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Abstract—Model Predictive Control (MPC) is the most 

successful control strategy that coped in many areas. However, the 

success of an MPC scheme lies in the accuracy of the adopted 

prediction model. This paper treats the problem of MPC when 

there is a need to a larger domain of set-point values and best 

tracking performances. It presents a novel modeling structure for 

representing a nonlinear dynamic system based on its static 

nonlinear characteristic. Then, the Multiple Affine Model (MAM) 

structure is compared to Multiple Linear Models (MLM) in a 

Linear MPC (LMPC) scheme. It is noted that the MAM structure 

offers more precision for modeling and the much smaller number 

of models. Therefore, it guarantees the best tracking performances 

in terms of stability, speed and accuracy. 
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I. INTRODUCTION 

The essential objectives in Model Predictive Control (MPC) 
are good tracking performances and less energy consumption. 
MPC coped in many industrial areas such as chemical [1], 
thermal [2] and robotic [3], [4]. However, there were limitations 
in tracking performances due to the imprecision of adopted 
prediction models. Indeed, the success of the MPC scheme lies 
in the accuracy of the employed model in computing the 
optimal control solution. Generally, the linear model can’t 
represent most physical systems only in few operating points 
[5]. Therefore, due to limitations in LMPC based on linear 
model was developed the Nonlinear MPC (NMPC) NMPC 
strategy [6], [7]. However, this strategy encountered difficulties 
in optimization problems and computing time requirements [8], 
[9], [12]. For that reason, the researchers turned to employ the 
concept of MLM in order to achieve good tracking 
performances with larger domain of set-point values [11], [12]. 

MLM concept was previously exploited in adaptive and 
robust control schemes [13], [14], [15]. Indeed, the model of 
the treated system changes for the same control domain. In the 
last decade, the MLM concept became employed in the control 
of nonlinear systems [11], [12], [16], [17]. Thus, the whole 
control domain is divided in several sub-domains. For each sub-
domain of control, it is considered a different linear model. By 
analyzing the static characteristic of the nonlinear system, this 
concept requires the consideration of a great number of models 
in order to cover all the static characteristics of the system. 

Indeed, each model approaches the system only for one 
operating point. There were determined a variety of switching 
laws allowing the determination of the adequate model for each 
desired set-point. Nevertheless, the task of identification all 
models followed by a heavy burden, in computing the switching 
law leading to the appropriate model, is very hard and 
consumes a large time. Moreover, in most results, there exist 
oscillations proving insufficient tracking performances. These 
drawbacks can’t suit fast dynamic systems such as robots. This 
is due to the insufficient accuracy of the employed models. In 
effect, all straight lines of the linear models must go through the 
origin in the input output curve. 

In study [18], it was proposed the concept of MAM to 
achieve more accurate models. At first, it was considered a 
Hammerstein model with static nonlinearity. Then, it was 
considered, in [19], a nonlinear dynamic system based on affine 
modeling in study [20]. The obtained affine models were few 
and their characteristics are close to the static system curve. 
There was carried out a comparison between two MPC 
strategies. LMPC-based MAM and NMPC based on the 
original system model. The LMPC scheme achieved much 
better tracking performances in addition to the low calculation 
time consumed. 

This paper presents a comparative study between MLM and 
MAM in a LMPC scheme of a nonlinear dynamic system. The 
comparison concerns static characteristics, transient and steady 
regimes and tracking performances. 

The paper is organized as follows: 

In the second section, it is presented the problem of 
modeling where they are explained the two modeling concepts. 
In the third one, it is treated the LMPC strategy where are 
highlighted all its steps. Simulation results are illustrated in the 
fourth section and the paper ends with a conclusion. 

II. MODELING PROBLEM 

It is considered the nonlinear delayed SISO system, treated 
in study [19], described by the Eq. (1). It is noted as a hard 
modeling system. 

