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Abstract—As a multi-fiber tracking model, the constrained 

spherical deconvolution (CSD) model is widely used in the field of 

fiber reconstruction. The CSD model has shown good 

reconstruction capabilities for crossing fibers in low anisotropy 

regions, which can achieve more accurate results in terms of brain 

fiber reconstruction. However, the current fiber tracking 

algorithms based on the CSD model have a few drawbacks in the 

selection of tracking strategies, especially in the certain crossing 

regions, which may lead to isotropic diffusion signals, premature 

termination of fibers, high computational complexity, and low 

efficiency. In this study, we proposed the fiber tracking method 

with adaptive selection of peak direction based on CSD model, 

called FTASP_CSD, for fiber reconstruction. The method first 

filters the fiber orientation distribution (FOD) peak threshold and 

eliminates peak directions lower than the set threshold. Secondly, 

a priority strategy is used to implement direction selection, and the 

tracking direction is adaptively adjusted according to the overall 

shape and needs of the FOD. Through dynamic selection of the 

maximum peak direction, the second maximum peak direction 

and the nearest peak direction, the tracking direction that best 

matches the true fiber direction is found. This method not only 

ensures spatial consistency, but also avoids the influence of stray 

peaks in the FOD that may be introduced by imaging noise on the 

fiber tracking direction. Experimental results on simulation and 

in vivo data show that the fiber bundles tracked by the 

FTASP_CSD method have a much smoother in the overall visual 

effect than the state-of-the-art methods. The fiber bundles tracked 

in the region of crossing or bifurcating fibers are more complete. 

This improves the angular resolution of the recognition of fiber 

crossings and lays a foundation for further in-depth research on 

fiber tracking technology. 

Keywords—Diffusion magnetic resonance imaging; constrained 

spherical deconvolution; fiber orientation distribution; fiber 
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I. INTRODUCTION 

White matter fibers are a critical component of the complex 
structure of the human brain, facilitating the exchange of 
information between different brain regions. The emergence of 
magnetic resonance diffusion tensor imaging technology has 
made it possible to study the morphology and distribution of 
white matter fiber bundles more effectively. Diffusion tensor 
imaging (DTI) [1] and white matter fiber tract tracking 
technology are commonly used in researching brain 
neurological diseases including, but not limited to apoplexy 
[2,3,4], schizophrenia [5,6], and multiple sclerosis [7,8]. By 
analyzing fiber bundles in different brain regions, researchers 
can reveal the mechanisms of neurological disease development 

and pathological changes, providing more accurate information 
for the diagnosis and treatment of related diseases. 

In recent years, the demand for increased accuracy in 
magnetic resonance imaging has grown due to rapid 
advancements in brain neuroscience. DTI is no longer sufficient 
for accurately reconstructing white matter nerve fibers as it can 
only represent fiber tracts with a single direction. To address this 
limitation, a series of high-angular resolution diffusion imaging 
(HARDI) methods have emerged to more accurately represent 
multiple fiber orientations within a single voxel. These methods 
can be broadly categorized as model-dependent or non-model-
dependent. Model-dependent methods use complex models to 
describe multiple fiber orientation distributions. Examples of 
model-dependent methods include the multi-tensor model 
(MTM) [9,10,11], the ball and stick model [12], and constrained 
spherical deconvolution (CSD) [13,14,15] and others. Non-
model-dependent methods, also known as q-space methods, are 
used to obtain the fiber orientation distribution function based 
on the Fourier transform relationship between the diffusion 
magnetic resonance signal and the diffusion tensor. These 
methods mainly include Q-ball imaging (QBI) [16,17], high-
order tensor (HOT) model [18,19,20], and spherical harmonic 
(SH) function [21,22]. The CSD model is notable for its simple 
mathematical model and its ability to represent regions with 
multiple fiber orientations. It captures the primary fiber bundle 
structures identified by the DTI model, the CSD model and is 
also useful in delineating intricate fiber configurations, such as 
crossing and branching fibers. Therefore, the CSD model is a 
widely used method for solving complex fiber structures and has 
gained attention from researchers widespread. In 2004, Tournier 
et al. [14] initially introduced a deconvolution algorithm that 
uses spherical harmonics to improve the accuracy of fiber 
direction information. This method aims to improve the 
accuracy of fiber direction information by leveraging the linear 
transformation relationship between the HARDI acquisition 
signal and the fiber direction di distribution function. However, 
the algorithm faces some challenges. Firstly, the high-frequency 
noise introduced by the signal acquisition process results in 
unnecessary negative values in the solution of the spherical 
inverse convolution model. In addition, the acquired signals 
limit the improvement of the spherical harmonic order, making 
it difficult to identify fiber crossing problems at small angles. To 
address these issues, in 2007, Tournier et al. [13] attempted to 
filter the high-frequency components of the spherical harmonics 
to improve noise immunity. However, this approach also results 
in a decrease in the angular resolution of the model. 
Subsequently, Patel et al. [23] proposed an iterative negative 
value adjustment method. This method makes the direction 

