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Abstract—In the contemporary educational landscape, 

proactively engaging in predictive assessment has become 

indispensable for academic institutions. This strategic imperative 

involves evaluating students based on their innate aptitude, 

preparing them adequately for impending examinations, and 

fostering both academic and personal development. Alarming 

statistics underscore a notable failure rate among students, 

particularly in courses. This article aims to employ predictive 

methodologies to assess and anticipate the academic performance 

of students in language courses during the G2 and G3 academic 

exams. The study utilizes the Gaussian Process Classification 

(GPC) model in conjunction with two optimization algorithms, the 

Population-based Vortex Search Algorithm (PVS) and the COOT 

Optimization Algorithm (COA), resulting in the creation of GPPV 

and GPCO models. The classification of students into distinct 

performance categories based on their language scores reveals 

that the GPPV model exhibits the highest concordance between 

measured and predicted outcomes. In G2, the GPPV model 

demonstrated the notable 51.1% correct categorization of students 

as Poor, followed by 25.57% in the Acceptable category, 14.17% 

in the good category, and 7.7% in the Excellent category. This 

performance surpasses both the optimized GPCO model and the 

singular GPC model, signifying its efficacy in predictive analysis 

and educational advancement. 

Keywords—Academic performance; language; hybrid 

algorithms; Gaussian Process Classification; population-based 
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I. INTRODUCTION 

Artificial Intelligence (AI) has significantly contributed to 
the growth and productivity of various industries, including 
transportation, communication, commerce, and finance. 
However, its impact on the education sector requires further 
refinement, particularly in the enhancement of AI-based 
learning systems designed to support students in both classroom 
and remote settings, as well as individuals with special needs 
[1], [2]. In software development, there is a notable emergence 
of instructional software tailored to individual learning needs. 
These innovative tools not only foster connectivity among 
learners but also provide access to a vast array of digital 
materials. Furthermore, they support decentralized learning 
tools, creating a dynamic and engaging learning environment 
that caters to diverse educational requirements [1]. 

In educational contexts, traditional machine learning 
approaches have been extensively employed, including support 
vector machine (SVM) [3], [4], decision tree [5], and matrix 
factorization (MF) [6], [7], along with their respective 
extensions [8], [9]. The SVM algorithm, in particular, is a 

frequently applied method known for its superior performance 
[3], [10]. However, its original design for binary classification 
poses limitations, as it does not inherently account for the 
relative importance of feature vector elements. While extensions 
for multiple classification problems exist, they may not 
consistently yield optimal results. The advent of deep learning 
[11], [12], [13], [14], [15] has brought about notable 
advancements in the educational domain. Despite its promising 
performance, the issue of overtraining looms large, especially 
when the dataset size is not sufficiently large. Recent studies 
propose that a moderately deep Artificial Neural Network 
(ANN) [16] can offer comparable accuracy without succumbing 
to overtraining, making it a viable alternative in educational 
applications. This nuanced understanding of traditional and 
contemporary machine learning methods provides valuable 
insights for selecting appropriate models tailored to specific 
educational contexts and datasets. 

Analyzing and mitigating factors influencing student 
performance is a paramount concern for educational institutions 
aiming to reduce student failure rates. Educational data mining 
(EDM) emerges as a pivotal technique in this endeavour [17]. 
EDM encompasses the development of methodologies tailored 
to handle diverse data types within educational systems, 
ultimately enhancing students' learning outcomes [18]. Through 
the amalgamation of statistical, machine learning, and data 
mining approaches, EDM endeavours to extract and modify 
information from educational data, facilitating informed 
decision-making in the educational domain. The primary 
objective of EDM is to glean valuable insights from educational 
data, enabling effective decision-making to enhance educational 
outcomes [18]. By harnessing the power of predictive 
modelling, EDM can forecast students' academic achievement 
at an early stage [19]. This multifaceted approach encompasses 
various strategies to analyze and interpret educational data, 
offering institutions valuable tools for proactive intervention and 
support to improve overall student success. 

The data mining project, initiated in 2013, constitutes a 
comprehensive effort aimed at extracting valuable insights from 
existing datasets to inform university management strategies, 
particularly in understanding student dynamics and refining 
university marketing policies. A thorough review of the 
literature indicates a sustained interest in these issues, with 63 
researchers exploring various facets in recent years. Luan [20] 
delves into the potential applications of data mining in higher 
education, emphasizing resource efficiency and academic 
effectiveness. Several papers [20], [21], [22], [23] scrutinize 
student typology and targeted marketing through data mining 
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models. Similarly, DeLong et al. [24] and Nandeshwar and 
Chaudhari [25] focus on student types, marketing strategies, and 
enrollment prediction models based on admissions data, 
utilizing diverse data mining methods. Dekker et al. [26] 
concentrate on predicting student dropouts, contributing to the 
broader discourse on enhancing university management and 
decision-making through data-driven approaches in higher 
education. 

In this comprehensive investigation, we utilize the Gaussian 
Process model along with two advanced optimization 
algorithms—the Population-based Vortex Search Algorithm 
(PVS) and the COOT Optimization Algorithm (COA)—to 
enhance the model and develop distinct versions (GPPV and 
GPCO). The primary objective is to categorize students' 
performance in language courses based on G2 and G3 exam 
results into four performance grades: poor, acceptable, good, 
and excellent. We rigorously evaluate and compare the 
predictive performance of these models using key classification 
metrics such as Accuracy, Precision, Recall, and F1-score. 

This study aims to provide a thorough understanding of the 
research findings, with subsequent sections delving into the 
impact of carefully selected input data on model outcomes. 
Beyond categorizing students, the analysis extends to examining 
the models' predictive capabilities, highlighting their strengths 
and limitations. Furthermore, the article offers detailed 
explanations of the Gaussian Process model, the Population-
based Vortex Search Algorithm, and the COOT Optimization 
Algorithm, providing readers with a comprehensive perspective 
on the methodologies employed in this study. 

II. DATA SELECTION AND PREPARATION 

Data mining, known as database knowledge discovery, 
involves the systematic extraction of valuable insights and 
patterns from large datasets. This process employs various 
techniques and algorithms to uncover hidden knowledge, 
contributing to informed decision-making and meaningful 
analysis. This study relies on an extensive dataset from previous 

research covering various variables. These include school, sex 
(female or male), age, residence, family size (famsize), parental 
cohabitation status (Pstatus), and details about the mother's and 
father's education and occupations (Medu, Fedu, Mjob, Fjob). 
The dataset also explores reasons influencing school choice, 
such as proximity, reputation, and course preferences. 
Additionally, it delves into aspects like the student's guardian 
(whether it is the father, mother, or another guardian), travel 
time to school (traveltime), weekly study hours (studytime), past 
failures, participation in educational support programs 
(schoolsup), family educational support (famsup), engagement 
in paid classes and extracurricular activities, attendance at 
nursery school, aspirations for higher education, internet access 
at home, romantic relationships, family relationships (famrel), 
free time, going out with friends, alcohol consumption in 
weekdays (Dalc) and weekends(Walc), health status, and school 
absences. 

