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Abstract—Ethereum has gained significant attention from 

businesses as a blockchain technology since its conception. Beyond 

the first use of cryptocurrencies, it provides many additional 

features. In the pharmaceutical sector, where reliable supply 

chains are necessary for cross-border transactions, Ethereum 

shows promise. It addresses problems through quality, 

traceability, and transparency in a place defined by complexity 

and strong laws because of its decentralized structure. As a result, 

this study looks at how Ethereum is used in the pharmaceutical 

sector, namely the networks that allow smart contracts to 

communicate with one another on the Ethereum network. The 

above concepts are formulated via communication networks, 

inter-contract owner interactions, and simulation analysis, which 

seeks to identify dubious practices and unjust contracts inside the 

supply chain. The study suggests effective manufacturing 

techniques that call for reduction rather than storage to 

technological obstacles. With this endeavor, we hope to provide 

insights into Ethereum-based contract ecosystems and assist in 

anomaly identification for enhanced security and transparency. 

The main objective is to support patient record methodology and 

transform the way healthcare data is managed. The suggested 

model integrates front-end interfaces, back-end optimization, 

distributed storage, proof-of-work techniques, and training to 

establish a safe and efficient ecosystem for healthcare data. These 

elements can be combined through the blockchain-enabled 

architecture to transform manufacturing-protecting chemicals in 

handling, distribution, and necessary training. 

Keywords—Blockchain; smart contract; externally owned 

accounts; decentralized trustworthy framework; community 

healthcare; Ethereum; supply chain management 

I. INTRODUCTION 

Blockchain technology, introduced in 2009 alongside 
bitcoin, has rapidly transformed many industries beyond 
cryptocurrencies. The decentralized and secure ledger system 
of blockchain, first conceived by Satoshi Nakamoto [1], has 
attracted much interest from industries such as cloud 
computing, finance, and healthcare maintenance of a 
distributed ledger that guarantees secure and immutable 
recording of transactions across a network of nodes, the main 
objective of this system is that there is no need for centralized 
control because of the distributed system based on consensus 
policies by web users called miners. 

Among blockchain platforms, Ethereum has emerged as a 
major player with its introduction in 2015 by Vitalik Buterin 
[2]. In addition to providing a cryptocurrency (Ether), Ethereum 
provides a versatile environment for the development of 
decentralized applications (DAPPs) and the use of smart 
contracts, encoded as a set of autonomous computer programs 
Ethereum cornerstone smart contracts facilitate automation, 
transparency, and efficiency in the blockchain network, which 
extends its applications beyond simple financial transactions. 
Understanding the interactions between Ethereum components 
and smart contracts is critical to unlocking its full potential. 

Thus, in this study, blockchain technology provides a 
solution to ensure end-to-end traceability, traceability, and 
authenticity of pharmaceutical products throughout their 
lifecycle. The enabled architecture changes in data management 
practices by prioritizing patient focus, data security, and 
regulatory compliance. Analysis of patterns and relationships 
between blockchains is essential to detect anomalies and ensure 
the integrity of the ecosystem. The research in [3] outlines an 
important analytical framework for identifying communication 
patterns between contracts to classify contracts based on 
ownership similarity patterns. Overcoming technological 
challenges is paramount for realizing blockchain's full 
potential, with significant efforts toward enhancing 
performance and reducing storage overhead in blockchain data 
analysis. Therefore, blockchain technology, exemplified by 
platforms like Ethereum, has transcended its origins in 
cryptocurrency becoming a catalyst for innovation across 
diverse sectors. From financial services to healthcare and SCM, 
blockchain offers a decentralized, transparent, and secure 
framework for data management, automation, and trustless 
transactions. Understanding its core principles, deploying smart 
contracts effectively, and leveraging data analytics tools are 
essential in harnessing blockchain's trans-formative power and 
creating value in the digital economy. 

The study is as follows—the contribution of the study will 
be shown in the following section. The background is given in 
Section III. The related works are discussed in Section IV. The 
pre-implementation is provided in Section V. The post-
implementation is presented in Section VI. The experimental 
analysis section is out in VII Section. Results are presented in 
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Section VIII. The conclusion and future works are discussed 
respectively in Section IX and Section X. 

II. CONTRIBUTION 

In this contribution section, we look at a microcosm of 
individual smart contracts participating in exploring the vast 
landscape and integrating blockchain technology. Our goal 
goes beyond examining isolated entities, aiming instead to 
uncover the complex relationships between smart contracts. At 
the heart of our research is exploring the complexities of the 
blockchain ecosystem, specifically the interactions between 
smart contracts. By examining the relationships between these 
autonomous companies, we seek to identify potential weak 
spots for common users. The focus of this effort is to analyze 
contract accounts with their owners, to identify patterns and 
practices that potentially indicate fraudulent behavior and 
intention of abuse. Furthermore, apart from observation, our 
analysis includes a comprehensive analysis of contract renewal 
issues. There are both challenges and opportunities in the 
procedure of passing identical contracts on the blockchain. By 
proper analysis, we can explain the mechanisms of alliance 
morphology and the causes and consequences for larger 
ecosystems. Through better analytical methods like machine 
learning (ML) [4]–[10], we can discover relationships and 
interactions to better our comprehension of the fundamental 
processes regulating intelligent transaction agreements. We 
develop blockchain-based intelligent contract ecosystems by 
combining these diverse areas of study. 

