
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1264 | P a g e

www.ijacsa.thesai.org

Blockchain-Enabled Decentralized Trustworthy

Framework Envisioned for Patient-Centric

Community Healthcare

Mohammad Khalid Imam Rahmani1*, Javed Ali2, Surbhi Bhatia Khan3, Muhammad Tahir4

College of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia1, 2, 4

Department of Information Systems, College of Computer Science and Information Technology,

King Faisal University, Saudi Arabia3

School of Science, Engineering and Environment, University of Salford, United Kingdom3

Department of Computer Science, National University of Science & Technology (NUST), Balochistan Campus, Quetta, Pakistan4

Abstract—Ethereum has gained significant attention from

businesses as a blockchain technology since its conception. Beyond

the first use of cryptocurrencies, it provides many additional

features. In the pharmaceutical sector, where reliable supply

chains are necessary for cross-border transactions, Ethereum

shows promise. It addresses problems through quality,

traceability, and transparency in a place defined by complexity

and strong laws because of its decentralized structure. As a result,

this study looks at how Ethereum is used in the pharmaceutical

sector, namely the networks that allow smart contracts to

communicate with one another on the Ethereum network. The

above concepts are formulated via communication networks,

inter-contract owner interactions, and simulation analysis, which

seeks to identify dubious practices and unjust contracts inside the

supply chain. The study suggests effective manufacturing

techniques that call for reduction rather than storage to

technological obstacles. With this endeavor, we hope to provide

insights into Ethereum-based contract ecosystems and assist in

anomaly identification for enhanced security and transparency.

The main objective is to support patient record methodology and

transform the way healthcare data is managed. The suggested

model integrates front-end interfaces, back-end optimization,

distributed storage, proof-of-work techniques, and training to

establish a safe and efficient ecosystem for healthcare data. These

elements can be combined through the blockchain-enabled

architecture to transform manufacturing-protecting chemicals in

handling, distribution, and necessary training.

Keywords—Blockchain; smart contract; externally owned

accounts; decentralized trustworthy framework; community

healthcare; Ethereum; supply chain management

I. INTRODUCTION

Blockchain technology, introduced in 2009 alongside
bitcoin, has rapidly transformed many industries beyond
cryptocurrencies. The decentralized and secure ledger system
of blockchain, first conceived by Satoshi Nakamoto [1], has
attracted much interest from industries such as cloud
computing, finance, and healthcare maintenance of a
distributed ledger that guarantees secure and immutable
recording of transactions across a network of nodes, the main
objective of this system is that there is no need for centralized
control because of the distributed system based on consensus
policies by web users called miners.

Among blockchain platforms, Ethereum has emerged as a
major player with its introduction in 2015 by Vitalik Buterin
[2]. In addition to providing a cryptocurrency (Ether), Ethereum
provides a versatile environment for the development of
decentralized applications (DAPPs) and the use of smart
contracts, encoded as a set of autonomous computer programs
Ethereum cornerstone smart contracts facilitate automation,
transparency, and efficiency in the blockchain network, which
extends its applications beyond simple financial transactions.
Understanding the interactions between Ethereum components
and smart contracts is critical to unlocking its full potential.

Thus, in this study, blockchain technology provides a
solution to ensure end-to-end traceability, traceability, and
authenticity of pharmaceutical products throughout their
lifecycle. The enabled architecture changes in data management
practices by prioritizing patient focus, data security, and
regulatory compliance. Analysis of patterns and relationships
between blockchains is essential to detect anomalies and ensure
the integrity of the ecosystem. The research in [3] outlines an
important analytical framework for identifying communication
patterns between contracts to classify contracts based on
ownership similarity patterns. Overcoming technological
challenges is paramount for realizing blockchain's full
potential, with significant efforts toward enhancing
performance and reducing storage overhead in blockchain data
analysis. Therefore, blockchain technology, exemplified by
platforms like Ethereum, has transcended its origins in
cryptocurrency becoming a catalyst for innovation across
diverse sectors. From financial services to healthcare and SCM,
blockchain offers a decentralized, transparent, and secure
framework for data management, automation, and trustless
transactions. Understanding its core principles, deploying smart
contracts effectively, and leveraging data analytics tools are
essential in harnessing blockchain's trans-formative power and
creating value in the digital economy.