In Fig. 1, a visual representation illustrates the influence of 
each specified parameter on the outcomes of both G2 and G3 
tests. The visualization employs a color-coded scheme, with red 
denoting the most positive impact (+1) and blue representing the 
most negative influence (-1). As the colours gradually fade, 
approaching zero, the corresponding influence diminishes. The 
shapes depicted tend towards circular, with a tendency towards 
elongation (oval) when nearing the maximum or minimum 
values. Examining the graph's details, it is evident that the most 
substantial positive effect is associated with the impact of each 
parameter on itself, visually depicted by the diameter of the 
shape. Following this, the influence of G2 on G3 emerges as 
particularly significant. In the final two lines of the figure, 
portraying the impact of each parameter on G2 and G3, it 
becomes apparent that failures exert the most pronounced 
negative impact, aligning with logical expectations. 
Furthermore, aspirations for higher education exhibit the most 
positive influence on these tests. Notably, the majority of effects 
are proximal to zero, signifying a circular and faint 
representation. 

 
Fig. 1. Correlation matrix for the input and output variables. 
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III. GAUSSIAN PROCESS CLASSIFIER (GPC) 

A nonparametric probabilistic classification model based on 
Gaussian procedure regression is the GPC [27]. Here, the value 
of an underlying latent function connected to the input data 
exhibits a monotonic correlation with the probability that the 
incoming data falls into a certain class. Initially establishing a 
prior for this latent function, the available information aids in 
deducing the values of hyperparameters that control various 
aspects of the function as well as the latent function's posterior 
distribution. 

Consider a dataset comprising observations denoted as 𝑥 =
(𝑥1, 𝑥2, … . . , 𝑥𝑁)  and 𝑦 = (𝑦1, 𝑦2 , … . . , 𝑦𝑛) . Here, 𝑥𝑡 =

(𝑥𝑡,1, 𝑥𝑡,2, … , 𝑥𝑡,𝑃)
𝑇
 represents the vector of 𝑝 inputs at time 𝑡, 

and 𝑦𝑡 corresponds to the associated binary response, i.e., 𝑦𝑡 ∈
{1, −1} for 𝑡 =  1,· · · , 𝑛. To streamline the representation of 
the response distribution 𝑦𝑡 , it is expedient to introduce the 
concept of an unobserved "latent function," denoted as 𝑓𝑡. 

𝑝(𝑦𝑡 = 1) = 𝐿𝑓(𝑓𝑡) (1) 

In the given context, 𝐿𝑓 serves as the link function, and 𝑓𝑡 =
𝑋𝑡
′𝛽, where β denotes the coefficient vector. This implies that 

the likelihood of 𝑦𝑡 = 1  is contingent on a nonlinear function, 
specifically the result of the linear combination of the input data 
𝑋𝑡 . To illustrate, a logistic model for a binary target can be 
conceptualized as follows: 

𝑝(𝑦𝑡 = 1) = [1 = exp (−𝑋𝑡
′𝛽)]−1 (2) 

The link function is defined as 𝐿𝑓(𝑧)  =  (1 +
 𝑒𝑥𝑝(−𝑧))−1. 

Given inputs 𝑋1, 𝑋2, · · · ,𝑋𝑛, let the latent functions 𝑓 =
 [𝑓 (𝑋1),· · · , 𝑓 (𝑋𝑛)]  follow a multivariate Gaussian 
distribution. Its mean and covariance functions entirely specify 
a Gaussian process. In simpler terms: 

𝑓 |𝑋 ∼  𝐺𝑃 (𝜇(𝑋), 𝑉(𝑋, 𝑋′)) (3) 

Here, the mean vector 𝜇(𝑋)  is represented as [𝜇(𝑋1),· · ·
 , 𝜇(𝑋𝑛)], while 𝑉(𝑋, 𝑋′) signifies the 𝑛 × 𝑛 covariance matrix 
of 𝑓, where the (𝑖, 𝑗)-th element 𝑉𝑖,𝑗 is expressed as 𝑉(X𝑖 ,  X𝑗). It 
is pertinent to note that for this article, 𝜇(𝑋) is considered to be 
zero, specifically 𝜇(𝑋)  =  0. 

𝑓 |𝑋 ∼  𝐺𝑃 (0, 𝑉(𝑋, 𝑋′)) (4) 

The covariance function, 𝑉(𝑋, 𝑋′), is pivotal in defining the 
relationship between latent variables, determining the response 
at a single input, 𝑋𝑖, is influenced by responses at another input, 
𝑋𝑗. Different kernel functions, such as the Automatic Relevance 

Determination (ARD) exponential kernel function outlined in 
Eq. (5), can be utilized to define the covariance function 𝑉(·,·). 
These kernel functions introduce varying levels of smoothness 
and structural characteristics, offering flexibility to tailor the 
covariance function to capture the intricate relationships 
between latent variables more effectively. 

𝑉(𝑋𝑖 , 𝑋𝑗 ) = 𝜎0
2𝑒𝑥𝑝 (−

1

2
∑

(𝑋𝑖,𝑙 − 𝑋𝑗,𝑙)
2

λ𝑙
2

𝑛

𝑙=1

) (5) 

The hyper-parameters 𝜆𝑙
′s represent the characteristic length 

scales and the scale parameter 𝜎0
2 signifies the relevance of 

different regions. In essence, the characteristic length scale 
provides a concise measure of the distance between input values 
𝑋𝑖, indicating the range within which response values become 
uncorrelated. 

Let 𝑋∗ represent the input data in the testing or prediction 
dataset. The latent value corresponding to the testing data is 
denoted as 𝑓∗  and expressed as 𝑋∗′𝛽 , can be derived. The 
posterior probabilistic prediction of the probability 𝜋∗ =
𝑝(𝑦∗ = 1) can be calculated using Eq. (6). 

𝑝(𝑦∗ = 1 | 𝑋, 𝑌 ,  𝑋∗) = ∫𝐿𝑓(𝑓∗)𝑝(𝑓∗| 𝑋, 𝑌 , 𝑋∗)𝑑𝑓∗, (6) 

Where 

𝑝(𝑓∗| 𝑋, 𝑌 ,  𝑋∗)  =  ∫ 𝑝(𝑓∗ | 𝑋,  𝑋∗, 𝑓 )𝑝(𝑓 | 𝑋, 𝑌 )𝑑𝑓  (7) 

The probability 𝑝(𝑓 |𝑋, 𝑌)  can be computed using the 
formula presented in Eq. (8). 