Our findings reveal weaknesses and analogical patterns that 
provide light on the interactions between smart contracts, 
offering developers, academics, regulators, and policymakers 
useful information. In conclusion, our research emphasizes the 
significance of blockchain technology from a wider 
perspective; a wide overview of the networks and 
interdependence that characterize this revolutionary 
technology, rather than focusing only on individual contracts. 

III. BACKGROUND 

Two of the primary account types used by Ethereum, the 
blockchain platform, are contract accounts and external 
accounts (EOAs). A unique, 20-byte address is assigned to each 
account, enabling modifications to the status, that include the 
direct transfer of data and values between accounts. EOAs are 
not subject to contractual restrictions and are managed by 
private keys, just like personal bank accounts. Contract 
accounts, on the other hand, are controlled by their integrated 
contract rules. Although EOAs are contract accounts, the latter 
operate independently on the blockchain, allowing each EOA 
to negotiate or enter into new contracts. Contract accounts can 
initiate transactions only in response to received transactions—
a process referred to in this study as contract-to-contract 
invokes. Such invokes can trigger diverse actions on the 
blockchain, including interacting with or executing other 
contracts and transferring values. Due to their Turing-complete 
nature, smart contracts can encompass a wide array of 
functionalities. They may create additional contracts within 
their code or execute transfers to multiple other contracts. Fig. 
1 illustrates an example of a smart contract deployed on 
Ethereum's blockchain, authored in Solidity. Notably, Solidity 
version declaration is crucial due to Ethereum's evolving 

nature, necessitating constant consideration of platform updates 
and modifications. 

 

Fig. 1. An Illustration of a smart contract implemented on the blockchain of 

Ethereum. 

The depicted contract, "Smartest", commences with 
mappings of addresses, storing sender addresses along with 
associated invested amounts and block numbers. The contract 
includes a fallback function, an automatic function executed 
when no other functions match the given identifier. Marked as 
payable, this function ensures the contract can receive Ether and 
is externally callable, facilitated by the 'external' modifier. Line 
8 verifies if the sender has made any investments, followed by 
a computation to determine the investment payout based on 
block numbers. Rapid block addition rate and computation in 
Ethereum account for approximately 6000 new blocks daily. 
Consequently, the investment payout, calculated as 4.3%, is 
dispatched to the investor with subsequent updates performed 
to the investment mappings and block numbers. In Ethereum, a 
transaction encapsulates data signed by EOAs for message 
transmission or contract creation. Transactions originate from 
EOAs, initiated by signing with their corresponding private 
keys. Contract accounts interact through messages or internal 
transactions generated within the Ethereum execution 
environment. Typically, the sender, identified as the 
from_address, executes the transaction. EOAs can activate 
contract accounts, and initiate transactions. In Fig. 2, an EOA 
triggers a contract-to-contract invoke with a transfer between 
EOAs. Such invokes often entail specific functions specified in 
transaction input data, such as transfer and transferEvent, 
indicating a transfer event within a contract. These functions 
extract receiver information, either an EOA or a contract. 

 

Fig. 2. An Example of a transfer between two EOAs and a contract-to-

contract invoke carried out by an EOA. 

Contract creation transactions differ by not having a 
designated receiver address. Instead, they are assigned a unique 
contract account address linked to the smart contract. Ethereum 
facilitates the creation of DAPPs, utilizing tokens to represent 
assets or utilities controlled by smart contracts like ERC20 
tokens, which define specific functions applicable to DAPP 
interactions. Transaction execution incurs operational gas costs, 
determined by computational requirements to prevent network 
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abuse. Gas limits, denoted by STARTGAS, curtail resource-
intensive actions, ensuring network stability. Miners, validating 
transactions through proof of work, determine transaction 
order. Each validated block updates Ethereum's state, forming 
a blockchain comprising millions of transactions. Web3 
Application Programming Interface (API) connectivity enables 
real-time blockchain interaction, facilitating data retrieval and 
transaction processing. Infura offers accessible API services for 
Ethereum connectivity. Utilizing the web3-eth package, 
developers interact with Ethereum and deploy smart contracts, 
accessing essential blockchain data like block numbers and 
transaction details. Scalable data analytics for Ethereum are 
offered by Google BigQuery, which provides blockchain data 
for effective Structured Query Language (SQL) querying. 
Another perspective can be obtained by analyzing data from the 
Ethereum blockchain encoded in other formats, such as 
JavaScript Object Notation (JSON) and Avro. However, 
processing big data requires more effective data filtering 

techniques, especially given Ethereum’s expanding size. Due to 
this rapid user growth, Ethereum has become particularly rich. 
Its blockchain has grown to over 500 GB and is still quickly 
expanding. Efficient methods for handling these large datasets 
become important when dealing with such large amounts of 
data. Understanding the nuances of the memory architecture 
shown in Fig. 3 is important for proper system performance. 
Different levels of memory are different in a hierarchical 
structure and each affects how quickly data can be accessed. L6 
or secondary remote storage, like shared file systems and web 
servers, is the lowest. According to [11], there is a noticeable 
performance delay in receiving data from L6. On the other 
hand, Random Access Memory (RAM) storage in layers L2 to 
L4 provides faster data access and consequently improves 
performance. Therefore, understanding and implementing these 
memory systems is essential for the system to work properly in 
Ethereum blockchain channels. 