The study is as follows—the contribution of the study will
be shown in the following section. The background is given in
Section III. The related works are discussed in Section IV. The
pre-implementation is provided in Section V. The post-
implementation is presented in Section VI. The experimental
analysis section is out in VII Section. Results are presented in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1265 | P a g e

www.ijacsa.thesai.org

Section VIII. The conclusion and future works are discussed
respectively in Section IX and Section X.

II. CONTRIBUTION

In this contribution section, we look at a microcosm of
individual smart contracts participating in exploring the vast
landscape and integrating blockchain technology. Our goal
goes beyond examining isolated entities, aiming instead to
uncover the complex relationships between smart contracts. At
the heart of our research is exploring the complexities of the
blockchain ecosystem, specifically the interactions between
smart contracts. By examining the relationships between these
autonomous companies, we seek to identify potential weak
spots for common users. The focus of this effort is to analyze
contract accounts with their owners, to identify patterns and
practices that potentially indicate fraudulent behavior and
intention of abuse. Furthermore, apart from observation, our
analysis includes a comprehensive analysis of contract renewal
issues. There are both challenges and opportunities in the
procedure of passing identical contracts on the blockchain. By
proper analysis, we can explain the mechanisms of alliance
morphology and the causes and consequences for larger
ecosystems. Through better analytical methods like machine
learning (ML) [4]–[10], we can discover relationships and
interactions to better our comprehension of the fundamental
processes regulating intelligent transaction agreements. We
develop blockchain-based intelligent contract ecosystems by
combining these diverse areas of study.

Our findings reveal weaknesses and analogical patterns that
provide light on the interactions between smart contracts,
offering developers, academics, regulators, and policymakers
useful information. In conclusion, our research emphasizes the
significance of blockchain technology from a wider
perspective; a wide overview of the networks and
interdependence that characterize this revolutionary
technology, rather than focusing only on individual contracts.

III. BACKGROUND

Two of the primary account types used by Ethereum, the
blockchain platform, are contract accounts and external
accounts (EOAs). A unique, 20-byte address is assigned to each
account, enabling modifications to the status, that include the
direct transfer of data and values between accounts. EOAs are
not subject to contractual restrictions and are managed by
private keys, just like personal bank accounts. Contract
accounts, on the other hand, are controlled by their integrated
contract rules. Although EOAs are contract accounts, the latter
operate independently on the blockchain, allowing each EOA
to negotiate or enter into new contracts. Contract accounts can
initiate transactions only in response to received transactions—
a process referred to in this study as contract-to-contract
invokes. Such invokes can trigger diverse actions on the
blockchain, including interacting with or executing other
contracts and transferring values. Due to their Turing-complete
nature, smart contracts can encompass a wide array of
functionalities. They may create additional contracts within
their code or execute transfers to multiple other contracts. Fig.
1 illustrates an example of a smart contract deployed on
Ethereum's blockchain, authored in Solidity. Notably, Solidity
version declaration is crucial due to Ethereum's evolving

nature, necessitating constant consideration of platform updates
and modifications.

Fig. 1. An Illustration of a smart contract implemented on the blockchain of

Ethereum.