𝑝(𝑓 |𝑋, 𝑌 )  =  
1

𝑍
 𝑝(𝑓 |𝑋) ∏𝑝(𝑦𝑖|𝑓𝑖)

𝑛

𝑖=1

  (8) 

Here, 𝑝(𝑓 |𝑋) denotes the Gaussian prior distribution of 𝑓, 
𝐺𝑃 (0, 𝑉(𝑋, 𝑋′). The normalization term 𝑍 corresponds to the 
marginal likelihood, expressed as 𝑍 =
∫ 𝑝(𝑓 |𝑋) ∏ 𝑝(𝑦𝑖|𝑓𝑖)

𝑛
𝑖=1 . For binary classification, a probit 

likelihood is employed, where 𝑝(𝑦𝑖|𝑓𝑖) represents the density 
function of a standard normal distribution. 

The computational complexity of Gaussian process methods 
is typically 𝑂(𝑛3) due to the inversion of the covariance matrix. 
However, various sparse approximation techniques, including 
Markov Chain Monte Carlo (MCMC), Laplace approximation 
(LA), expectation propagation (EP), and variational inference 
(VI), have been introduced to mitigate this complexity. For a 
detailed exploration of these approximation methods in the 
context of Gaussian Process Classification (GPC), refer to [28]. 
Additionally, [29] provides a comprehensive review of various 
sparse approximation methods. 

In the investigation conducted, the Expectation Propagation 
(EP) algorithm from [30] is employed to approximate the 
Gaussian posterior distribution specified in Eq. (6). Eq. (8), 
representing the posterior probability function 𝑝(𝑓 |𝑋, 𝑌), can 
be approximated using Eq. (9). 

𝑝(𝑓 |𝑋, 𝑌 )  =  
1

𝑍
 𝑝(𝑓 |𝑋) ∏𝑡𝑖(𝑓𝑖|𝑍𝑖 ,�̃�𝑖, �̃�2

2)

𝑛

𝑖=1
= 𝒩(𝜇, ∑) 

(9) 

The site parameters, expressed as �̃�𝑖  and �̃�𝑖
2 , are integral 

components within the normalized Gaussian distribution 
denoted by the notation 𝒩. 

𝜇 = ∑ ∑̃−1�̃� (10) 

And 

∑ = (𝑉−1 + ∑̃−1)−1 (11) 
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Matrix ∑̃ is a diagonal matrix characterized by the elements 

∑̃𝑖𝑖 = �̃�𝑖
2, and �̃� = (�̃�𝑖 , … , �̃�𝑁). 

In accordance with Eq. (7) and (9), Eq. (12) presents the 
Gaussian approximation to the posterior distribution outlined in 
Eq. (6). 

𝑃(𝑦∗ = 1 | 𝑋, 𝑌 ,  𝑋∗)

=  Φ

(

 
𝑉∗′(𝐾 + ∑̃)

−1
�̃�

√1 + 𝑉( 𝑋∗,  𝑋∗) − 𝑉∗′(𝑉 + ∑̃)
−1
𝑉∗′)

  
(12) 

Here 𝑉∗ =  𝑉(𝑋,  𝑋∗). 

IV. OPTIMIZATION ALGORITHMS 

A. Coot Optimization Algorithm (COA) 

The Coot Optimization Algorithm (COA) draws inspiration 
from the collective behaviours of Coots. Water birds are known 
for various movements on the water, including random, chain, 
leader-driven, and leader-adjusted behaviours. In its 
metaheuristic optimization approach, COA initializes a 
population randomly based on Eq. (13) [31]: 

𝐶𝑃(𝑖) = 𝑟𝑎𝑛𝑑 (1,𝑁) × (𝑈𝑏 − 𝐿𝑏) + 𝐿𝑏 (13) 

𝐶𝑃(𝑖) represents the positions of an individual coot, where 
𝑁 is the problem's dimensionality or the number of variables. 
𝑈𝑏 and 𝐿𝑏 indicate the upper and lower limits of the exploration 
space for the search. 

𝑈𝑏 = [𝑈𝑏1, 𝑈𝑏2, … , 𝑈𝑏𝑁] , 𝐿𝑏 = [𝐿𝑏1, 𝐿𝑏2, … , 𝐿𝑏𝑁] (14) 

Following the initial population setup, the positions of the 
coots are then modified using four distinct movement patterns. 

1) Random movement: The position S for this particular 

movement is initially randomized according to the equation 

outlined in Eq. (15): 

𝑆 = 𝑟𝑎𝑛𝑑(1, 𝑁) × (𝑈𝑏 − 𝐿𝑏) + 𝐿𝑏 (15) 

To avoid entrapment in local optima, the position is updated 
following the procedure defined in Eq. (16): 

𝐶𝑃(𝑖) = 𝐶𝑃(𝑖) + 𝐴 × 𝑅2 × (𝑆 − 𝐶𝑃(𝑖)) (16) 

The variable 𝑅2  is a randomly generated number falling 
within the interval [0,1], while A is computed using the equation 
specified in Eq. (17): 

𝐴 = 1 −𝑊 × (
1

𝐼𝑡𝑒𝑟
) (17) 

𝐼𝑡𝑒𝑟 denotes the maximum allowable number of iterations, 
and 𝑊 represents the current iteration count. 

2) Chain movement: To perform the chain movement, the 

average position of two coot birds can be computed using the 

formula provided in Eq. (18): 

𝐶𝑃(𝑖) =
𝐶𝑃(𝑖 − 1) + 𝐶𝑃(𝑖)

2
 (18) 

where, 𝐶𝑃(𝑖 − 1) represents the position of the second coot 
in the sequence. 

3) Adjusting position according to the leader: In each 

subgroup, the position of a coot bird is modified in alignment 

with the leader's position, resulting in the follower moving 

closer to the leader. The leader is chosen based on the equation 

specified in Eq. (19). 

𝑞 = 1 + (𝑖 𝑀𝑂𝐷 𝑁𝑊) (19) 

where, 𝑞  denotes the index of the leader, 𝑖  represents the 
number of the follower coot bird, and 𝑁𝑊 signifies the overall 
count of leaders in the group. 

In this specific movement, the position of a coot is adjusted 
following the formula provided in Eq. (20): 

𝐶𝑃(𝑖) = 𝐿𝑃(𝑞) + 2 × 𝑅1 × 𝐶𝑜𝑠(2𝑅𝜋) × (𝐿𝑃(𝑞)
− 𝐶𝑃(𝑖)) 

(20) 

The notation 𝐶𝑃(𝑖)  represents the current position of the 
coot bird, and 𝐿𝑃(𝑞)  stands for the position of the selected 
leader. The parameters 𝑅1, a random number within [0, 1], and 
𝑅, a random number within [-1, 1], play a role in the position 
update computation outlined in Eq. (20). 