 
Fig. 3. A single transaction of Ethereum data in the big query. 

IV. RELATED WORK 

Smart contracts, the core of blockchain technology, have 
been the subject of many studies recently, including the work 
of [12] to optimize development processes and address security 
flaws, a comprehensive study shows specific issues faced by 
those working with Solidity, the famous company 
programming language for blockchain-based systems made, 
one of the outstanding contributions in this regard is [13] 
described some security issues with Solidity smart contracts, 
such as a well-known reentry attack with the ability to 
compromise the entire integrity-at-risk contract system and 
launched several programs aimed at improving it. The 
emergency stop measure is one such model that can effectively 
reduce the risks associated with the conclusion of criminal 
contracts. The study in [14] as a result of the project, flexible 
and secure smart contracts were developed, providing effective 
responses to these security issues. The research in [15] also 
made a notable addition—when they developed SmartInspect, 
a system that facilitates editing and visualization of individual 
smart contracts SmartInspect allows developers to graphically 
represent contract code and additional special rules or 
conventions in an imageless system such as Ethereum. The 
debugging process can be accelerated without reuse, where data 
is stored as bytecode. By simplifying the development process 
and improving smart contract debugging, this tool ultimately 
increases the common dependencies on blockchain-based 

systems in a new way of managing Solidity. The research in 
[16] solved the tricky speed, a journey was started using the 
Smalltalk Compiler Compiler (SmaCC). to develop a parser 
compatible with Pharaoh of programming environment This 
effort was based on the need to guide Solidity, the leading 
language in smart contract development, through its inherent 
errors and ambiguities. By carefully building a parser it gets to 
the details of Solidity aimed at re-moving complexity and paves 
the way for advanced debugging and security measures in smart 
contracts. 

A careful analysis of Solidity's [17] grammar and semantics 
was a key factor in the work. By analyzing the structure of the 
language, they were able to identify major barriers to its 
exploration. These challenges had problems, such as grammar 
inconsistencies and simple formulas, which led to frequent 
parsing errors and hindered proper understanding Solutions 
were developed to alleviate these challenges through in-depth 
analysis and over iterative development cycles, and a robust 
parsing tool for intelligent and secure contracts [18] is one of 
his most important contributions. Due to their autonomous and 
invariant rules, smart contracts require high accuracy and 
reliability when implemented. However, due to the 
physiological complexity of languages such as Solidity, there 
are major obstacles to achieving this goal. The study in [19] 
strengthens the security posture of smart contracts by 
improving their understanding and debugging with a parsing 
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customized to Solidity's peculiarities. The study of [20] 
establishes how blockchain technology has interdisciplinary 
emphasis, compilers for solving practical problems, computer 
language, etc. By integrating knowledge from other industries 
and applying Smalltalk ecosystem tools and methodologies, 
they demonstrate the value of interdisciplinary approaches in 
promoting blockchain development. The relevance of the study 
[21] goes beyond the research methods. It highlights a larger 

trend in smart contract research where researchers and industry 
partners collaborate to bolster blockchain technology 
initiatives. The researchers worked together to find security 
flaws and provide reliable development tools, accelerating 
smart contracts and establishing them as key features of a 
decentralized app. Table I shows the summary of the above 
literature. 