𝑦(𝑘) = 𝑢3(𝑘 − 2) + 𝑢4(𝑘 − 3) +
0.8+𝑦2(𝑘−1)

1+𝑦2(𝑘−1)+𝑦3(𝑘−2)
   (1) 
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where, 𝑦(𝑘) and 𝑢(𝑘) are respectively the output and input 
of the system. The main goal, in this work, is to control the 
system to track a reference trajectory. We will be interested, in 
this study, not in the whole input-output curve of the system but 
only to the part which allows the less energy consumption. Fig. 
1 represents the static nonlinear characteristic of the system (1) 
with black continuous curve. Indeed, two optimal control 
solutions correspond to each desired set-point value whereas 
the best of them is closest to the origin. Moreover, by 
considering the right part of the input-output curve, the MPC 
algorithm allows the least variations of the control signal. 
Therefore, the modeling based on the MLM concept is applied 
only on the right part. 

A. Modeling Based on MLM 

The dynamic of the linear models is described by an 
ARIMAX (Auto-Regressive Integrated Moving Average with 
exogenous inputs). The model is given by the following 
equation: 

𝐴(𝑧−1)𝑦̂𝐿(𝑘) = 𝑧−𝑑𝐵(𝑧−1)𝑢(𝑘) + 𝑒(𝑘)

∆(𝑧−1)
     (2) 

𝑦̂𝐿(𝑘), 𝑢(𝑘), 𝑒(𝑘) and 𝑑 are, respectively, the linear model 
output and input, the white noise sequence combining the 
measurement and modeling errors and 𝑑 is the system delay. 
The polynomials 𝐴(𝑧−1), 𝐵(𝑧−1) and ∆(𝑧−1) are given by:  

𝐴(𝑧−1) = 1 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝐴𝑧−𝑛𝐴 (3) 

𝐵(𝑧−1) = 𝑏0 + 𝑏1𝑧−1 + ⋯ + 𝑏𝑛𝐵𝑧−𝑛𝐵           (4) 

∆(𝑧−1) = 1 − 𝑧−1              (5) 

The employment of MLM concept for modeling nonlinear 
systems has led to sufficient tracking performances for 
chemical processes [11], [12]. The modeling procedure used in 
[12] proposed to adopt a great number of linear models whereas 
each one gives local precision for fixed operating point. 
Therefore, the estmation of models is a hard task. Indeed, the 
number of models enlarges with the number of operating points. 
This number must be great in order to cover the whole 
chacteristic of the system. Moreover, the switching law, based 
on an avereged adaptation of the control, remains hard. More 
details will be illustrated with the simulation results. 

As the considered system is delayed, 𝑑 = 2, second order, 
the estimated linear models are described by (6) whereas the 
vector of coefficients to be estimated and its measurement 
vector are given by Eq. (7) and Eq. (8). 

𝑦̂(𝑘) = −𝑎1𝑦̂(𝑘 − 1) − 𝑎2𝑦̂(𝑘 − 2) + 𝑏1𝑢(𝑘 − 2) +
𝑏2𝑢(𝑘 − 2)          (6) 

𝜃𝐿 = [𝑎1  𝑎2 𝑏1 𝑏2]𝑇        (7) 

𝜑𝐿 = [−𝑦(𝑘 − 1) −𝑦(𝑘 − 2) 𝑢(𝑘 − 1) 𝑢(𝑘 − 2)]𝑇 (8) 

The linear models are estimated by using the Recursive 
Least Square (RLS) algorithm. Then, stability of MLM is 
verified by the Jury criterion. The static characteristics of the 
obtained linear models are illustrated in Fig. 1 designated by 
LM. Because all linear model characteristics must go through 
the origin, each curve of the linear models intercept that of the 

system (1) only for one Operating Point (OP). Besides, the 
closest linear model to the system is LM5. For the rest part of 
the system curve, there is a need to more linear models as 
detailed in study [17]. Fig. 1 presents, in addition, the 
characteristics of seven linear models. 

 
Fig. 1. Static nonlinear characteristic of the system (1) with characteristics 

of seven linear models. 

B. Modeling Based on MAM 

In order to determine the accurate model for prediction, we 
propose the concept of multiple affine models to represent the 
system (1). There are considered delayed second order models 
which are described by Eq. (9)   where 𝑐0  is an added real 
constant to be estimated. Therefore, the coefficient vector 𝜃𝐴 is 
that given by Eq. (10) and the measurement vector 𝜑𝐴 is given 
by Eq. (11) with respect to the system delay. 