*Corresponding Author. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

1229 | P a g e  

www.ijacsa.thesai.org 

distribution function approach the non-negative domain through 
multiple iterations. However, due to the non-negativity of the 
solution space, it cannot be guaranteed that the noise will not 
increase as the angular resolution increases. In 2010, Calamante 
et al. [24] further proposed a super-resolution spherical 
deconvolution method to improve angular resolution and 
suppress noise to a certain extent. However, this method requires 
signals to be acquired in multiple gradient directions, involves a 
large number of calculations, and has a high order, making it 
unsuitable for clinically complex fiber structure reconstruction. 
Although the above model provides estimates of fiber 
orientation in white matter regions, it may produce inaccurate 
orientation estimates in voxels containing other tissue types 
(Gray matter, Cerebrospinal fluid). In 2014, Jeurissen et al. [25] 
proposed a multi-shell multi-tissue constrained spherical 
deconvolution model to solve this problem. The model simulates 
the main tissue types present in the brain, namely white matter, 
gray matter, and cerebrospinal fluid. It improves the difficulty in 
distinguishing multiple tissue types when using single-shell data 
in the past. By using multi-b-value data, exploiting the 
dependence of different tissue types on different b-values 
provides the CSD model with the opportunity to distinguish the 
contribution of each tissue type. 

There are many tracking algorithms based on the CSD model 
in the field of fiber tracking due to the superiority of the CSD 
model [26, 27, 28]. However, most of these algorithms adopt a 
probabilistic tracking strategy [27, 28], which can cause 
premature termination of fiber tracking at the white matter 
boundary. Moreover, the algorithm also requires a large number 
of random samples, resulting in low efficiency due to the high 
computational demand. Therefore, this paper proposed a new 
deterministic fiber tracking strategy based on the CSD model. 
This method uses multi-b value data to solve the CSD model 
based on estimating the tissue response function to obtain the 
fiber orientation distribution (FOD). Calculate the maximum 
and second maximum peak directions of FOD, and give priority 
to the maximum and second maximum peak directions as the 
tracking direction of the current voxel. This is because the peak 
direction in FOD represents the degree of contribution of fiber 
bundles, and the larger the peak direction, the more likely there 
are fiber bundles. If the angle between the largest and second 
largest peak directions and the previous step tracking direction 
is too large or the direction is opposite, then the peak direction 
with the greatest cosine similarity between the FOD peak 
direction and the previous step tracking direction, that is, the 
nearest peak direction, is selected as the fiber tracking direction. 
If neither is satisfied, the tracking will be terminated. The 
algorithm in this paper adaptively selects the tracking direction 
based on the overall shape of the FOD and historical tracking 
direction information to improve tracking accuracy and 
efficiency and better reveal the fiber structure in diffusion MRI 
data. 

II. METHODS 

The FTASP_CSD method involves several steps, including 
data preprocessing, extract gray and white matter boundaries, 
estimate response function, solving the CSD model to obtain the 
fiber orientation distribution, and performing the fiber tracking. 
The technical roadmap of the FTASP_CSD method is given in 
Fig. 1. 

 
Fig. 1. Fiber tracking technology roadmap. 

A. Solve the CSD Model 

The CSD model typically considers the overall diffusion 
signal as the convolution of the response function of a single 
fiber signal and the probability density function of the fiber 
direction on the sphere, as described in references [29, 30]. In 
the case where only one continuous fiber exists, the measured 
DW-MRI signal is called the signal response function, 

represented by R , which is an axially symmetric matrix. When 
multiple fibers are present in a single voxel, the measured DW-
MRI signal can be expressed as the convolution of the FOD and 
the signal response function on a sphere, as shown in Eq. (1). 
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where,  F r  is the directional probability density function 

on the unit sphere, representing the size of the fiber distribution 
in each direction. g  is the direction of the unit diffusion 

impulse gradient  S g  is the measured signal at the direction 

of the impulse gradient, 
0S  is the measured signal when there 

is no impulse gradient, 2S  is the domain of the integrating 

sphere, and r  is the unit direction vector. 

The weight coefficient of the fiber direction can be 
determined using Eq. (2) and Eq. (3). 

