified as having the condition, thereby 
delineating four distinct phenotypes. This approach facilitates a 
comprehensive evaluation of PCOS status, accounting for the 
multifaceted nature of the syndrome and enabling tailored 
treatment strategies based on identified phenotypes. 

 
Fig. 7. Correlation analysis of clinical features. 

The late fusion model uses weighted averaging and 
determines whether the patient is affected by PCOS or not. Fig. 
8 shows the result of the fusion model in which out of the 1468 
patients, 464 patients have PCOS whereas 1004 patients are not 
affected with PCOS. 

 
Fig. 8. Number of people affected vs. number of people not affected in 

total of 1468 patients. 

The bar graph in Fig. 9 shows the distribution of people with 
and without polycystic ovary syndrome (PCOS) across three 
features that are commonly used to diagnose the condition 
according to Rotterdam criteria. There is fair share of affected 
and not affected for each feature which shows that each of the 
feature is important to accurately diagnose if the person has 
PCOS or not. It is important to note that not all women with 
PCOS will exhibit all these characteristics. Diagnosis typically 
involves a combination of symptoms, physical signs, and 
diagnostic tests such as blood tests and ultrasound imaging. 

The affected patients (464 people) can be further 
categorized into 4 phenotypes to see the different possible 
combinations of features. The presence of all three features in a 
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patient gives Type A and the presence of two out of three 
features gives the rest of the phenotypes. (Type B, Type C, 
Type D). The number of people in different phenotypes are 
calculated and shown in Fig. 10. Type B is the phenotype with 
highest number of patients which shows that hyperandrogenism 
and ovarian dysfunction is equally important as polycystic 
ovaries for diagnosis of PCOS. 

 
Fig. 9. Distribution of patients over three features mentioned as per 

Rotterdam criteria. 

 
Fig. 10. Distribution of PCOS affected patients over different phenotypes. 

The heatmap in Fig 11 appears to show the feature 
correlations between three features related to PCOS diagnosis: 
ovarian polycystic status, ovarian dysfunction, and   
hyperandrogenism. Each square in the heatmap illustrates the 
correlation coefficient between two features, varying from -1 
(perfect negative correlation) to 1 (perfect positive correlation), 
with 0 indicating no correlation. The color intensity indicates 
the strength of the correlation, with darker shades denoting 
stronger correlations. 

 Ovarian polycystic status: This feature has a strong 
positive correlation with both ovarian dysfunction (0.73) 
and hyperandrogenism (0.6). This suggests that patients 
with polycystic ovaries are more likely to also have 
ovarian dysfunction and hyperandrogenism, which are 
all characteristics of PCOS. 

 Ovarian dysfunction: This feature has a moderate 
positive correlation with hyperandrogenism (0.4). This 
indicates that there is a positive association between 
these two features, but the relationship is not as strong as 
the one between ovarian polycystic status and the other 
two features. 

 Hyperandrogenism: This feature has a weak positive 
correlation with ovarian polycystic status (0.6) and a 
moderate positive correlation with ovarian dysfunction 
(0.4). This suggests that hyperandrogenism is associated 
with both PCOS risk factors, but the strength of the 
association varies. 

Overall, the heatmap confirms that there are positive 
correlations between all three features, which is consistent with 
the established risk factors for PCOS. 

 

Fig. 11. Heatmap of feature correlation. 

A. Validation of Results 

The proposed system is evaluated on different evaluation 
metrics. The predictions are evaluated against the patient’s 
actual health which is validated by a medical expert. The 
proposed system achieved promising performance metrics in 
the evaluation. Accuracy is the ratio of correctly classified 
instances to the total number of instances. It serves as a metric 
for assessing the overall performance of a model. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+ 𝑇𝑁+ 𝐹𝑃+𝐹𝑁


In Eq. (6), Eq. (7), Eq. (8), Eq. (9) TP stands for True 
Positive, TN stands for True Negative, FP stands for False 
Positive, and FN stands for False Negative. The proposed 
system  attained an accuracy of 94%, indicating the overall 
correctness of the system's predictions. Precision is the ratio of 
true positive predictions (correctly predicted positive instances) 
to the total number of positive predictions made by the model. 
It gauges the accuracy of positive predictions. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +𝐹𝑃
 

The precision of 96% indicates the proportion of correctly 
identified positive cases out of all predicted positives, 
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demonstrating the system's capacity to minimize false 
positives. Recall, on the other hand, is the ratio of true positive 
predictions to the total number of actual positive instances. It 
assesses the model's ability to identify all relevant instances. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
   

The recall rate of 87% signifies the system's capability to 
correctly identify most actual positive cases. F1-score, as the 
harmonic mean of precision and recall, offers a balanced 
measure between precision and recall, particularly useful when 
dealing with imbalanced classes. 

 𝐹1𝑠𝑐𝑜𝑟𝑒 =  
2 𝑋 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

The F1-score, reflecting a balance between precision and 
recall, was computed at 91 indicating a harmonious blend of the 
two metrics. Furthermore, the area under the receiver operating 
characteristic curve (AUC-ROC) was determined to be 93% as 
shown in Fig. 12. 

 
Fig. 12. ROC curve for the proposed system. 

VI. CONCLUSION AND FUTURE WORK 

The project aimed to develop a comprehensive system for 
the detection of Polycystic Ovary Syndrome (PCOS) using a 
multi-modal approach, integrating both ultrasound images and 
clinical data. Feature extraction from ultrasound images was 
performed using the ResNet-50 deep learning model, achieving 
promising results. Three classification models-Support Vector 
Machine (SVM), Random Forest and Logistic Regression - 
were applied to classify the extracted features, with SVM 
demonstrating superior performance with 99% accuracy, 99% 
precision, 96% recall, and 98% F1 score. Furthermore, ROC 
curves and SHAP interpretability plots provided insights into 
model performance and feature importance. 

In parallel, clinical data were analyzed, and feature 
extraction was conducted based on correlation coefficients, 
identifying key features relevant to PCOS diagnosis. The 
selected features from correlational analysis of clinical dataset 
were grouped into two categories of Rotterdam criteria: 
hyperandrogenism and Ovarian dysfunction. Decision tree was 
used to find if the patient has ovarian dysfunction based on the 
cycle length measure in days and irregularity of the cycle. 

Hyperandrogenism was determined by averaging different 
features contributing to it. Late fusion model is used to combine 
the results of all three deciding factors of PCOS as per 
Rotterdam criteria. The proposed system achieved 94% 
accuracy, 96% precision, 87% recall, 91% F1 score when 
evaluated against patients’ actual health status. Thus, using two 
models of dataset, ultrasound images and clinical data of the 
patient is necessary for an accurate prediction of the syndrome. 
This study proves deep learning can analyze ultrasound images 
and clinical data for PCOS diagnosis. Enhancing the PCOS 
prediction through the utilization of larger, more diverse 
datasets containing extensive patient records encompassing 
various manifestations of PCOS. Incorporating additional 
etiological factors contributing to PCOS onset into predictive 
models for better forecast. Additionally, developing better 
methods to predict hyperandrogenism will be necessary as more 
features will be added to facilitate early and accurate diagnosis. 
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