TABLE I. SUMMARY OF THE RELATED WORKS 

Work 
Optimized 

Development 

Addressed 

Security Flaws 

Improved 

Debugging 

Enhanced 

Parsing 

Strengthened 

Security 

Interdisciplinary 

Approach 

Collaboration 

with Industry 

[12] ✔ ✔      

[13]  ✔   ✔   

[14]     ✔   

[15]   ✔     

[16]    ✔    

[17]    ✔    

[18]    ✔    

[19]    ✔ ✔   

[20]    ✔  ✔  

[21]      ✔ ✔ 
 

V. PRE-IMPLEMENTATION 

This section explores various analytical approaches by 
testing the necessary assumptions and fitting the appropriate 
methods. Data storage design specifications are also described 
to aid understanding and use. Our main goal is to divide 
Ethereum transactions into four categories—token transactions, 
ether transfers, contract creation, and contract-to-transaction 
calls. The categories above allow for a thorough examination of 
the behaviors and network patterns inside the Ethereum 
ecosystem. The attributes required for database inclusion have 
been determined to classify contracts by ownership containing 
the contract code, owner address, contract address, nonce, cost, 
and timestamp. These datasets are available in JSON format 
with a size of 2GB as shown in Table II. Using BigQuery and 
Web3 API, many datasets with particular features are pulled 
from Ethereum to enable thorough studies of Ethereum 
blockchain operations. For example, the Owner Address—
which identifies the EOAs that created the contract—the 
Contract Address—which is a unique identifier for the newly 
created contract account—and the Contract Code—which is 
essential for calculating a hash value to distinguish identical 
copies of contracts—are required in the first dataset, which is 
focused on Contract Creations. It's also crucial to include the 
Nonce attribute, which shows how many contracts have been 
created by a particular account; the Value attribute, which 
shows asset flow for upcoming asset flow analysis; and the 
Timestamp, which gives the temporal context for contract 
creations. Important elements of the invoke dataset include 
entering the Contract-to-Contract Phase Aspects, such as the 
Owner Address (relating to the EOA initiating the transaction), 
the Contract Address (Sender), which is the contract's address 
initiating the function call, and the Receiver Address, which is 
the contract's or EOA's address receiving the function call or 
transfer. For important in-depth research, the Receiver Type 

checking (EOA or contract account), Input Data with bytecode 
with some function call statement, Nonce for tracking 
transactions, Asset value of contracts transfers, and Timestamp 
for context identification are required. Therefore, in the Ether 
transfer dataset, the final properties should be the Owner 
Address (to initiate transactions), Receiver Address (EOA or 
contract account), Receiver Type checking, Nonce for 
transaction counts, Asset value movement, and Timestamp for 
the context of transactions. We can analyze contract behaviors, 
track asset flows, and recognize temporal behavior transactions 
to measure the Ethereum ecosystem's quality. Therefore, by 
storing these datasets in either NoSQL or relational databases 
in the ecosystem, query performances can be improved and 
analytical procedures can be developed apart from maintaining 
the data integrity. 

Every characteristic plays a distinct part in separating 
behavioral results from ownership ties. Consequently, relevant 
information such as owner address, contact address (sender and 
receiver), data entry, nonce, price, and timestamp are identified 
for contract-to-contract calls. These characteristics make it 
easier to examine transactional exchanges and the movement of 
assets between contracts in greater detail. For completing Ether 
transfers, variables like possessor location, receiver address, 
nonce, sum, and time mark are required for detecting 
transactional dynamics and asset movements. These 
characteristics ensure a complete understanding of transactional 
behaviors and open doors for further analysis. As mentioned in 
the background section, there are two main approaches to 
extracting Ethereum blockchains: BigQuery and Web3 API. 
The benefits and losses of each technique are carefully 
considered to support the decision-making process. BigQuery 
is a useful tool for extracting large amounts of data; it can 
export the full blockchain dataset. However, it has limitations, 
such as storage requirements and limited scalability. 
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Conversely, Web3 API provides immediate access to the most 
recent blockchain data, although it might rely on external APIs 
and encounter performance challenges. Subsequently, the focus 
transitions to clustering analysis, wherein transactional models 
and behaviors are de-ciphered utilizing unsupervised learning 
methodologies [22]–[27]. The effectiveness of the k-means 
clustering method is emphasized in terms of its ability to divide 
data into discrete groups according to similarities. The ideal 
number of clusters can be found using techniques like the 
Elbow method. It makes it easier to analyze and comprehend 
transactional data meaningfully. 

However, to facilitate effective data retrieval and analysis, 
the database architecture also attempts to create a hierarchical 
structure that arranges contracts according to ownership 
connections. Therefore, a thorough approach to transactional 
behavior analysis and database design is also considered, laying 
the foundation for data extraction, analysis, and interpretation 
inside the Ethereum ecosystem. However, pre-processing is 
necessary to build an exhaustive invokes tree of contract-to-
contract calls. Additional data sorting and storage are part of 
this phase. The main goal is to classify Ethereum transactions 
into three main categories—ether transfers, contract-to-contract 

invokes, and contract constructions, as was previously 
mentioned. Separating Tokens according to the kind of 
transaction they involve i.e., differentiating between contract-
to-contract invokes and normal transfers—is another essential 
goal. This preparatory phase lays the foundation for the next 
examination and knowledge of the complex dynamics of 
Ethereum transactions. Important information about transaction 
hashes and Ethereum token contract addresses are kept in the 
BigQuery file section called token transfers. A complete 
inventory of all tokens requires a preliminary preprocessing 
step that includes a thorough review of all token-transfers files 
and a methodological filing of every contract address into a 
separate file. Similarly, creating an exhaustive Token list that 
lists every contract requires a preprocessing phase that involves 
going through every transaction file and methodologically 
storing every contract address linked to a contract establishment 
into a different file. This initial step is necessary since account 
addresses are all the same, regardless of whether they are 
contract accounts or EOAs, and they are all 20-byte 
hexadecimal addresses that are not unique from one another. 
An important phase of this process is distributing distinct 
among EOAs and contract accounts, which requires a detailed 
verification process facilitated by the above list. 