   ,ij i jA R g r F r dr                        (2) 

 2

arg minf Af y        (3) 

When collecting data using diffusion magnetic resonance 
imaging equipment, the number of collected gradient directions 
is limited. This limitation may result in significant deviations in 
the results when using the optimal solution described in Eq. (3). 
To address this issue, Tournier et al. proposed the CSD method, 

which introduces a penalty parameter   and a constraint matrix 

T  of the smooth solution set to redefine the coefficient solution 
process, as shown in Eq. (4). 
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  2 22arg minf Af y T f     (4) 

B. The Proposed FTASP_CSD Method 

Fiber tracking technology is a non-invasive method used to 
reconstruct the neural fiber bundles in the brain's white matter. 
The FOD is leveraged to estimate the properties of white matter 
tissue and extract its structural orientations. This directional 
information is then used by fiber tracking algorithms to obtain 
microstructural details of white matter tissue, enabling the three-
dimensional reconstruction of neural fiber bundles. The 
FTASP_CSD method adopts a streamline iterative approach, 
adapting the tracking direction based on the overall shape and 
requirements of the FOD. Before selecting the tracking direction, 
the experiment first evaluates the FOD peak. If the amplitude is 
less than the specified threshold, tracking is terminated. The 
selection of this threshold should avoid stray peaks introduced 
by imaging noise in the FOD while ensuring adherence to the 
true direction of fiber extension. In this study, the threshold was 
set to 0.1, which is an empirical value that generally yields 
satisfactory results in most cases [31,32]. This determination is 
based on visual inspection of white matter fiber tracking results 
and comparison with known anatomical structures. 

In mathematical terms, the deterministic tracking algorithm 
can be viewed as a form of initial value problem in ordinary 
differential equations. The trajectory of the fiber bundle in three-

dimensional space is defined as  x p , expressed as 

 p x p  in Eq. (5). 
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where, e  is the fiber pathway direction at point p , and 
0x  

is the seed point of the fiber tracking. 

The fiber path can be iteratively tracked by using the Euler 
method to solve the formula mentioned above, as described in 
Eq. (6). 

1p p px x td     (6) 

where, t  is the step size, usually a constant with 0t  , and 

pd  represents the current voxel's fiber tracking direction. The 

cosine similarity   between the current voxel and the previous 

voxel's progression direction is calculated using the dot product 

and vector lengths, the change in pd  can be determined based 

on the value of  , as shown in Eq. (7). 
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Let  1 2, ,...p    is peak directions of the voxel at 

position px . Let 
1v  be the maximum peak direction and 

2v  

be the second maximum peak direction at the current voxel, as 
shown in Eq. (8). 

  1 1 2, ,...pv Max    
 

  2 1 2Sec , ,...pv ond       (8) 

For the selection criteria of peak directions, a judging 
parameter is defined, as shown in Eq. (9). 

1t tC v v  
 (9) 

where, 
tv  is the unit vector of the currently selected peak 

direction at the voxel, and 
1tv 
 is the direction of the previous 

fiber tracking step. C  represents the magnitude of the angle 

between the peak direction and the previous fiber tracking 

direction. The threshold for C  is set to 0.7 (approximately 45°). 

If C  is less than 0.7, it is considered that the selected peak 

direction has a too large deviation angle. 

The direction selection in fiber tracking employs a priority 
strategy. If the maximum peak direction aligns with the previous 
tracking direction, the maximum peak direction 

1v  is 

prioritized as the fiber tracking direction. This is because the 
FOD describes the distribution of possible fiber bundle 
directions at the voxel, and the value of each direction 
component represents the strength of the corresponding fiber 
bundle contribution. A larger magnitude typically corresponds 
to a higher weight, with the maximum peak direction 
representing the primary fiber bundle direction. If the angle 
between the maximum peak direction and the previous tracking 
direction is excessively large or opposite to the previous tracking 
direction, the secondary peak direction 

2v  is considered. 

Similarly, judgment is made for the secondary peak direction, 
and if it does not meet the criteria, other lower-amplitude peak 
directions are not considered further. This is because other peak 
directions generally have lower weights and may introduce 
numerous false streamlines affected by noise. If neither the 
maximum nor the secondary peak directions are satisfied, 
according to anatomical research and clinical observation, white 
matter fiber continuity and angle bending have certain 
conventions. The pathway of white matter fibers typically 
undergoes appropriate angles of bending along its course. 

Therefore, the peak direction pd  closest to the previous 

tracking direction is chosen as the next tracking direction. If it 
still does not meet the tracking requirements, tracking is 
terminated. This approach ensures the continuity of tracking 
paths and prevents excessive jumps or discontinuities. This 
strategy fully utilizes the information from the FOD, enabling 
the fiber tracking algorithm to accurately and reliably 
reconstruct the trajectory of white matter fiber bundles in three-
dimensional space. This approach ensures the continuity of 
tracking paths, preventing excessive jumps or discontinuities. 
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This strategy fully leverages the information from the FOD, 
enabling the fiber tracking algorithm to reconstruct the trajectory 
of white matter fiber bundles accurately and reliably in three-
dimensional space. 