𝑦(𝑘) = −𝑎1𝑦(𝑘 − 1) − 𝑎2𝑦(𝑘 − 2) + 𝑏1𝑢(𝑘 − 2) +
𝑏2𝑢(𝑘 − 3) + 𝑐0                      (9) 

𝜃𝐴 = [𝑎1  𝑎2 𝑏1 𝑏2 𝑐0]𝑇          (10) 

𝜑𝐴 = [−𝑦(𝑘 − 1) −𝑦(𝑘 − 2) 𝑢(𝑘 − 2) 𝑢(𝑘 − 3) 1]𝑇  
 (11) 

 
Fig. 2. Static nonlinear characteristic of the system (1) with characteristics 

of five affine models. 
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Then, the obtained affine models, corresponding to the least 
input energy, which is the right part, are estimated by 
employing the RLS algorithm. The whole control domain is 
divided into 𝑚  sub-domains. The input vector is a random 
sequence in which the magnitude varies differently in each sub-
domain allowing a tangency with the nonlinear model. Indeed, 

the AM changes with the static gain 𝐺𝑖 =
𝑑𝑦(𝑘)

𝑑𝑢(𝑘−2)
, 𝑖 = 1, … , 𝑚. 

Then, stability of MAM is verified by the Jury criterion. The 
characteristics of the obtained models are traced in Fig. 2, 
referred by AM1.AM5, with the original nonlinear model (1). 

The figure shows that all obtained affine models join the 
nonlinear characteristic not only for few operation points but 
also for considered length intervals. 

III. LINEAR MODEL PREDICTIVE CONTROL 

The MPC strategy is based on the moving horizon 
technique. The nonlinear model predicts the output of the 
system over a specified prediction horizon 𝑁𝑝 . The predicted 

outputs are employed to determine the control signal that 
minimizes the dynamic criterion given by Eq. (12) as in study 
[21]. 

𝐽( 𝑁𝑝, 𝑁𝑢 , 𝑘) =  ∑ (𝑦𝑐(𝑘 + 𝑗) − 𝑦̂(𝑘 + 𝑗))
2

  
𝑁𝑝

𝑗=1
+

                                  ∑  
𝑁𝑢
𝑗=1  𝜆∆𝑢(𝑘 +  𝑗 −  1)2          (12) 

Subject to: 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘) ≤ 𝑢𝑚𝑎𝑥 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘) ≤ ∆𝑢𝑚𝑎𝑥 

where, 𝑦𝑐(𝑘 + 𝑗) , 𝑦̂(𝑘 + 𝑗) ,∆𝑢(𝑘) , 𝑢𝑚𝑖𝑛 , 𝑢𝑚𝑎𝑥  designate 
respectively the set-point, the predicted output at instant  𝑘 + 𝑗, 
the control increment and lower and upper bounds of the control 
signal. The criterion in Eq. (12) is composed of two terms. The 
first one is the sum of squared prediction errors over the 
prediction horizon designed by 𝑁𝑝. The second term is formed 

by the sum of squared control increments over a control horizon 
𝑁𝑢 , given by Eq. (13), and weighted by the coefficient  in 
order to minimize the control energy consumption. 

∆𝑢(𝑘 +  𝑗 − 1) = 𝑢(𝑘 +  𝑗 −  1) − 𝑢(𝑘 +  𝑗 −  2)  (13) 

In the LMPC strategy, the criterion (5) is quadratic. 
Therefore, its minimization by annulation of its derivative leads 
to an equation with degree of the control variable equal to one. 
Thus, the adaptation law of the control is analytic, and its 
computing time is minimum. It is detailed in the following as 
developed in study [21]. 

The dynamic of the real system is described by an ARIMAX 
(Auto-Regressive Integrated Moving Average models with 
exogenous inputs) model which is given by the following Eq. 
(2). More details of the LMPC algorithm are given in study 
[19]. With affine models, the control adaptation law remains the 
same as with the linear models. Indeed, the constant of the 
model is removed by the calculated difference between two 
consecutive predicted output measurements. 