4) Leader movement: The positions of leaders undergo 

updates according to Eq. (21), which are aimed at transitioning 

from local optimal positions to global optimal positions. 

𝐿𝑃(𝑖) =

{
𝐵 × 𝐵3 × 𝐶𝑜𝑠(2𝜋𝑅) × (𝑔𝐵𝑠𝑡 − 𝐿𝑃(𝑖)) + 𝑔𝐵𝑠𝑡    𝐵4 < 0.5

𝐵 × 𝐵3 × 𝐶𝑜𝑠(2𝜋𝑅) × (𝑔𝐵𝑠𝑡 − 𝐿𝑃(𝑖)) − 𝑔𝐵𝑠𝑡    𝐵4 ≥ 0.5
 

(21) 

In this scenario, 𝑔𝐵𝑠𝑡 represents the optimal position, and 
𝐵3 and 𝐵4 are random numbers within the interval [0, 1]. The 
value 𝐵 is determined through the calculation outlined in Eq. 
(22):  

𝐵 = 2 − 𝐿 × (
1

𝐼𝑡𝑒𝑟
) (22) 

B.  Population-based Vortex Search Algorithm (PVSA) 

The Vortex Search algorithm, a metaheuristic known for its 
efficient exploitation capabilities, revolves around a single 
solution [32]. It swiftly generates new candidate solutions using 
a Gaussian distribution, clustering them around a central point. 
However, this approach may face premature convergence issues 
in specific situations despite efforts to maintain diversity in the 
search space. Population-based approaches, particularly 
effective in exploration phases, excel in investigating 
unexplored positions by generating fresh coordinates based on 
accumulated knowledge from previous iterations [33]. 

1) Initializing: In the algorithm's setup phase, crucial 

control parameters such as population size (psize), vortex size 

(vsize), termination criteria, and mutation probability (𝜂𝑚) are 

defined. The psize parameter determines the total candidate 

solutions generated in one iteration, with 𝑣𝑠𝑖𝑧𝑒 being half of 

𝑝𝑠𝑖𝑧𝑒 . Initially, the candidate solutions (CS) count equals 

𝑣𝑠𝑖𝑧𝑒 , extending subsequently to 𝑝𝑠𝑖𝑧𝑒. The algorithm halts 

upon reaching the predetermined maximum number of function 

evaluations (𝑚𝑎𝑥𝐹𝐸𝑠). In the second phase, the polynomial 
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mutation operation is contingent on the probability parameter 

𝜂𝑚 . Furthermore, 𝜇0  and 𝑞0  are computed sequentially using 

Eq. (23) and Eq. (24). 

𝜇0
𝑖 =

𝑢𝑝𝑖 + 𝑙𝑜𝑤𝑖
2

 (23) 

𝑞0
𝑖 = 𝜎0

𝑖 =
max (𝑢𝑝𝑖) − min (𝑙𝑜𝑤𝑖)

2
 (24) 

𝑢𝑝 means upper, and 𝑙𝑜𝑤 means lower. 

2) First phase: In the initial iteration of this stage, a 

population of 𝑝𝑠𝑖𝑧𝑒  individuals is randomly generated. 

Subsequent iterations limit random generation to only half of 

the population, denoted as 𝑣𝑠𝑖𝑧𝑒. The stage concludes with the 

update of the central point (𝜇), achieved by replacing it with the 

best-discovered solution. This update employs a Gaussian 

distribution to generate half of the population, following the 

principles outlined in Eq. (25) of the original VS algorithm. 

While one-half of the population undergoes exploitation 

focused on the best centre, the other half is updated using a 

population-based approach with selection pressure. Solutions 

exceeding a specified limit are adjusted to fall within the 

designated range. 

𝑠𝑖
𝑡(𝑥𝑖

𝑡 |𝜇𝑡, 𝑣) = ((2𝜋)
𝑑|𝑣|)−(

1
2
) 𝑒

(−1/2(𝑥𝑖
𝑡−𝜇𝑡)

𝑇
𝑣−1(𝑥𝑖

𝑡−𝜇𝑡)

 (25) 

𝑠𝑖(𝑙𝑜𝑤𝑖 ∨ 𝑠𝑖)𝑢𝑝𝑖 → 𝑠𝑖
= 𝑟𝑎𝑛𝑑 × (𝑢𝑝𝑖 − 𝑙𝑜𝑤𝑖) + 𝑙𝑜𝑤𝑖  

(26) 

The original VS algorithm utilizes the initial centre point 
(𝜇0) to generate the initial population, though it is not directly 
part of that population. A modification to the VS algorithm has 
given rise to PVSA algorithm variants. In 𝑃𝑉𝑆𝐴𝑎 , 𝜇0  is 
included in the initial population, while 𝑃𝑉𝑆𝐴𝑏 excludes it. In 
the first iteration of 𝑃𝑉𝑆𝐴𝑎 , 𝜇0 serves as the initial candidate 
solution ( 𝑃𝑂𝑃(1) ) in the population, with the remaining 
𝑝𝑠𝑖𝑧𝑒 − 1  candidate solutions ( 𝑃𝑂𝑃(2: 𝑝𝑠𝑖𝑧𝑒) ) generated 
randomly. In contrast, the initial population of 𝑃𝑉𝑆𝐴𝑏 is formed 
by randomly generating 𝑝𝑠𝑖𝑧𝑒  candidate solutions 
(𝑃𝑂𝑃(1: 𝑝𝑠𝑖𝑧𝑒)). 

3) Second phase: Population-based algorithms, distinct 

from single-solution counterparts, leverage interactions among 

candidate solutions across iterations to adapt their positions in 

the search process. These algorithms encapsulate the 

experiences of candidates collectively or individually in vector 

form, fostering effective information exchange. Take the PVSA 

algorithm as an example, employing a proportional selection 

approach amalgamated from the observer bee phase of the ABC 

algorithm with tailored adjustments for problem minimization. 

Eq. (27) computes the selection probability vector (𝑝𝑏) for each 

candidate solution. 

𝑝𝑏𝑖 = 𝑐𝑠𝑢𝑚𝑖/𝑐𝑠𝑢𝑚𝑝𝑠𝑖𝑧𝑒 (27) 

𝑐𝑠𝑢𝑚𝑖 =∑𝑛𝑜𝑟𝑚𝑝𝑖   𝑎𝑛𝑑

𝑖

𝑗=1

 

𝑛𝑜𝑟𝑚𝑝𝑖 = 𝑝𝑖/ ∑ 𝑝𝑖   𝑎𝑛𝑑

𝑝𝑠𝑖𝑧𝑒

𝑖=1

 

𝑝𝑖 = 0.9 × (𝑚𝑎𝑥{𝑓} − 𝑓𝑖) + 0.1 

The variable 𝑓 symbolizes the fitness metric linked to the 
𝑖 − 𝑡ℎ solution, while 𝑚𝑎𝑥{𝑓 ⃗ }  signifies the maximum fitness 
value within the existing population. 𝑝𝑖  represents the rescaled 
fitness measure of the 𝑖 − 𝑡ℎ solution concerning minimization. 
The probabilities derived from the normalization of 𝑝 values are 
denoted as 𝑛𝑜𝑟𝑚𝑝, ensuring their confinement within the range 
of  [0.5 − 1]. 