The fiber tracking path of the nearest peak direction can be 
depicted by Fig. 2. 

0x  represents a randomly selected seed 

point within the FA threshold, and pd  represents the fiber 

tracking direction. At the point 
2x ,   represents the cosine 

similarity, and pd  is the tracking direction of the current point. 

 

Fig. 2. The process of tracking the nearest peak direction. 

To prevent tracking overfitting, it is necessary to set 
termination criteria for fiber tracking. Typically, the tracking 
process is terminated when the local FA or the curvature of the 
tracking direction falls below a predefined threshold. The 
process of the fiber tracking method is illustrated below. 

Algorithm: The specific process of the FTASP_CSD 

Step 1: Select the seed point 
0x , traverse the FOD at 

0x  and find 

the peak direction. 

Step 2: Let 0px x , 0pd d , execute 
1 0 0x x d  . 

Step 3: Determine whether the voxel FOD peak threshold is greater 
than the set minimum threshold 0.1. If it is less than the set 
minimum threshold, the tracking will be terminated. 

Step 4: If satisfied, calculate the cosine similarity between 

 1 2, ,...p   , select the maximum peak direction and the 

second maximum peak direction. 

Step 5: Determine the angle between the unit vector of the 
maximum peak direction and the previous tracking direction. If it 
meets the requirements, extend along the maximum peak direction 
as the tracking direction; otherwise, consider the second maximum 
peak direction. 

Step 6: If the second maximum peak direction of the FOD meets 
the requirements, extend along the second maximum peak direction 
as the tracking direction. Otherwise, calculate the cosine similarity 

between  1 2, ,...p    and 1pd  . 

Step 7: Select the peak direction 1v   with the maximum cosine 

similarity to the previous tracking direction 1pd  . 

Step 8: Check if 1v  exceeds the set threshold value. If it is smaller 

than the threshold, continue tracking; otherwise, terminate the 
process. 

Step 9: Advance one t  in turn to the next voxel. 

Step 10: 1p p  , repeat steps 3 to 9 until the stopping criteria 

are met to obtain a continuous fiber path. 

III. RESULTS 

To evaluate the good performance of the FTASP_CSD, this 
paper uses Matlab as the platform. The proposed method is 
benchmarked against several state-of-the-art techniques, 
including the fiber assignment by continuous tracking (FACT) 
[33], the tensor deflection algorithm (TEND) [34], the 
streamlines tractography based on spherical deconvolution 
(SD_Stream) [26], the second-order integration over fiber 
orientation distributions (iFOD2) [27] and anatomically-
constrained tractography second-order integration over fiber 
orientation distributions (ACT_iFOD2) [28]. FACT and TEND 
adopt the DTI model, while the SD_Stream, iFOD2, 
ACT_iFOD2, and the proposed FTASP_CSD algorithms all 
adopt the CSD model. The Fibercup simulation data and in vivo 
human brain data are used to verify the performance of the 
proposed FTASP_CSD method. The presence of significant 
random noise, artifacts, and geometric distortion caused by 
magnetic susceptibility in diffusion-weighted imaging (DWI) 
images can impact the accuracy of fiber tracking and result in 
interruptions to the process. To improve the accuracy of DWI 
data before fiber tracking, a series of preprocessing steps must 
be performed. This includes obtaining a more accurate binary 
mask image, which will improve tracking accuracy and result in 
a more continuous fiber bundle path. The experiment utilized the 
same preprocessing steps for both the simulated and in vivo 
datasets, and the preprocessing was implemented on the MRtrix 
platform (https://www.mrtrix.org/). The pre-processing steps for 
DWI images are as follows. 

Step 1: Denoising DWI. The original DWI data contains 
noise and distortion, which can be reduced by using the denoise 
command. This command estimates the MRI noise level and 
applies denoising based on random matrix theory. 

Step 2: Removal of Gibbs artifact. This artifact, also known 
as truncation artifact, is related to spatial resolution. It is well 
known that an image consists of small pixels and contains an 
infinite number of spatial frequencies, but the system only 
collects image signals at a limited number of frequencies leading 
to Gibbs artifacts, which can be removed from DWI images 
using local sub-voxel displacement methods. 

Step 3: Correction DWI distortion using dwifslpreproc. This 
corrects the geometric distortion caused by the magnetic 
susceptibility present in the diffusion image, as well as any 
distortion caused by eddy currents and the subject's main body 
motion, and this step depends on the FSL command. 

Step 4: Correction of 1b  field inhomogeneity for a DWI 
volume series. This step aims to improve brain mask estimation. 
However, if there are no strong bias fields present in the data, 
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running this script may worsen brain mask estimation and result 
in an inferior outcome. 