TABLE II. DATASET DESCRIPTION 

Dataset Name 
Data Categories 

Included 
Required Attributes 

Size (JSON 

Format) 
Storage Type Purpose/Analysis Focus 

Contract Creations 
Contract Creation 
Transactions 

Owner Address, Contract Address, 

Contract Code, Nonce, Cost, 

Timestamp 

2GB NoSQL/Relational 

Analyzing contract 

creation behaviors and 

patterns 

Contract-to-

Contract Invokes 

Contract-to-Contract 

Interaction 
Transactions 

Owner Address (Initiator), Contract 
Address (Sender), Receiver 

Address, Receiver Type, Nonce, 

Asset Value, Timestamp 

2GB NoSQL/Relational 

Studying interactions and 

asset flows between 
contracts 

Ether Transfers 
Ether Transfer 
Transactions 

Owner Address (Initiator), Receiver 

Address, Receiver Type, Nonce, 

Asset Value, Timestamp 

2GB NoSQL/Relational 

Analyzing asset 

movements and transaction 

dynamics 

Token Transfers 
Token Transfer 

Transactions 

Transaction Hash, Ethereum Token 

Contract Addresses 
BigQuery File BigQuery 

Tracking token 

transactions and contract 
addresses 

Contract Inventory 
Ethereum Contract 
Inventory 

Contract Addresses BigQuery File BigQuery 

Maintaining a record of all 

contract addresses on 

Ethereum 

Token List 

Inventory 
Ethereum Token List Contract Addresses (Tokens) BigQuery File BigQuery 

Creating a comprehensive 

list of all Ethereum tokens 

 

VI. POST-IMPLEMENTATION 

This section outlines the framework architecture, including 
the design and implementation process. A pipe and filter design 
defines the general architecture of the framework, as seen in 
Fig. 4. 

Black pumps on the left side of the diagram stand in for all 
of the transactions and token-transfer data are obtained from the 
Ethereum blockchain. A single usage of these token-transfer 
files is made to create an exhaustive list of token contract 
addresses. On the other hand, there are numerous uses for the 
transaction files. First, they make it easier to create a file on the 
blockchain to have all the active contract addresses. They are 
then passed through the Contract Creator (CC) filter responsible 
for classifying contracts according to their owners and 

performing hash calculations to obtain hash strings for every 
contract. Every transaction is thoroughly processed by the CC 
filter, which also performs verifications against the contract 
address file and extracts pertinent information. The resulting 
data is stored in a CC Database and consists of owners grouped 
with their corresponding contracts. This dataset is put through 
one extra round of filtering, to create visuals that clarify the 
connection between owners and contracts. In the context of 
transaction file utilization, another significant application 
arises—the sorting and processing of transactions excluding 
contract creations. This specific filtration process is termed 
Invokes Creator. It operates simultaneously with lists of 
contracts and token contract addresses for verification 
purposes. Initially, the preprocessing stage segregates 
transactions into three databases—tokens, transfers, and a 
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database labeled calls, housing all contract-to-contract 
transactions [28]. This methodology facilitates efficient 
management and organization of transactional data, ensuring 
systematic handling of diverse transaction types. 

 
Fig. 4. The framework's architecture. 

The investigation brought to light the considerable amount 
of data being processed. A sequential data processing 
methodology is embodied in the architectural framework 
shown in Fig. 5. However, this step-by-step approach can 
considerably increase the processing time. As such, the next 
part offers a paradigm change in the direction of parallel 
execution. The example process described in this section 
involves splitting the dataset into N segments, each one to be 
processed by a separate processor. The purpose of this parallel 
processing technique is to reduce processing time and 
maximize the use of computational resources. However, a 
significant part of the process, approximately 0.58% of all 
transactions are contract creations. Therefore, this procedure 
should ideally be run on a single CPU for efficiency. 

 
Fig. 5. The procedure for carrying out the gathering of contract creations 

and grouping. 

 
Fig. 6. The technique of contract-to-contract calls/ transfers/tokens 

execution. 

Subsequently, we investigate how Invokes Creator extracts 
calls, transfers, and tokens between contracts. This crucial step 
in data analysis takes longer because a lot of data is involved. 
As shown in Fig. 6, the process can be divided into smaller 
components, resulting in multiple databases. After that, Invokes 
Tree Creator processes each dataset and builds an extensive tree 
that displays every invoke between contracts. This systematic 
procedure facilitates a thorough analysis of the network's 
interactions. 

A. Additional Improvements 

HDF5 [29] is a better alternative to current database 
architecture, with a hierarchical database structure suitable for 
managing large datasets. It is compatible with programming 
languages, like Fortran, Octave, Mathematica, Scilab, 
MATLAB, R, Julia, and Java. One of its main advantages is 
more efficient use of storage resources than conventional 
relational databases. Its compact format reduces processing 
costs and file space usage and is useful for tiny datasets. It is 
possible to duplicate this hierarchical structure in a relational 
database but may add redundancy, which raises storage 
requirements. Additionally, more complex query operations 
like invokes are required in relational databases to extract 
certain subtrees. However, HDF5 has a restriction of 
performing only one read or write operation at a time. 