In the latter segment of the population, encompassing 
solutions identified as 𝐶𝑆𝑖  where 𝑖 lies within the range of 
𝑣𝑠𝑖𝑧𝑒 +  1 𝑡𝑜 𝑝𝑠𝑖𝑧𝑒 , a neighbouring solution is randomly 
chosen from the entire population. The selection is influenced 
by the 𝑝𝑟𝑜𝑏  vector. Employing Eq. (28), the value of a 
randomly selected dimension is altered to generate a novel 
solution designated as 𝐶𝑆𝑛𝑒𝑤. Following this modification, the 
adjusted dimension's value is scrutinized to determine if it 
surpasses predefined limits, as specified in Eq. (29). 

𝐶𝑆𝑛𝑒𝑤 = 𝐶𝑆𝑐𝑢𝑟  𝑡ℎ𝑒𝑛 𝐶𝑆𝑛𝑒𝑤
𝑖 = 𝐶𝑆𝑐𝑢𝑟

𝑖 +
(𝐶𝑆𝑐𝑢𝑟

𝑖  − 𝐶𝑆𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟
𝑖 ) × (𝑟 − 0.5) × 2  

(28) 

𝐶𝑆𝑛𝑒𝑤 = {

𝑙𝑜𝑤𝑖 ,                        𝐶𝑆𝑛𝑒𝑤
𝑖 < 𝑙𝑜𝑤𝑖   

𝐶𝑆𝑛𝑒𝑤
𝑖 ,        𝑙𝑜𝑤𝑒𝑟𝑖 ≤ 𝐶𝑆𝑛𝑒𝑤

𝑖 ≤ 𝑢𝑝𝑖
𝑢𝑝𝑖 ,                        𝐶𝑆𝑛𝑒𝑤

𝑖 > 𝑢𝑝𝑖

  (29) 

The evaluation of the newly generated solution, denoted as 
𝐶𝑆𝑛𝑒𝑤 , involves incorporating a randomly chosen number 𝑟 
from the range of 0.5 to 1. Subsequently, the newly computed 
fitness is juxtaposed with the fitness of the current solution, 
𝐶𝑆𝑐𝑢𝑟 . If 𝐶𝑆𝑛𝑒𝑤  demonstrates a superior fitness compared to 
𝐶𝑆𝑐𝑢𝑟 , it supplants the latter. 

However, in cases where 𝐶𝑆𝑛𝑒𝑤  falls short of surpassing 
𝐶𝑆𝑐𝑢𝑟 , a mutant solution designated as CSmut, is crafted using 
polynomial mutation. This mutation process adheres to the 
procedural steps expounded in Eq. (30). 

𝐶𝑆𝑚𝑢𝑡 = 𝐶𝑆𝑐𝑢𝑟 + 𝛿𝑞 × (𝑢𝑝 − 𝑙𝑜𝑤) 

𝛿𝑞 =

{
 

 [
2𝑟+(1−2𝑟)

(1−𝛿1)
Ƞ𝑚+1]

1

Ƞ𝑚+1
,                               𝑖𝑓  𝑟 ≤ 0.5

1 − [
2(1−𝑟)+2(𝑟−0.5)

(1−𝛿2)
Ƞ𝑚+1 ]

1

Ƞ𝑚+1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝛿1 =
𝐶𝑆𝑐𝑢𝑟 − 𝑙𝑜𝑤

𝑢𝑝 − 𝑙𝑜𝑤
 

𝛿2 =
𝑢𝑝 − 𝐶𝑆𝑐𝑢𝑟
𝑢𝑝 − 𝑙𝑜𝑤

 

(30) 
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In these situations, a random number 𝑟𝑛𝑑 is generated for 
each dimension between 0.5 and 1. The polynomial mutation 
operator, known for overcoming local optima in metaheuristics, 
introduces perturbations into the solution. A selection process 
favours the superior solution between 𝐶𝑆𝑐𝑢𝑟  and 𝐶𝑆𝑚𝑢𝑡 . After 
this step, the central point 𝜇 is updated with the best solution. 

After assessing Eq. (31), the radius size for the subsequent 
generation diminishes at the conclusion of the ongoing 
generation. The PVS algorithm persists until it reaches the 
maximum number of function evaluations. Initially, 𝑣𝑠𝑖𝑧𝑒 
solutions within the reduced radius are duplicated, and in the 
subsequent phase, random data is incorporated into the solutions 
constituting the remaining population. 

𝑟𝑡 = 𝜎0 ×
1

𝑥
× Γ(𝑥, 𝑎𝑡) 

𝑤ℎ𝑒𝑟𝑒  𝑎𝑡 =
(𝑀𝑎𝑥𝐹𝐸𝑠 − 𝐹𝑒𝑠)

𝑀𝑎𝑥𝐹𝐸𝑠
 

𝑡ℎ𝑒𝑛  𝑖𝑓  (𝑎𝑡 ≤ 0)𝑎𝑡 = 0.1 

(31) 

V. PERFORMANCE EVALUATION METRICS 

The evaluation of the classification performance of the 
developed models is delineated through the presentation of 
statistical metrics, as detailed in Eq. (32) – Eq. (35): 

𝐴 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
 (32) 

𝑃 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 (33) 

𝑅 = 𝑇𝑝𝑅 =
𝑇𝑝

𝑃
=

𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 (34) 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑅 ×  𝑃

𝑅 + 𝑃
 (35) 

where 𝐴, 𝑃 , and 𝑅  represent Accuracy, Precision, and 
Recall, 𝑇𝑝 (True positives) denotes the occurrences where the 
model accurately predicted the outcome. Conversely, 𝐹𝑝 (False 
positives) represents instances where the model's forecasts were 
incorrect. 𝑇𝑛  (True negatives) refers to situations where the 
model made accurate predictions, while 𝐹𝑛  (False negatives) 
pertains to instances where the model inaccurately predicted the 
outcome. 