A. Simulation Study 

The Fibercup simulation data used in this paper was 
provided in a challenge sponsored by the medical image 
computing assisted intervention society (MICCAI) in 2009. The 
small data volume of this Fibercup data from 
https://tractometer.org facilitates rapid acquisition of fiber 
information and the calculation of quantitative metrics. The data 
contains 64 diffusion gradient orientations, the brain slices are 

3 3 3mm mm mm   in size, with a voxel volume of 

64 64 3  . The Fibercup data contains five different fiber 

types, mimicking the many complex structures of real fiber 
bundles in the brain (crossings, sectors, bifurcations, etc.), as 
shown in Fig. 3. The blue background is the mask of the 
Fibercup data. 

 
Fig. 3. The model diagram of fiber crossing and branching regions. 

 

Fig. 4. The reconstruction results of the FOD. 

We reconstructed the FOD of the simulated data described 
above using the CSD model. The peak values of FOD at each 
voxel represent the fiber orientations. The FTASP_CSD method 
utilizes these peak values to reconstruct the white matter neural 
fibers in the brain. To provide a clearer description of the fiber 
orientations, we visualized the peak values of voxels based on 
FOD, and the reconstruction results are shown in Fig. 4. From 
an overall visual perspective, the CSD model accurately 
reconstructs the diffusion model of crossing structure voxels. 
Additionally, for voxels containing three or more crossing 
fibers, the model also effectively reconstructs multiple peaks. 

 
Fig. 5. Comparison of tracking effects with various tracking methods on the 

simulated dataset. 

Fiber tracking experiments were conducted on the masked 
region using Fibercup data based on the FOD. The experimental 
results are shown in Fig. 5. It shows that the FACT and TEND 
algorithms based on the DTI model produce relatively coarse 
tracking results. In regions of crossings and bifurcations, partial 
fiber bundle losses occur, resulting in low fiber coverage. These 
limitations in tracking crossing fiber bundles are inherent to the 
DTI model. However, the DTI-based algorithms perform well in 
tracking the main pathways of fiber bundles. In contrast, 
algorithms that rely on the CSD model, such as SD_Stream, 
iFOD2, and FTASP_CSD, provide greater coverage of fiber 
bundles compared to other algorithms. The illustration shows 
that the SD_Stream algorithm is capable of tracking most fiber 
bundles, but has limitations in tracking U-shaped fiber bundles 
compared to the FTASP_CSD method. Both the iFOD2 and 
ACT_iFOD2 algorithms produce a relatively lower count of 
complete fiber bundles due to the probabilistic nature of fiber 
tracking. The ACT_iFOD2 algorithm tracks significantly fewer 
fiber bundles than the iFOD2 algorithm. This is attributed to the 
addition of anatomical constraint steps to the iFOD2 algorithm, 
a method designed to filter out erroneous fibers but 
simultaneously lead to the removal of valid fibers. The 
FTASP_CSD method yields fiber direction that is relatively 
consistent with the white matter structure distribution of the 
diffusion image associated with high coverage and high 
smoothness. Tracking does not exhibit premature termination or 
exceeding the boundary. 

After obtaining the distribution of the fiber bundle, use 
Tractometer [35] to calculate quantitative indicators for the 
results of different tracking algorithms. The Tractometer is an 
independent evaluation tool of the ISMRM2015 Challenge, 
which was used to evaluate and compare the performance of 
fiber tracking methods quantitatively. Tractometer provides 
quantitative measures such as invalid bundles (IB), invalid 
connections (IC), no connections (NC), valid connections (VC), 
and average bundle coverage (ABC), among others. These 
quantitative results are displayed in Fig. 6. 

https://tractometer.org/
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Fig. 6. Comparison of quantitative results with different tracking methods 

on simulation data. 

Fig. 6 demonstrate that the method proposed in this study 
outperforms other tracking algorithms based on the CSD model 
in terms of higher accuracy. Compared to algorithms based on 
the DTI model, the proposed method also shows superior 
performance in certain metrics. Among the algorithms based on 
the CSD model, the FTASP_CSD method tracks the fewest 
invalid fiber bundles, demonstrating superiority over other 
algorithms, except for the ACT_iFOD2 algorithm. In contrast, 
the iFOD2 algorithm performs the least favorably in terms of the 
quantity of invalid fiber bundles. Compared to CSD model 
algorithms, the DTI model-based FACT and TEND algorithms 
exhibit a lower number of invalid fiber bundles. Regarding the 
fiber connection ratio, the FTASP_CSD achieves the highest 
VC and the lowest NC among the six algorithms. On the 
contrary, the iFOD2 algorithm performs the least favorably in 
terms of the NC. Compared to CSD-based algorithms, DTI-
based algorithms exhibit a higher NC, with the FACT and 
TEND algorithms having very similar IC. In terms of fiber 
coverage, it has been found that fiber tracking algorithms based 
on the CSD model outperform those based on the DTI model. 
The FTASP_CSD achieves the highest fiber coverage among 
CSD model algorithms, reaching almost 95%. In contrast, the 
ACT_iFOD2 algorithm has the lowest fiber coverage, at just 
under 46%. A comprehensive analysis indicates that the 
FTASP_CSD method is superior to the other five algorithms in 
terms of fiber reconstruction. This advantage is especially 
noticeable in aspects such as the number of IB, VC, and ABC, 
which provide a more accurate and comprehensive solution for 
fiber tracking algorithms based on the CSD model. 