Contrary to that, the concurrency characteristics of 
relational databases allow several simultaneous reads and 
writes due to their transaction-savvy design. The choice of 
language is crucial when creating a framework with wide 
application. Among the languages supported by HDF5, Python 
stands out due to its extensive library ecosystem. Although 
Python is an interpreted language, meaning it typically 
performs less computationally efficiently than compiled 
languages—this disadvantage becomes less significant when 
considering the dominating disk activities that occur during 
runtime. As such, Python's alleged processing latency may not 
exceed its advantages. Multi-threading is replaced by Python's 
global interpreter lock, though, unless it is augmented by other 
tools that function outside of Python's domain, like non-Python 
libraries or network requests. The h5py Python library 
extension provides Python access to HDF5 features by treating 
h5py datasets as NumPy arrays and h5py groups as Python 
dictionaries. The implementation of Python and HDF5 for best 
speed presented issues because of HDF5's single-threaded 
read/write capability and Python's lack of multithreading 
support. Multithreading was first used to investigate network 
requests—however, this method proved unstable because of 
frequent failures and time-outs. Thus, the search was on for a 
network-independent solution. The best method for reaching 
peak performance was to spread data among the available 
servers each running five to six processes to exploit hardware 
resources. However, system stability was crucial because high 
thread utilization might cause crashes, particularly when the 
processes ran under NFS from a notorious home folder for its 
sporadic instability. As a result, keeping processes to 5–6 
allowed for a compromise between speed and stability. 
Managing databases was an essential component of the finished 
system. For data sorting, 153 databases were constructed (not 
including Contract Creations) in light of HDF5's single 
read/write constraint. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

1270 | P a g e  

www.ijacsa.thesai.org 

VII. EXPERIMENTAL ANALYSIS 

During the first part of our study, we processed large-scale 
datasets that were taken out of BigQuery and used the Web3 
API to confirm the addresses' validity. This made it necessary 
to distinguish between contract accounts and EOAs. We chose 
to implement multi-threading in Python to maximize 
efficiency; this choice was influenced by the computing 
demands of our task and the limitations imposed by Python's 
global interpreter lock. We created a three-threaded pipeline to 
expedite the data pre-processing step to demonstrate our 
methodology as shown in Fig. 7. 

 
Fig. 7. The first solution is a pipeline through the network. 

Components in this pipeline indicated by dark orange boxes 
are used to classify transactions that do not include CC. The 
performance of a proposed solution heavily relies on its 
efficiency, particularly evident in systems utilizing the Web3 
API. As an empirical evaluation, the initial approach exhibited 
suboptimal results due to extensive network connections. 
During time experiments with modest data sets comprising 
three small files of 2.42 MB, a stark contrast in performance 
emerged. For preprocessing, the preliminary solution 
necessitated a substantial 340.825 seconds while the optimized 
solution devoid of network interactions accomplished the same 
task in a mere 11.093 seconds, boasting a remarkable speed-up 
factor of 31. Nonetheless, it is imperative to acknowledge that 
the optimized solution introduces its preprocessing phase. This 
entails traversing through transaction files to aggregate all 
generated contract addresses. Furthermore, an intermediary 
enhancement step contributed to the overall acceleration. 
Initially, the program loaded all contract addresses into a list. 
However, transitioning this data structure to a dictionary 
yielded notable improvements. The processing time is reduced 
from 259.207 to 16.782 seconds, demonstrating a notable 
speed-up factor of 15. The results of using the suggested 
technique showed promise in runtime efficiency. After two and 
a half hours, the preparation operation was finished, processing 
a large dataset of 265 GB. This accomplishment highlights how 
well the distributed processing strategy handles a massive 
volume of data. 

VIII. RESULT ANALYSIS 

When using blockchain systems in real-world applications 
across different industries, scalability, and efficiency are 
critical factors to be considered. The performance of the 
underlying hardware becomes a bottleneck for transaction 
processing and examination, where a significant volume of 
transactions may be involved. As per the given data, it has taken 
up to 9.5 hours to process and comment for the 408,137,399 

transactions via the hardware as illustrated in Table III. The 
number of transactions highlights the requirement for a strong 
hardware infrastructure to manage these processing demands. 
Clustering and creating the Invokes tree are two 
computationally intensive processes; considered elements of 
the inspection phase detailed in the data. Clustering is 
assembling transactions based on many parameters, such as 
transaction type, origin, or destination to understand transaction 
trends and behaviors. Significant computer resources are 
needed for this procedure, especially when working with huge 
datasets like the one mentioned. The trade-off between 
computational complexity and hardware capability is shown in 
the execution time of 9.5 hours for processing and reviewing 
over 400 million transactions. Although huge workloads may 
be handled by modern hardware, processing massive datasets 
quickly is challenging, especially in distributed and 
decentralized contexts where resource limitations and network 
delay are issues. 