VI. CLUSTERING 

Clustering is a fundamental technique in data analysis and 
machine learning, utilized to identify and group similar data 
points within a dataset. This process involves partitioning data 

into clusters, where items in the same cluster share common 
characteristics, while those in different clusters are distinct from 
each other. The primary goal of clustering is to uncover inherent 
structures in data without prior knowledge of category labels, 
making it an unsupervised learning method. Various clustering 
algorithms have been developed, each with its unique approach 
to grouping data. K-means clustering, one of the most widely 
used methods, partitions data into K distinct clusters by 
minimizing the variance within each cluster. It is particularly 
effective for datasets where clusters are spherical and of similar 
size. Hierarchical clustering, another popular technique, builds 
a tree-like structure of nested clusters, offering a visual 
representation of data organization. This method is 
advantageous when the number of clusters is not predetermined. 
In the context of educational assessment, clustering can be a 
powerful tool. By applying clustering algorithms to student 
performance data, educators can identify distinct groups of 
students with similar learning behaviors and academic 
outcomes. For instance, clustering students based on their scores 
during the G2 and G3 exams can reveal patterns that are not 
immediately apparent through traditional grading methods. 
These insights can inform targeted interventions, tailored 
support, and personalized learning plans, ultimately enhancing 
the educational experience. Moreover, clustering combined with 
predictive models, like the Gaussian Process Classification 
(GPC) discussed earlier, can further refine the categorization of 
student performance. By integrating clustering techniques with 
optimization algorithms such as the Population-based Vortex 
Search Algorithm (PVS) and the COOT Optimization 
Algorithm (COA), educators can achieve more accurate and 
actionable predictions. This hybrid approach not only improves 
the precision of student assessments but also supports strategic 
decision-making in educational institutions. 

VII. CONVERGENCE ASSESSMENT 

In this study, the GPC underwent optimization through the 
application of metaheuristic optimization algorithms, 
specifically PVS and CO. The integration of these algorithms 
with GPC led to the development of hybrid models, termed 
GPPV and GPCO. To assess the convergence of these optimized 
models, a robust evaluation method was employed, which 
involved generating a convergence curve, exemplified in Fig. 2. 
This curve illustrates the trajectory of Accuracy measurements 
across 200 iterations. Upon comparative analysis of line plots 
for G2 and G3 in Fig. 2, a distinct observation emerges. Notably, 
both the GPPV and GPCO models stabilize before the 150th 
iteration. Further examination reveals that throughout this 
convergence process, the GPPV consistently outperforms its 
GPCO counterpart in both G2 and G3 scenarios. 
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Fig. 2. Line plot for convergence of hybrid models. 

VIII. SIGNIFICANCE OF MODEL 

The significance of the models developed in this study lies 

in their potential to revolutionize educational assessment and 

intervention strategies. The choice of the Gaussian Process 

Classification (GPC) model, enhanced with the Population-

based Vortex Search Algorithm (PVS) and the COOT 

Optimization Algorithm (COA), was driven by several key 

factors that make these methods particularly suitable for 

addressing the complexities of educational evaluation. Firstly, 

the GPC model is renowned for its robustness and flexibility in 

handling non-linear relationships, which are often present in 

educational data. This makes it highly effective in capturing the 

nuanced patterns of student performance. Secondly, the 

integration of PVS and COA enhances the GPC model’s 

predictive accuracy and reliability. These optimization 

algorithms are designed to efficiently search large solution 

spaces and find optimal parameter settings, which is crucial for 

developing precise predictive models in complex domains like 

education. Furthermore, these advanced methodologies offer 

more than mere categorization—they provide a comprehensive 

framework for educational institutions to identify students who 

may need additional support or resources early on. By 

accurately predicting which students are likely to struggle, 

educators can implement targeted interventions to address 

specific needs, thereby improving overall educational 

outcomes. This proactive approach can help reduce the 

alarming failure rates, particularly in language courses, and 

promote both academic and personal development among 

students. Moreover, the use of PVS and COA exemplifies the 

integration of cutting-edge computational techniques in 

educational research. This not only enhances the predictive 

power of the models but also paves the way for future studies 

to explore and implement similar methodologies in different 

educational contexts. In summary, the models developed in this 

study are significant for their ability to provide accurate, early 

predictions of student performance, enabling targeted 

interventions and fostering improved educational outcomes. 

The innovative use of optimization algorithms further 

underscores the potential of advanced computational 

techniques in enhancing educational assessment and 

intervention strategies. 

IX. RESULTS AND DISCUSSION 

The primary objective of this study was to introduce and 
evaluate three predictive models employing a classification 
methodology, to forecast students' academic performance in 
language courses and strategically enhance subsequent grades. 
Among these models, one utilized a Gaussian Process Classifier 
(GPC), while the remaining two were derived through the 
optimization of GPC via the Population-based Vortex Search 
Algorithm (PVS) and COOT Optimization Algorithm (CO). 
The dataset underwent partitioning into 70% for training and 
30% for model testing. Evaluation metrics, including Accuracy, 
Precision, Recall, and F1-score, were computed and presented 
for both the training and testing phases of all models in Tables I 
and II. It is noteworthy that metric values during the training 
phase exceeded those observed in the testing phase across all 
models. The GPPV model exhibited superior performance, 
recording the highest values across all metrics for G2 and G3 
(Accuracy G2 = 0.918, Accuracy G3 = 0.897, Precision G2 = 
0.925, Precision G3 = 0.900, Recall G2 = 0.918, Recall G3 = 
0.897, F1-score G2 = 0.916, and F1-score G3 = 0.896). 

These input variables encompass a diverse array of data 
types, including nominal, numeric, and binary, thereby 
providing a comprehensive and informative dataset for the 
study. Moreover, the academic year comprises three final 
exams, with a focus on predicting the last two exams, 
specifically G3 and G2. These grades, ranging from zero 
(indicating the lowest score) to 20 (representing the highest 
attainable score), are reported by the school. To further classify 
the reported scores, students are segmented into four distinct 
categories based on their G3 and G2 performance: Poor (0-12 
range), Acceptable (12-14 range), Good (14-16 range), and 
Excellent (16-20 range). According to Fig. 3, the examination of 
the G2 distribution for the GPPV model unveils a dominant 
majority of students (51.1%) falling within the Poor category. 
Subsequently, 25.57% are classified as Acceptable, 14.17% as 
Good, and 7.7% as Excellent. Transitioning to the G3 analysis 
for the GPPV model, 46.37% of students are categorized as 
Poor, followed by 23.72% in the Acceptable range, 17.25% in 
the good category, and 12.63% in the Excellent category. These 
distribution patterns in Fig. 3 delineate the varying proportions 
of students across performance categories, providing insights 
into the effectiveness of the GPPV model in predicting academic 
outcomes in both G2 and G3 assessments. 
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TABLE I.  RESULT OF PRESENTED MODEL FOR G2 