IV. SIMULATION RESULTS 

A. Results of LMPC Based on MLM 

It was employed the LMPC strategy applied for modeling 
structures MLM and MAM. There were considered, at first, two 
set-point values 𝑦𝑐 = 1  and 𝑦𝑐 = 5 . The control signal is 
initialized to the sequence 𝑢(𝑘) = 0 , for 𝑘 = 1 .  . 3 . The 
retained constraint is 0 ≤ 𝑢(𝑘) ≤ 5. The models are chosen 
close to the set-point operating values LM4 and LM6 traced in 
Fig. 1. The obtained results as temporal responses as depicted 
by Fig. 3 and Fig. 4 respectively for 𝑁𝑝 = 2  and different 

values of 𝑁𝑝. Regarding the figures, it is noted that best tracking 

performances are achieved with 𝑁𝑝 = 2 by enlarging the value 

of the control increment weight 𝜆. Besides, the increasing of 𝑁𝑝 

attenuates transient overshoot for higher set-point value 
whereas it causes notable delay for the lower one. Moreover, 
with 𝑁𝑝 = 4, 6, there was needed much larger values of  𝜆 in 

order to achieve less overshoot. 

 

Fig. 3. Results of LMPC based on MLM for 𝑦𝑐 = 1 and 𝑦𝑐 = 5 with 

constraint 0 ≤ 𝑢(𝑘) ≤ 5 and 𝑁𝑝 = 2. 

 

Fig. 4. Results of LMPC based on MLM for 𝑦𝑐 = 1 and 𝑦𝑐 = 5 with 

constraint 0 ≤ 𝑢(𝑘) ≤ 5 for different values of 𝑁𝑝. 
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Then, higher set-point values are considered 𝑦𝑐 = 5  and 
𝑦𝑐 = 10 with the same variations of 𝑁𝑝. The obtained temporal 

responses are illustrated by Fig. 5 and Fig. 6. Based on figures, 
it is noted that with 𝑁𝑝 = 2 best tracking performances can be 

obtained by tuning the value of  𝜆. As for 𝑁𝑝 = 4, 6, relatively 

higher values of the weight 𝜆 must be taken in order to reduce 
the high transient overshoot and oscillations. In effect, this is 
due to the higher variations of the system output, compared to 
that of the model, caused by little variations of the control input 
for higher set-point values. 

 

Fig. 5. Results of LMPC based on MLM for 𝑦𝑐 = 5 and 𝑦𝑐 = 10 with 

constraint 0 ≤ 𝑢(𝑘) ≤ 5 and 𝑁𝑝 = 2. 

 

Fig. 6. Results of LMPC based on MLM for 𝑦𝑐 = 5 and 𝑦𝑐 = 10 with 

constraint 0 ≤ 𝑢(𝑘) ≤ 5 for different values of 𝑁𝑝. 

It is well noted, in this part, that errors of modeling with 
MLM structures have more effects when the prediction horizon 
is enlarged. 

B. Results of LMC Based on MAM 

In this case, the affine models traced in Fig. 2 are employed. 
The switching law of the affine models is described by Table I 
where M designates the employed model. 

TABLE I.  AFFINE MODEL SWITCHING LAW 

Interval of 𝒚𝒄(𝒌) Model 

1 ≤ 𝑦𝑐(𝑘) < 2 M = AM1 

2 ≤ 𝑦𝑐(𝑘) < 3.5 M = AM2 

3.5 ≤ 𝑦𝑐  (𝑘) < 6 M = AM3 

6 ≤ 𝑦𝑐(𝑘) < 11 M = AM4 

11 ≤ 𝑦𝑐 (𝑘) < 24 M = AM5 

The same pairs of set-point values are considered with the 
same prediction horizon values. The resulting temporal 
responses, for 𝑦𝑐 = 1 and 𝑦𝑐 = 5, are illustrated in Fig. 7 and 
Fig. 8 respectively for 𝑁𝑝 = 2  and  𝑁𝑝 = 4 . Regarding the 

figures, it is well observed the superiority of the MAM 
according to MLM. Indeed, the transient oscillations take 
shorter duration. In addition, the overshoot is easily removed 
with slight increasing of the weight 𝜆. This is noted for the two 
values of 𝑁𝑝 whereas for 𝑁𝑝 = 4, higher values of 𝜆 must be 

considered. As for the second pair of set-points for 𝑦𝑐 = 5 and 
𝑦𝑐 = 10, the obtained temporal responses are given by Fig. 9 
and Fig. 10. These figures show the best tracking performances 
achieved with the MAM structure. However, the necessary 
values of 𝜆  for annealing the overshoot are much higher. 
Indeed, this is due to the higher slope of the affine model which 
allows large variations of the output for little variations of the 
input. 