The depicted contract, "Smartest", commences with
mappings of addresses, storing sender addresses along with
associated invested amounts and block numbers. The contract
includes a fallback function, an automatic function executed
when no other functions match the given identifier. Marked as
payable, this function ensures the contract can receive Ether and
is externally callable, facilitated by the 'external' modifier. Line
8 verifies if the sender has made any investments, followed by
a computation to determine the investment payout based on
block numbers. Rapid block addition rate and computation in
Ethereum account for approximately 6000 new blocks daily.
Consequently, the investment payout, calculated as 4.3%, is
dispatched to the investor with subsequent updates performed
to the investment mappings and block numbers. In Ethereum, a
transaction encapsulates data signed by EOAs for message
transmission or contract creation. Transactions originate from
EOAs, initiated by signing with their corresponding private
keys. Contract accounts interact through messages or internal
transactions generated within the Ethereum execution
environment. Typically, the sender, identified as the
from_address, executes the transaction. EOAs can activate
contract accounts, and initiate transactions. In Fig. 2, an EOA
triggers a contract-to-contract invoke with a transfer between
EOAs. Such invokes often entail specific functions specified in
transaction input data, such as transfer and transferEvent,
indicating a transfer event within a contract. These functions
extract receiver information, either an EOA or a contract.

Fig. 2. An Example of a transfer between two EOAs and a contract-to-

contract invoke carried out by an EOA.

Contract creation transactions differ by not having a
designated receiver address. Instead, they are assigned a unique
contract account address linked to the smart contract. Ethereum
facilitates the creation of DAPPs, utilizing tokens to represent
assets or utilities controlled by smart contracts like ERC20
tokens, which define specific functions applicable to DAPP
interactions. Transaction execution incurs operational gas costs,
determined by computational requirements to prevent network

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1266 | P a g e

www.ijacsa.thesai.org

abuse. Gas limits, denoted by STARTGAS, curtail resource-
intensive actions, ensuring network stability. Miners, validating
transactions through proof of work, determine transaction
order. Each validated block updates Ethereum's state, forming
a blockchain comprising millions of transactions. Web3
Application Programming Interface (API) connectivity enables
real-time blockchain interaction, facilitating data retrieval and
transaction processing. Infura offers accessible API services for
Ethereum connectivity. Utilizing the web3-eth package,
developers interact with Ethereum and deploy smart contracts,
accessing essential blockchain data like block numbers and
transaction details. Scalable data analytics for Ethereum are
offered by Google BigQuery, which provides blockchain data
for effective Structured Query Language (SQL) querying.
Another perspective can be obtained by analyzing data from the
Ethereum blockchain encoded in other formats, such as
JavaScript Object Notation (JSON) and Avro. However,
processing big data requires more effective data filtering

techniques, especially given Ethereum’s expanding size. Due to
this rapid user growth, Ethereum has become particularly rich.
Its blockchain has grown to over 500 GB and is still quickly
expanding. Efficient methods for handling these large datasets
become important when dealing with such large amounts of
data. Understanding the nuances of the memory architecture
shown in Fig. 3 is important for proper system performance.
Different levels of memory are different in a hierarchical
structure and each affects how quickly data can be accessed. L6
or secondary remote storage, like shared file systems and web
servers, is the lowest. According to [11], there is a noticeable
performance delay in receiving data from L6. On the other
hand, Random Access Memory (RAM) storage in layers L2 to
L4 provides faster data access and consequently improves
performance. Therefore, understanding and implementing these
memory systems is essential for the system to work properly in
Ethereum blockchain channels.

Fig. 3. A single transaction of Ethereum data in the big query.

IV. RELATED WORK

Smart contracts, the core of blockchain technology, have
been the subject of many studies recently, including the work
of [12] to optimize development processes and address security
flaws, a comprehensive study shows specific issues faced by
those working with Solidity, the famous company
programming language for blockchain-based systems made,
one of the outstanding contributions in this regard is [13]
described some security issues with Solidity smart contracts,
such as a well-known reentry attack with the ability to
compromise the entire integrity-at-risk contract system and
launched several programs aimed at improving it. The
emergency stop measure is one such model that can effectively
reduce the risks associated with the conclusion of criminal
contracts. The study in [14] as a result of the project, flexible
and secure smart contracts were developed, providing effective
responses to these security issues. The research in [15] also
made a notable addition—when they developed SmartInspect,
a system that facilitates editing and visualization of individual
smart contracts SmartInspect allows developers to graphically
represent contract code and additional special rules or
conventions in an imageless system such as Ethereum. The
debugging process can be accelerated without reuse, where data
is stored as bytecode. By simplifying the development process
and improving smart contract debugging, this tool ultimately
increases the common dependencies on blockchain-based

systems in a new way of managing Solidity. The research in
[16] solved the tricky speed, a journey was started using the
Smalltalk Compiler Compiler (SmaCC). to develop a parser
compatible with Pharaoh of programming environment This
effort was based on the need to guide Solidity, the leading
language in smart contract development, through its inherent
errors and ambiguities. By carefully building a parser it gets to
the details of Solidity aimed at re-moving complexity and paves
the way for advanced debugging and security measures in smart
contracts.