Model phase 
Index values 

Accuracy Precision Recall F1_score 

GPC 

Train 0.894 0.909 0.894 0.885 

Test 0.887 0.904 0.887 0.881 

All 0.892 0.907 0.892 0.884 

GPCO 

Train 0.914 0.918 0.914 0.910 

Test 0.892 0.903 0.892 0.892 

All 0.908 0.914 0.908 0.905 

GPPV 

Train 0.914 0.921 0.914 0.911 

Test 0.928 0.934 0.928 0.928 

All 0.918 0.925 0.918 0.916 

TABLE II.  RESULT OF PRESENTED MODEL FOR G3 

Model phase 
Index values 

Accuracy Precision Recall F1_score 

GPC 

Train 0.883 0.889 0.883 0.881 

Test 0.862 0.865 0.862 0.858 

All 0.877 0.882 0.877 0.874 

GPCO 

Train 0.901 0.905 0.901 0.899 

Test 0.851 0.852 0.851 0.848 

All 0.886 0.887 0.886 0.884 

GPPV 

Train 0.905 0.909 0.905 0.904 

Test 0.877 0.882 0.877 0.874 

All 0.897 0.900 0.897 0.896 
 

Table III presents a comparative analysis of the accuracy 

results from existing studies alongside the findings of the 

present work. The focus of this comparison is to highlight the 

advancements in predictive modeling accuracy achieved in the 

current study compared to previous research. In previous 

studies, various predictive models were employed, including 

Decision Tree Classification (DTC) and Naive Bayes 

Classification (NBC). Kabakchieva [34] utilized DTC, 

achieving an accuracy of 72.74%. Similarly, Bichkar and R. R. 

Kabra [35] employed DTC and reported an accuracy of 

69.94%. Nguyen and Peter [36] also used DTC, but with a 

significantly higher accuracy of 82%. On the other hand, Edin 

Osmanbegovic et al. [37] implemented NBC, achieving an 

accuracy of 76.65%. The present study introduces a novel 

approach using the Gaussian Process Classification model 

optimized with the Population-based Vortex Search Algorithm 

(GPPV) to predict student performance in language courses 

during the G2 and G3 exams. The results demonstrate a 

substantial improvement in predictive accuracy. For G2, the 

GPPV model achieved an accuracy of 91.8%, while for G3, the 

accuracy was 89.7%. These findings indicate a significant 

enhancement in prediction accuracy compared to the models 

used in prior studies. The GPPV model's superior performance 

can be attributed to the advanced optimization techniques 

incorporated, which likely contribute to its higher precision in 

categorizing students' performance levels. In summary, the 

present study's use of the GPPV model represents a notable 

advancement in the field of educational predictive analytics. 

The increased accuracy rates for both G2 and G3 exams 

underscore the model's potential to more effectively assess and 

anticipate student performance, thus providing valuable 

insights for educational institutions aiming to improve 

academic outcomes. 

TABLE III.  COMPARING RESULTS OF EXISTING STUDIES AND PRESENT 

WORK 

Author (s) Models Accuracy 

Kabakchieva [34] DTC 72.74% 

Bichkar and R. R. Kabra [35] DTC 69.94% 

Nguyen and Peter [36] DTC 82% 

Edin Osmanbegovic et al. [37] NBC 76.65% 

Present study for G2 GPPV 0.918 

Present study for G3 GPPV 0.897 

Tables IV and V comprehensively present the values 
corresponding to Precision, Recall, and F1-score indices, 
serving as evaluative metrics for the classification performance 
of the developed models concerning distinct student categories 
in both G2 and G3 assessments. In the ensuing analysis, a 
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meticulous examination of Precision values elucidates nuanced 
distinctions among the models across performance categories. 
In the Excellent group of G2, GPCO and GPC models exhibit 
comparable performances, whereas the GPPV model surpasses 
both, achieving a Precision value of 0.91. Conversely, in the 
Good and Poor groups, the GPC model demonstrates superior 
performance. Notably, in the Acceptable group, GPCO and 
GPPV, with a Precision of 0.78, outperform the singular GPC 
model. In the context of the G3 test, all three models 
demonstrate optimal Precision in the Good group with a 
maximum value of 1, while their performances converge at 0.84 
in the Excellent group. 

Furthermore, discerning comparisons between Acceptable 
and Poor categories reveal the GPPV model's superior 
performance. Upon evaluating Recall and F1-score, the GPPV 
model consistently outperforms its counterparts in both G2 and 
G3 predictions. Moreover, a comprehensive comparison 
involving Recall, F1-score, and Precision collectively 
substantiates the superior performance of the GPPV model 
across G2 and G3 assessments in contrast to other models. 

The crux of the confusion matrix lies in its fundamental 
principle: accurately predicted instances align along the main 
diagonal, while misclassifications diverge from this central axis. 
In Fig. 4, particularly within the context of G2, a meticulous 
examination reveals misclassifications in the GPPV model, 
totaling 53 instances, compared to 60 in the GPCO model and a 
relatively higher count of 67 in the single GPC model. 
Acknowledged as the superior performer, the GPPV model 
exhibits the fewest misclassifications, thus boasting superior 
predictive accuracy. Likewise, in G3, the GPPV model excels 
with 67 misclassifications, surpassing the GPCO model with 74 
and the single GPC model with 80 misclassifications. This 
consistent pattern underscores the efficacy of the GPPV model, 
validating its superior performance in minimizing 
misclassifications and enhancing predictive accuracy across 
both G2 and G3 scenarios. Fig. 5 provides a visual 
representation of the confusion matrix, offering a clear portrayal 
of the accuracy of each model. Through meticulous analysis and 
comparison, the GPPV model emerges as the frontrunner, 
demonstrating its reliability and efficacy in predictive modeling 
tasks. 

TABLE IV.  EVALUATION INDEXES OF THE DEVELOPED MODELS' PERFORMANCE BASED ON GRADES IN G2 

Model Grade 
Index values 

Precision Recall F1_score 

GPC 

Excellent 0.86 0.94 0.90 

Good 1.00 0.37 0.54 

Acceptable 0.69 0.88 0.78 

Poor 0.97 0.97 0.97 

GPCO 

Excellent 0.85 0.95 0.89 

Good 0.97 0.57 0.72 

Acceptable 0.78 0.85 0.81 

Poor 0.97 0.97 0.97 

GPPV 

Excellent 0.91 0.91 0.91 

Good 1.00 0.62 0.76 

Acceptable 0.78 0.92 0.85 

Poor 0.96 0.98 0.97 

TABLE V.  EVALUATION INDEXES OF THE DEVELOPED MODELS' PERFORMANCE BASED ON GRADES IN G3 

Model Grade 
Index values 

Precision Recall F1_score 

GPC 

Excellent 0.84 0.84 0.84 

Good 1.00 0.66 0.79 

Acceptable 0.74 0.77 0.75 

Poor 0.93 0.99 0.96 

GPCO 

Excellent 0.84 0.83 0.83 

Good 1.00 0.73 0.85 

Acceptable 0.79 0.79 0.79 

Poor 0.92 0.99 0.96 

GPPV 

Excellent 0.84 88.96 0.86 

Good 1.00 0.73 0.85 

Acceptable 0.79 0.79 0.79 

Poor 0.95 0.99 0.97 
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Fig. 3. 3D Bar plot for the comparison between the measured and predicted values. 