TABLE III. PERFORMANCE ON HARDWARE 

Hardware Configuration 
Transactions 

Processed 
Execution Time 

Intel Xeon Gold 6248 408,137,399 9.5 hours 

A. Clustering Analysis 

The results shown in Fig. 8, 9, and 10 on the clustering 
equivalency classes among owners with an equal number of 
contracts are the focus of the analysis in this section. The Elbow 
method, which is explained, is applied in Fig. 8 and 9. In 
particular, Fig. 8 illustrates the Elbow method's use throughout 
a k range of up to 15, showing a clear bend in the graph around 
the point where three clusters correspond. Similarly, Fig. 9 
presents the Elbow method utilizing a k range up to 25, wherein 
the inflection point aligns with the presence of three clusters. 
Consequently, it can be inferred that the optimal number of 
clusters is three. Subsequently, Fig. 10 visually presents the 
clustering outcome with three clusters, with the centroids 
depicted as black spots. The clustering analysis indicates 
variations in the distribution of EOAs based on contract 
frequency. It reveals that certain EOAs exhibit a high 
concentration of contracts, while others demonstrate a more 
dispersed pattern with increased occurrences. Notably, a 
significant portion of EOAs falls within the green cluster, 
indicating a range of approximately 1 to 1000 contracts per 
EOA. 

Similarly, Fig. 11 and 12 illustrate the outcomes of the 
analysis. Fig. 11 depicts the application of the Elbow method 
within a k range extending to 15, revealing a pivotal bend in the 
graph around three clusters. This methodology was further 
extended to k values up to 25, yet consistent with prior findings, 
the optimal number of clusters remained at three. The analysis 
depicted in Fig. 12 highlights the prevalence of numerous 
distinct contracts associated with each EOA, primarily 
represented by the purple segment. However, a notable 
observation emerges from the red cluster, indicating instances 
where individual proprietors possess over 100,000 identical 
contracts. An escalation in the number of contracts and the 
distribution shifts indicate a transition towards a multitude of 
unique contracts or a proliferation of duplicates. 
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Fig. 8. Using k in the range of 15, determine the appropriate number of 

clusters for the range of contracts that occur each EOA concerning the number 

of times that this amount occurs. 

 
Fig. 9. Using k in the range of 25, determine the appropriate number of 

clusters for the range of contracts that occur every EOA concerning the 

number of times this amount occurs. 

 
Fig. 10. The distribution of contracts per EOA compared to how frequently 

this amount occurs, shows three clusters. 

 
Fig. 11. Using k in the range of 15, determine the appropriate number of 

clusters for the number of contracts per EOA with the number of unique 
contracts per EOA. 

 
Fig. 12. Using three clusters, the unique number of contracts per EOA is 

clustered with the total number of contracts per EOA. 

Additionally, Fig. 13 and Fig. 14 delve into a comparative 
examination concerning the recurrence of contract instances 
and the number of distinct EOAs utilizing each contract. Fig.13 
employs the Elbow method across a range of k values up to 15, 
elucidating that three emerge as the optimal cluster count. 
Subsequent iterations of this method reaffirm the consistency 
of three as the most favorable cluster count. In the clustering 
analysis illustrated in Fig.14, we examine the distribution of 
contract duplications across various Ethereum-based 
organizations. Notably, the initial instance of an EOA is 
excluded from consideration, allowing us to observe 
subsequent EOAs adopting a contract already in circulation. 
The depiction highlights a discernible pattern—a distinct 
concentration of contracts utilized by multiple EOAs, 
represented by the purple area, alongside a cluster of contracts 
scarcely replicated by EOAs. This observation suggests a dual 
inclination among EOAs, favoring either widely duplicated 
contracts or those with minimal replication. 
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Fig. 13. Using k in the range of 15, get the number of clusters for the number 

of times a contract happens more than once using the number of unique EOAs 

using each contract. 

 
Fig. 14. Three clusters used to group the number of times a contract happens 

more than once and the number of distinct EOAs that use each contract. 

B. Invokes Tree Analysis 

Analyzing the execution of smart contracts is essential for 
locating any weak points and illegal activity in blockchain 
networks. A structured network of invokes is revealed in the 
performed examination, providing insight into the complex 
relationships between different smart contracts. This network is 
illustrated graphically in Fig. 15, where the contract code for 
the address Green Ethereus is highlighted along with its 
interactions with three different contracts—SuperFOMO, 
UCashBank, and Smar-tHash. However, a closer look at the 
SuperFOMO contract, reveals more calls than were first 
thought to be there, including exchanges with Gorgona, 
EtherSmart, and self-referential messages. A hierarchical 
pattern of invokes similar to a tree-like structure is shown in 
this study, describing the relationship complexity within smart 
contracts. A closer verification of the contract addresses in the 
invokes tree clarifies that there are questions about the true 
nature of the root contract, Green Ethereus. Green Ethereus 

operates more like a Ponzi scam, using its ties to other contracts 
to perpetrate more fraud. Furthermore, a thorough examination 
of each contract that Green Ethereus has cited explores 
characteristics common to Ponzi schemes, emphasizing the 
interconnectedness of the fraudulent activity inside the 
network. These findings demonstrate the significance of the 
Invokes Creator's role in avoiding circular reference 
connections in contracts. The blockchain network, as a whole, 
may become vulnerable to vulnerabilities introduced by 
circular references, jeopardizing its integrity and security. 