A careful analysis of Solidity's [17] grammar and semantics
was a key factor in the work. By analyzing the structure of the
language, they were able to identify major barriers to its
exploration. These challenges had problems, such as grammar
inconsistencies and simple formulas, which led to frequent
parsing errors and hindered proper understanding Solutions
were developed to alleviate these challenges through in-depth
analysis and over iterative development cycles, and a robust
parsing tool for intelligent and secure contracts [18] is one of
his most important contributions. Due to their autonomous and
invariant rules, smart contracts require high accuracy and
reliability when implemented. However, due to the
physiological complexity of languages such as Solidity, there
are major obstacles to achieving this goal. The study in [19]
strengthens the security posture of smart contracts by
improving their understanding and debugging with a parsing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1267 | P a g e

www.ijacsa.thesai.org

customized to Solidity's peculiarities. The study of [20]
establishes how blockchain technology has interdisciplinary
emphasis, compilers for solving practical problems, computer
language, etc. By integrating knowledge from other industries
and applying Smalltalk ecosystem tools and methodologies,
they demonstrate the value of interdisciplinary approaches in
promoting blockchain development. The relevance of the study
[21] goes beyond the research methods. It highlights a larger

trend in smart contract research where researchers and industry
partners collaborate to bolster blockchain technology
initiatives. The researchers worked together to find security
flaws and provide reliable development tools, accelerating
smart contracts and establishing them as key features of a
decentralized app. Table I shows the summary of the above
literature.

TABLE I. SUMMARY OF THE RELATED WORKS

Work
Optimized

Development

Addressed

Security Flaws

Improved

Debugging

Enhanced

Parsing

Strengthened

Security

Interdisciplinary

Approach

Collaboration

with Industry

[12] ✔ ✔

[13] ✔ ✔

[14] ✔

[15] ✔

[16] ✔

[17] ✔

[18] ✔

[19] ✔ ✔

[20] ✔ ✔

[21] ✔ ✔

V. PRE-IMPLEMENTATION

This section explores various analytical approaches by
testing the necessary assumptions and fitting the appropriate
methods. Data storage design specifications are also described
to aid understanding and use. Our main goal is to divide
Ethereum transactions into four categories—token transactions,
ether transfers, contract creation, and contract-to-transaction
calls. The categories above allow for a thorough examination of
the behaviors and network patterns inside the Ethereum
ecosystem. The attributes required for database inclusion have
been determined to classify contracts by ownership containing
the contract code, owner address, contract address, nonce, cost,
and timestamp. These datasets are available in JSON format
with a size of 2GB as shown in Table II. Using BigQuery and
Web3 API, many datasets with particular features are pulled
from Ethereum to enable thorough studies of Ethereum
blockchain operations. For example, the Owner Address—
which identifies the EOAs that created the contract—the
Contract Address—which is a unique identifier for the newly
created contract account—and the Contract Code—which is
essential for calculating a hash value to distinguish identical
copies of contracts—are required in the first dataset, which is
focused on Contract Creations. It's also crucial to include the
Nonce attribute, which shows how many contracts have been
created by a particular account; the Value attribute, which
shows asset flow for upcoming asset flow analysis; and the
Timestamp, which gives the temporal context for contract
creations. Important elements of the invoke dataset include
entering the Contract-to-Contract Phase Aspects, such as the
Owner Address (relating to the EOA initiating the transaction),
the Contract Address (Sender), which is the contract's address
initiating the function call, and the Receiver Address, which is
the contract's or EOA's address receiving the function call or
transfer. For important in-depth research, the Receiver Type