  

 
Fig. 4. Confusion matrix for each model's accuracy. 
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Fig. 5. Confusion matrix for each model's accuracy.

The depiction of model performance in Fig. 6, presented as 
a 3D Scatter plot mapping achievement percentages based on 
evaluative metrics, offers a nuanced understanding of the 
developed models. Through its volumetric representation, where 
higher cube numbers correspond to superior model 
performance, it underscores the thoroughness of the assessment. 
When comparing G2 and G3, the discernible prominence of the 
GPPV model above others signifies its superior performance. 
This superiority is further evidenced by the GPPV model's 
achievement of the highest precision predictions in both G2 
(0.9245) and G3 (0.9002). The visual insights gleaned from the 
3D Scatter plot not only accentuate the consistent prominence of 
the GPPV model but also affirm its superior Precision, thereby 
cementing its position as the optimal model for attaining 
accurate and reliable predictions across a spectrum of evaluation 
metrics and academic contexts. In essence, the 3D Scatter plot 
serves as a powerful tool for visually dissecting and 
comprehending the intricate nuances of model performance. Its 
depiction of achievement percentages based on evaluative 
metrics provides researchers with a holistic view, enabling them 
to discern patterns and trends that may not be immediately 
apparent through other means. This aids in making informed 

decisions regarding the selection and refinement of models, 
ultimately contributing to the advancement of predictive 
modeling in academic and research domains. 

Fig. 7 showcases the Receiver Operating Characteristic 
(ROC) curve, a pivotal tool meticulously delineated to evaluate 
the superior GPPV model with clarity. This visually immersive 
representation enables a nuanced comprehension of the model's 
performance across various thresholds. The Area Under the 
ROC Curve (AUC), a widely recognized metric, serves as a 
comprehensive gauge of predictive accuracy and classification 
efficacy for the GPPV model, with a perfect test achieving an 
AUC of 1. Upon comparing G2 and G3, the Excellent group 
dominates both predictions, achieving an AUC of 1 and boasting 
the largest area under the curve. Following closely, the Poor 
group exhibits a slightly smaller difference in G3 and a 
marginally larger gap in G2. In G2, subsequent rankings feature 
the Good model followed by the Acceptable model, whereas in 
G3, the positions of the Acceptable and Good models 
interchange, with the former claiming the third rank and the 
latter securing the fourth position.The ROC curve's depiction 
elucidates the model's discriminative ability across varying 
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thresholds, offering valuable insights into its performance 
characteristics. By analyzing the AUC metric, researchers can 
assess the model's overall predictive power and its ability to 
distinguish between classes. This comprehensive evaluation 

aids in informed decision-making regarding model selection and 
refinement, contributing to enhanced predictive modeling 
outcomes in diverse applications and research endeavors. 

 
Fig. 6. 3D Scatter plots the percentage of achievement for developed models based on evaluators. 

 

 

Fig. 7. The result of the ROC curve validation.  
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The validation of this study represents a pivotal step forward 
in affirming the efficacy and applicability of advanced 
predictive models within the realm of educational assessment 
and intervention. At the core of this validation process lies a 
meticulous examination of the methodologies employed. The 
deliberate integration of the Gaussian Process Classification 
(GPC) model with the Population-based Vortex Search 
Algorithm (PVS) and the COOT Optimization Algorithm 
(COA) was predicated on their demonstrated capabilities in 
handling non-linear relationships and navigating complex 
parameter spaces. This methodological selection was not 
arbitrary but grounded in empirical evidence and theoretical 
underpinnings, ensuring that the models were robustly equipped 
to address the multifaceted nature of educational data. The 
validation extends beyond the theoretical realm into practical 
implementation. Through rigorous testing and evaluation, the 
study demonstrated the tangible impact of these models in real-
world educational settings. By accurately identifying students in 
need of additional support and facilitating targeted 
interventions, the integrated approach showcased its ability to 
significantly enhance educational outcomes. Furthermore, the 
proactive nature of these interventions, particularly in 
addressing elevated failure rates, underscores the practical 
relevance and urgency of this research. By actively mitigating 
academic challenges and fostering holistic student development, 
the study exemplifies a paradigm shift towards more 
personalized and effective educational practices. Moreover, the 
incorporation of advanced optimization algorithms such as PVS 
and COA not only enhances the predictive power of the GPC 
model but also highlights the potential of cutting-edge 
computational methodologies in driving innovation within the 
educational landscape. 

In conclusion, the validation of this study serves as a 
testament to the transformative potential of advanced predictive 
models in shaping the future of educational assessment and 
intervention, paving the way for continued exploration and 
advancement in this vital field. 

X. CONCLUSION 

In the pursuit of advancing academic excellence and refining 
educational practices, this research emphasizes the instrumental 
role played by data mining and classification algorithms, 
specifically focusing on Gaussian Process models, in 
deciphering and foreseeing student performance in language 
courses. Diverging from conventional methodologies, this study 
introduces an inventive approach that integrates meta-heuristic 
optimization algorithms, notably the Population-based Vortex 
Search and COOT Optimization Algorithms (PVS and COA). 
These optimizers led to elevating the Precision and accuracy of 
student performance models, contributing a novel dimension to 
the existing body of literature. 

The extensive evaluation, encompassing vital metrics such 
as Accuracy, Precision, Recall, and F1-score, illuminates the 
considerable potential of these meta-heuristic algorithms in 
refining classification outcomes. Moreover, the stratification of 
649 students based on their final grades exposes the superior 
performance of the GPPV model, showcasing a remarkable 
capacity to accurately categorize the majority of students (596 
correct in G2 and 582 in G3), in contrast to the comparatively 

lower correct classifications by GPCO and GPC. Beyond 
contributing to the existing knowledge base, this study offers 
valuable insights for educators and institutions striving to 
optimize educational processes, foster academic success, and 
thereby advance societal development and progress. 

Despite its innovative approach, this study has several 
limitations. It focuses solely on language courses, which may 
limit the generalizability of its findings to other subjects. The 
dataset, while extensive, may not fully represent the diversity of 
student populations, potentially affecting the model's 
applicability in different educational contexts. Additionally, the 
reliance on historical data means the models may not adapt well 
to future changes in curricula or teaching methodologies. The 
meta-heuristic algorithms, although improving accuracy and 
precision, still leave room for errors, as not all student 
performance variability can be captured. Furthermore, external 
factors such as socio-economic conditions, psychological well-
being, and classroom dynamics, which can significantly impact 
student performance, are not accounted for in the models. 
Finally, the computational complexity of the optimization 
algorithms may pose practical challenges for their 
implementation in real-world educational settings. 
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