 
Fig. 15. An illustration of a ‘Transaction Tree’ from the generated data that 

combines multiple confirmed Ponzi schemes. 

To improve readability and avoid misunderstandings when 
displaying invokes, the existing method suggests repeating the 
contract address as a sub-group, as seen in Fig. 16. This 
approach makes it easier to comprehend how smart contracts 
interact by providing a simple enhancement to the visualization 
tool. It should be noted that time restrictions prevented this 
approach from being implemented, but only highlighting the 
practical issues that must be critical. The iterative and resource-
constrained nature of blockchain is reflected in the decision to 
prioritize features or performance enhancements. The sequence 
of essential capabilities, time constraints, and technical 
limitations often guides the execution trajectory of a study. In 
this instance, the suggested course of action might be clearer 
and easier to understand than the others; the other urgent issues 
might have prevented it from being put into action immediately. 
Besides, potential Ponzi schemes and fraudulent behaviors 
within the blockchain network urge the development of scrutiny 
and supervision protocols. 

 
Fig. 16. Current invokes tree cyclic reference solution. 

Continuous monitoring and subsequent preventative actions 
are required to ensure the reliability and authenticity of 
blockchain-based systems. Participants should effectively 
minimize the adverse impacts of fraudulent activities to provide 
a more resilient and secure blockchain ecosystem by applying 
insights gained from smart contract analysis and proactive risk 
mitigation strategies. Thus, the intricate invoke network 
facilitating smart contract communication is made visible by 
incorporating it into the smart contract implementation process. 
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The discovery of fraudulent activity and Ponzi schemes 
highlights the strength and usefulness of blockchain networks. 
Although suggested solutions by the Invokes Creator are 
beneficial to reduce risk, real concerns can be challenging in 
practical situations. Proactive security and risk management are 
required to maintain the integrity and reliability of blockchain 
systems. 

IX. CONCLUSION 

The attainment of goals for the research work is rigorously 
tried. The goals are achieved, leading to discoveries that open 
new avenues for blockchain data research and analysis. The 
proposed framework and the obtained outcomes demonstrate 
that the objectives are met. Firstly, collecting a required 
quantity of well-organized data is an important task. The dataset 
contains extra categories that are not directly related to the 
study. The analysis of categorized token data and Ether 
transfers can provide trends and insights on blockchain activity 
that do not fall within the scope of the study, allowing further 
investigation and analysis. Moreover, the clustering data reveal 
both normal and aberrant equivalence groups of owners with 
identical contract numbers, offering compelling proof of 
contract repetitions. This discovery advances our understanding 
of blockchain dynamics and highlights the significance of 
locating and analyzing contract replication patterns inside the 
network. Lastly, the invokes tree exposes important distinctions 
between contract-to-contract invocations, exposing in-stances 
such as pyramid schemes. It is acknowledged that 
chronological constraints have limited the fullness of the CC 
tree. In particular, it is difficult to fully capture the scope of 
contract interactions when contracts are not included as sub-
groups to other contracts. This restriction is due to the way 
contracts are created; which forces the sender to default to the 
EOAs whether or not the contract was created through the 
instantiation of another contract. Despite this problem, possible 
ways to address the disparity are suggested. This constraint 
could be addressed by doing checks against each contract 
account nonce and combining tree patterns from the invokes 
tree to provide a more complete picture of contract interactions. 
Crucially, it is seen that this structural problem does not 
interfere with the clustering process, allowing for further 
investigation even in the absence of an instant answer. 

X. FUTURE WORK 

Our research extends the existing framework to incorporate 
the latest blocks from the Ethereum blockchain. Presently, the 
framework holds data up to March 18, 2019. This augmentation 
facilitates the gathering and processing of up-to-date 
blockchain information. The clustering analysis illustrates 
discernible patterns within the data. Notably, the identified 
clusters consist of three distinct groups. An intriguing avenue 
for future investigation involves conducting clustering analyses 
on the subgroups within these clusters to unveil deeper insights 
into underlying patterns and structures. We acknowledge the 
existence of platforms cataloging registered scams within the 
Ethereum ecosystem. Promising future research entails 
scrutinizing these scam patterns to develop a predictive model 
to pre-emptively identify potential future scams. Our structure 
carefully arranges information, providing a rich environment 
for studying transfers among EOAs. This research can 

potentially identify Ether's flow and stall in the network. 
Moreover, our research can extend the Invokes tree to 
incorporate links revealing cycles within the blockchain 
ecosystem. An integral aspect of our research involves 
developing an extension that traverses through each database, 
elucidating the flow of Ether, colloquially termed as following 
the money. This comprehensive analysis of the movement of 
Ether among contract-to-contract involves Ether transfers. 
Additionally, our investigation entails juxtaposing our findings 
with the dates of well-known attacks, enriching our 
understanding of the security landscape within the Ethereum 
ecosystem. 
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