B. Clinical Study 

The clinical dataset used in this study was obtained from the 
Medical Image Analysis and Statistical Interpretation (MASI) 
laboratory [36]. 50 MRI cases were used to compare the 
proposed method in this paper with five other algorithms. Each 

subject underwent scans with identical parameters. The brain 

slices of the data were 2.14 2.14 2.2mm mm mm  , with a 

total brain size of 112 112 54  . The dataset comprised 96 

DWI images with applied directional gradient pulses and 16 
DWI images without applied directional gradient pulses. The b-

values included 21000 /b s mm  and 22000 /b s mm . To 

validate the effectiveness of the algorithm, we selected both the 
entire brain region and the corpus callosum (CC) region as 
regions of interest for tracking. Fiber tracking was performed 
using the FTASP_CSD method and five other commonly used 
tracking algorithms. The tracking results were then evaluated, 
and statistical analyses were conducted on the outcomes. 

Whole-brain fiber tracking uses brain white matter as the 
area of interest. The seed point is located in the mask area of the 
brain white matter. The seed point area of the whole brain is 
shown in Fig. 7. 

 

Fig. 7. Seed point region of the whole brain. 

The whole brain fiber tract represents the direction of nerve 
fibers in the entire brain, one example was selected to visualize 
the fibers in the entire brain. The fiber tract tracking of the whole 
brain is shown in Fig. 8. For better visualization of the overall 
fiber tracking results, they were overlaid onto diffusion-
weighted imaging data for presentation. From Fig. 8, it can be 
observed that several algorithms effectively tracked the 
symmetric structures of the whole brain, reconstructing the 
overall trajectory of brain fibers. However, in terms of fiber 
distribution, the CSD model tracking algorithm exhibited an 
advantage, providing more comprehensive information for fiber 
reconstruction. It can be seen from the figure that the 
FTASP_CSD method, iFOD2 algorithm, and SD_Stream 
algorithm cover a wider range of white matter areas in diffusion 
images than other algorithms, especially the FTASP_CSD 
method with the highest coverage. Although the ACT_iFOD2 
algorithm is also implemented based on the CSD model, in the 
algorithm ACT uses the gray-white matter junction as the 
starting point or cutoff point for fiber tracking, so the results will 
be eliminated, and some erroneous fibers may be eliminated, and 
some effective fibers may be eliminated. However, the FACT 
algorithm and TEND algorithm based on the DTI model have 
some fiber loss in the edge area of the diffusion image, 
especially at both ends of the diffusion image. This is related to 
the limitations of the DTI model itself. In terms of smoothness 
and continuity, the FTASP_CSD method adds consideration to 
the historical tracking direction, considers the selection of the 
peak direction in multiple directions, and filters the peak 
threshold. This promotes fiber tracking smoothness and avoids 
premature fiber termination to a certain extent. Therefore, the 
FTASP_CSD method also performs optimally in terms of fiber 
smoothness and continuity. 
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Fig. 8. Comparison of whole-brain fiber tracking results of various tracking 

methods. 

TABLE I.  STATISTICAL COMPARISON OF THE WHOLE BRAIN TRACKING 

FIBER RESULTS WITH THE SIX METHODS ( x S ) 

Method FB_num FL_max FL_min FL_mean Time 

FACT 
22700±21

32 

226.59±16

.61 
20±3.11 

50.79±10.

63 

61±3.

6 

TEND 
15564±94
3 

259.39±8.
95 

20.99±4.
81 

55.75±12.
6 

64±4.
1 

SD_Strea

m 

29697±28

54 

200.39±6.

44 

20.18±5.

25 

38.37±3.1

8 

126±6

.4 

iFOD2 
31104±11
19 

189.21±5.
19 

20.22±5.
60 

38.59±4.2
7 

129±4
.7 

ACT_iFO

D2 

24753±15

36 

198.65±9.

72 

24.25±9.

25 

40.45±8.0

7 

159±6

.9 

FTASP_C
SD 

38132±28
61 

216.80±11
.75 

22.54±5.
42 

48.44±10.
8 

176±9
.0 

Note: FB_num is the number of fibers, FL_max is the longest fiber length, FL_min is the shortest fiber 

length, and FL_mean is the average fiber length. 