checking (EOA or contract account), Input Data with bytecode
with some function call statement, Nonce for tracking
transactions, Asset value of contracts transfers, and Timestamp
for context identification are required. Therefore, in the Ether
transfer dataset, the final properties should be the Owner
Address (to initiate transactions), Receiver Address (EOA or
contract account), Receiver Type checking, Nonce for
transaction counts, Asset value movement, and Timestamp for
the context of transactions. We can analyze contract behaviors,
track asset flows, and recognize temporal behavior transactions
to measure the Ethereum ecosystem's quality. Therefore, by
storing these datasets in either NoSQL or relational databases
in the ecosystem, query performances can be improved and
analytical procedures can be developed apart from maintaining
the data integrity.

Every characteristic plays a distinct part in separating
behavioral results from ownership ties. Consequently, relevant
information such as owner address, contact address (sender and
receiver), data entry, nonce, price, and timestamp are identified
for contract-to-contract calls. These characteristics make it
easier to examine transactional exchanges and the movement of
assets between contracts in greater detail. For completing Ether
transfers, variables like possessor location, receiver address,
nonce, sum, and time mark are required for detecting
transactional dynamics and asset movements. These
characteristics ensure a complete understanding of transactional
behaviors and open doors for further analysis. As mentioned in
the background section, there are two main approaches to
extracting Ethereum blockchains: BigQuery and Web3 API.
The benefits and losses of each technique are carefully
considered to support the decision-making process. BigQuery
is a useful tool for extracting large amounts of data; it can
export the full blockchain dataset. However, it has limitations,
such as storage requirements and limited scalability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1268 | P a g e

www.ijacsa.thesai.org

Conversely, Web3 API provides immediate access to the most
recent blockchain data, although it might rely on external APIs
and encounter performance challenges. Subsequently, the focus
transitions to clustering analysis, wherein transactional models
and behaviors are de-ciphered utilizing unsupervised learning
methodologies [22]–[27]. The effectiveness of the k-means
clustering method is emphasized in terms of its ability to divide
data into discrete groups according to similarities. The ideal
number of clusters can be found using techniques like the
Elbow method. It makes it easier to analyze and comprehend
transactional data meaningfully.

However, to facilitate effective data retrieval and analysis,
the database architecture also attempts to create a hierarchical
structure that arranges contracts according to ownership
connections. Therefore, a thorough approach to transactional
behavior analysis and database design is also considered, laying
the foundation for data extraction, analysis, and interpretation
inside the Ethereum ecosystem. However, pre-processing is
necessary to build an exhaustive invokes tree of contract-to-
contract calls. Additional data sorting and storage are part of
this phase. The main goal is to classify Ethereum transactions
into three main categories—ether transfers, contract-to-contract

invokes, and contract constructions, as was previously
mentioned. Separating Tokens according to the kind of
transaction they involve i.e., differentiating between contract-
to-contract invokes and normal transfers—is another essential
goal. This preparatory phase lays the foundation for the next
examination and knowledge of the complex dynamics of
Ethereum transactions. Important information about transaction
hashes and Ethereum token contract addresses are kept in the
BigQuery file section called token transfers. A complete
inventory of all tokens requires a preliminary preprocessing
step that includes a thorough review of all token-transfers files
and a methodological filing of every contract address into a
separate file. Similarly, creating an exhaustive Token list that
lists every contract requires a preprocessing phase that involves
going through every transaction file and methodologically
storing every contract address linked to a contract establishment
into a different file. This initial step is necessary since account
addresses are all the same, regardless of whether they are
contract accounts or EOAs, and they are all 20-byte
hexadecimal addresses that are not unique from one another.
An important phase of this process is distributing distinct
among EOAs and contract accounts, which requires a detailed
verification process facilitated by the above list.