With this modeling structure, the variations of the system 
output is closer to that of the model. Therefore, the increasing 
of 𝑁𝑝 or 𝜆 improves the tracking performances without causing 

any delay. 

 

Fig. 7. Results of LMPC based on MAM for 𝑦𝑐 = 1 and 𝑦𝑐 = 5 with 

constraint 0 ≤ 𝑢(𝑘) ≤ 5 and 𝑁𝑝 = 2. 
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Fig. 8. Results of LMPC based on MAM for 𝑦𝑐 = 1 and 𝑦𝑐 = 5 with 

constraint 0 ≤ 𝑢(𝑘) ≤ 5 and 𝑁𝑝 = 4. 

C. Results of LMPC Based on MAM and MLM 

In this part, results of LMPC based on both MAM and MLM 
are presented. In addition, higher set-point values and variations 
are treated 𝑦𝑐 = 8  and 𝑦𝑐 = 15 . In addition, for the MLM 
structure, the considered output references don’t correspond to 
operating points. Therefore, for each output reference, the 
closest linear model is opted. Thus, the linear models present, 
in this case, important prediction errors. The temporal 
responses, for different values of 𝑁𝑝 and suitable values of the 

weight 𝜆, are given by the Fig. 11 and Fig. 12 respectively for 
the MLM and MAM structures. Fig. 11 illustrates hard 
oscillations for 𝑦𝑐 = 15 due to the modeling error caused by 
using LM7. The Fig. 12 shows the superiority of employing the 
MAM structure in achieving the best tracking performances in 
terms of stability and speed. The increasing of  𝑁𝑝  leads to 

better results, in terms of least overshoot, with MAM which is 
due to the accuracy of the models. This result is achieved 
without increasing the value of 𝜆. This is due to the accuracy of 
the models even for higher values of set-point. Indeed, little 
variations of the control have the same effect on both of outputs 
that of the system and that of the model.  Whereas, with the 
MLM structure, the increasing of 𝑁𝑝 produces hard oscillations 

that can be attenuated by much higher values of 𝜆. 

 

Fig. 9. Results of LMPC based on MAM for 𝑦𝑐 = 5 and 𝑦𝑐 = 10 with 

constraint 0 ≤ 𝑢(𝑘) ≤ 5 and 𝑁𝑝 = 2. 

 

Fig. 10. Results of LMPC based on MAM for 𝑦𝑐 = 5 and 𝑦𝑐 = 10 with 

constraint 0 ≤ 𝑢(𝑘) ≤ 5 for different values of 𝑁𝑝. 

 

Fig. 11. Results of LMPC based on MLM for 𝑦𝑐 = 8 and 𝑦𝑐 = 15 with 

constraint 0 ≤ 𝑢(𝑘) ≤ 5. 

 

Fig. 12. Results of LMPC based on MAM for 𝑦𝑐 = 8 and 𝑦𝑐 = 15 with 

constraint 0 ≤ 𝑢(𝑘) ≤ 5 for different values of 𝑁𝑝. 

Besides, both of structures attain the null tracking error due 
to the integrating term considering the prediction error in Eq. 
(2). 
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Finally, the effectiveness of the modeling structure should 
be better validated by employing the static characteristic curve. 
Thus, if the model gives a curve covering more that of the 
system it attains better tracking performances in the LMPC 
scheme. 

V. CONCLUSION AND FUTURE WORK 

In this work, a novel modeling structure MAM is proposed. 
Then, a comparison between this latter and MLM, employing 
LMPC strategy has been carried out. The LMPC based on 
MAM structure with a simple switching law, based on the set-
point intervals, has proven its superiority in achieving best 
tracking performances in terms of stability, speed and accuracy. 
Indeed, this is due to the higher precision of the modeling 
structure. Moreover, the switching law is simple and guarantees 
continuity with all set-point values. In addition, the number of 
models is much less. 

In future works, extension to MIMO systems and real-time 
application will be addressed. 
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