Since there is no Ground Truth in clinical data, the 
Tractometer quantitative index calculation is no longer 
performed on the clinical data results. Only the statistical 
parameters of the whole-brain tracking results of 50 subjects are 
displayed in the form of mean ± standard deviation, as shown in 
Table I. The results indicate significant differences between the 
tracking algorithm based on the DTI model and the tracking 
algorithm based on the CSD model. The DTI model-based 
algorithm shows that the FACT and TEND algorithms track 
fewer fibers, but the average and the longest fiber lengths are 
longer compared to the algorithm of the CSD model and the time 
consumed is short. From the perspective of the CSD model-
based algorithms, the tracking algorithms based on the CSD 
model track the number of fiber strips more comprehensively 
due to the characteristics of the CSD model, which can obtain a 
more comprehensive fiber distribution. Specifically, the average 
number of fibers tracked by the iFOD2 algorithm is about 6351 
less than that of the ACT_iFOD2 algorithm. This is because the 
ACT_iFOD2 algorithm adds an ACT step and removes 
erroneous fibers from the iFOD2 tracking results. The 
FTASP_CSD method tracks the largest number of fiber bundles, 

and its average length has reached the level of the DTI model. 
In terms of time consumption, it is also the shortest among 
several CSD model-based algorithms, second only to the FACT 
and TEND algorithms. Its duration is within the acceptable 
range for clinical application. Therefore, it can be concluded that 
the FTASP_CSD achieves both the running time of the tracking 
method based on the DTI model and the number of fibers 
tracked based on the CSD model, perfectly integrating the 
advantages of the both. 

Due to the large number of nerve fiber bundles in the whole 
brain, the differences between the algorithms are not obvious 
enough. Therefore, in order to more accurately observe and 
analyze the reconstruction results of nerve fiber bundles, the 
corpus callosum area was selected as the area of interest to 
conduct fiber tracking experiments. The red area is the seed 
point area of CC, as shown in Fig. 9. 

 
Fig. 9. The seed-point region of the corpus callosum. 

The tracking results of different tracking algorithms in the 
corpus callosum area are shown in Fig. 10. As can be seen from 
Fig. 10, the tracking algorithm based on the DTI model can well 
track the main fiber bundles of the corpus callosum, but the 
tracking effect has limitations in the fiber cross-bifurcation area, 
such as not tracking the fibers on both sides of the corpus 
callosum. Comparing the six algorithms, the iFOD2 algorithm 
obtained the largest number of fibers, but the corresponding 
number of erroneous fibers was also the largest and most 
scattered. The ACT_iFOD2 algorithm added an anatomical 
constraint step based on the iFOD2 algorithm and eliminated 
some erroneous fibers, resulting in a significant reduction in 
fibers, which also reversely confirms that most of the wrong 
fibers exist in iFOD2. However, the algorithm still has some 
incorrect fibers at the end, such as the extra blue fiber bundle at 
the end, which does not exist in anatomy. The SD_Stream 
algorithm can track the general direction of the fiber tracts and 
reconstruct most of the fiber tracts in the corpus callosum, 
without erroneous blue fiber tracts appearing at the ends. 
However, some fiber bundles are missing on the left side of the 
corpus callosum, and the tracking is incomplete. The FACT 
algorithm tracks the smallest number of fibers, but the main 
direction of the fibers is very clear. The TEND method performs 
well in terms of smoothness, but both the TEND algorithm and 
the FACT algorithm have obvious blue error fibers at the ends. 
The FTASP_CSD method can track the fiber tracts in the corpus 
callosum area very well, especially the red fiber tracts 
connecting the left and right brain areas. It is more complete than 
other algorithms and does not have obvious erroneous fibers. 
The main direction of the fiber is more obvious, and the 
smoothness is also better. 
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Fig. 10.  Comparison of tracking effects in the corpus callosum region with 

various tracking methods on clinical data. 

IV. DISCUSSION 

In this work, we primarily conducted experiments on 
simulation dataset and vivo dataset, which demonstrated the 
feasibility of the FTASP_CSD method. Specifically, this 
method achieved superior performance in both datasets. From 
visual inspection, FTASP_CSD performs better than other 
algorithms in fiber crossing and branching regions, and can 
achieve more reliable fiber reconstruction results. From the 
statistical results, the FTASP_CSD method achieves the highest 
VC and the lowest NC among the six algorithms. Moreover, the 
results show that the tracking time of the algorithm in this article 
is shorter than the other three algorithms based on the CSD 
model in the article, reaching the level of the DTI-based 
algorithm.  

The fiber tracking algorithm, which is based on the DTI 
model, has a single model and can only achieve better tracking 
results in areas with relatively high anisotropy. In complex fiber 
regions, the distribution of fibers in all directions may cause the 
FA of a voxel to be very small or even isotropic, which may be 
mistaken for the absence of fiber tracts in that voxel. Therefore, 
both the FACT algorithm and the TEND algorithm on Fibercup 
simulated data demonstrate more accurate tracking in a single 
direction, while tracking fewer fibers in complex fiber regions. 
However, some crossing and branching fiber bundles may not 
be tracked. On the real human brain dataset, it is evident that 
there is a loss of fibers on both sides in the tracking region, with 
only the major fiber bundles being reconstructed. The CSD 
model serves as a multi-fiber tracking model, and that can depict 
directional information in complex regions. Therefore, despite 
being a deterministic fiber tracking algorithm, the SD_Stream 
algorithm can achieve favorable tracking results in regions with 
complex fiber distributions. The SD_Stream algorithm and 
TEND algorithm share a common fiber curve iteration approach, 
both iterating the tracking direction as the tangent direction of 
the fiber curve. In contrast, FACT directly employs the tracking 
direction as a straight segment of the fiber curve within the 
voxel, resulting in poor smoothness in the tracking results. The 
iFOD2 algorithm selects the tracking direction of fibers through 
orientation distribution function sampling. In this mode, 
different fiber directions are potentially selected, resulting in a 
more comprehensive tracking of fibers. However, it generates a 

substantial number of spurious fibers. This characteristic leads 
to the highest IB for fibers and relatively highest ABC as shown 
in Fig. 6. The ACT algorithm filters the tracking results of fibers 
directly, using anatomical constraints to eliminate erroneous 
fiber bundles. This is evident in both simulated and real datasets, 
where the ACT_iFOD2 algorithm tracks fewer fiber bundles 
compared to iFOD2. Simulation study on the Fibercup dataset 
shows that ACT eliminates a considerable number of fiber 
bundles, including some reasonable ones, resulting in the lowest 
ABC. Additionally, this dataset produces outcomes that are 
consistent with real human brain data. The FTASP_CSD 
method is based on the CSD model and adopts a tracking 
strategy that adaptively selects the peak direction. Therefore, it 
has achieved excellent results in the fiber intersection and 
bifurcation areas of Fibercup data and real human brain data. For 
instance, in the Fibercup dataset, it is noticeable that the tracked 
fiber quantity remains relatively high in areas of fiber crossing 
and branching, with the ABC having the highest quantity 
compared to other CSD models. In the vivo study, it is evident 
that the FTASP_CSD method effectively tracks the crossing 
fiber bundles on both sides of the corpus callosum region. The 
tracking direction strategy of this method not only considers the 
main fiber bundle distribution direction, but also considers the 
influence of the previous step tracking direction on the current 
voxel peak direction. Moreover, the peak threshold is limited to 
reduce the impact of spurious peaks caused by noise on the 
tracking results. By adaptively selecting the peak as the tracking 
direction, the maximum probability fiber direction distribution 
tracking is changed, and the generation of erroneous fibers is 
reduced on the basis of increasing the number of fiber bundles. 
Therefore, this method has the smallest IB value compared to 
the iFOD2 and SD_Stream algorithms. In addition, because the 
influence of the historical tracking direction on the voxel 
direction is considered, the continuity and smoothness of fiber 
bundles tracked by the FTASP_CSD method are also better than 
those of iFOD2, ACT_iFOD2, and SD_Stream algorithms. 

As demonstrated in the experiments, the FTASP_CSD 
method produces favorable results on both simulated and real 
human brain datasets. However, two limitations need to be noted 
regarding the present study. Firstly, the chosen spherical 
deconvolution model faces challenges in accurately estimating 
the fiber orientation distribution within voxels in the gray matter 
and cerebrospinal fluid regions. Secondly, it is impossible to 
entirely avoid the impact of noise. Further work will focus on 
addressing how to mitigate partial volume effects and reduce the 
influence of noise on the accuracy of fiber tracking. 

V. CONCLUSION 

This paper presents a fiber tracking method with adaptive 
selection of peak direction based on CSD model. The 
performance of the method was evaluated through quantitative 
and qualitative comparisons of both Fibercup simulated data and 
real human brain data. The proposed method demonstrated 
superior performance in terms of average bundle coverage, 
smoothness and connections compared to three other CSD 
model algorithms. Compared to the two algorithms based on the 
DTI model, our proposed method exhibits a more 
comprehensive tracking of fiber pathways in regions of fiber 
crossing and branching, resulting in better tracking outcomes. 
Therefore, the method proposed in this paper can serve as a 
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methodological foundation for research, diagnosis, and 
treatment related to brain disorders resulting from white matter 
fiber abnormalities or deficiencies. 
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