TABLE II. DATASET DESCRIPTION

Dataset Name
Data Categories

Included
Required Attributes

Size (JSON

Format)
Storage Type Purpose/Analysis Focus

Contract Creations
Contract Creation
Transactions

Owner Address, Contract Address,

Contract Code, Nonce, Cost,

Timestamp

2GB NoSQL/Relational

Analyzing contract

creation behaviors and

patterns

Contract-to-

Contract Invokes

Contract-to-Contract

Interaction
Transactions

Owner Address (Initiator), Contract
Address (Sender), Receiver

Address, Receiver Type, Nonce,

Asset Value, Timestamp

2GB NoSQL/Relational

Studying interactions and

asset flows between
contracts

Ether Transfers
Ether Transfer
Transactions

Owner Address (Initiator), Receiver

Address, Receiver Type, Nonce,

Asset Value, Timestamp

2GB NoSQL/Relational

Analyzing asset

movements and transaction

dynamics

Token Transfers
Token Transfer

Transactions

Transaction Hash, Ethereum Token

Contract Addresses
BigQuery File BigQuery

Tracking token

transactions and contract
addresses

Contract Inventory
Ethereum Contract
Inventory

Contract Addresses BigQuery File BigQuery

Maintaining a record of all

contract addresses on

Ethereum

Token List

Inventory
Ethereum Token List Contract Addresses (Tokens) BigQuery File BigQuery

Creating a comprehensive

list of all Ethereum tokens

VI. POST-IMPLEMENTATION

This section outlines the framework architecture, including
the design and implementation process. A pipe and filter design
defines the general architecture of the framework, as seen in
Fig. 4.

Black pumps on the left side of the diagram stand in for all
of the transactions and token-transfer data are obtained from the
Ethereum blockchain. A single usage of these token-transfer
files is made to create an exhaustive list of token contract
addresses. On the other hand, there are numerous uses for the
transaction files. First, they make it easier to create a file on the
blockchain to have all the active contract addresses. They are
then passed through the Contract Creator (CC) filter responsible
for classifying contracts according to their owners and

performing hash calculations to obtain hash strings for every
contract. Every transaction is thoroughly processed by the CC
filter, which also performs verifications against the contract
address file and extracts pertinent information. The resulting
data is stored in a CC Database and consists of owners grouped
with their corresponding contracts. This dataset is put through
one extra round of filtering, to create visuals that clarify the
connection between owners and contracts. In the context of
transaction file utilization, another significant application
arises—the sorting and processing of transactions excluding
contract creations. This specific filtration process is termed
Invokes Creator. It operates simultaneously with lists of
contracts and token contract addresses for verification
purposes. Initially, the preprocessing stage segregates
transactions into three databases—tokens, transfers, and a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1269 | P a g e

www.ijacsa.thesai.org

database labeled calls, housing all contract-to-contract
transactions [28]. This methodology facilitates efficient
management and organization of transactional data, ensuring
systematic handling of diverse transaction types.

Fig. 4. The framework's architecture.

The investigation brought to light the considerable amount
of data being processed. A sequential data processing
methodology is embodied in the architectural framework
shown in Fig. 5. However, this step-by-step approach can
considerably increase the processing time. As such, the next
part offers a paradigm change in the direction of parallel
execution. The example process described in this section
involves splitting the dataset into N segments, each one to be
processed by a separate processor. The purpose of this parallel
processing technique is to reduce processing time and
maximize the use of computational resources. However, a
significant part of the process, approximately 0.58% of all
transactions are contract creations. Therefore, this procedure
should ideally be run on a single CPU for efficiency.

Fig. 5. The procedure for carrying out the gathering of contract creations

and grouping.

Fig. 6. The technique of contract-to-contract calls/ transfers/tokens

execution.

Subsequently, we investigate how Invokes Creator extracts
calls, transfers, and tokens between contracts. This crucial step
in data analysis takes longer because a lot of data is involved.
As shown in Fig. 6, the process can be divided into smaller
components, resulting in multiple databases. After that, Invokes
Tree Creator processes each dataset and builds an extensive tree
that displays every invoke between contracts. This systematic
procedure facilitates a thorough analysis of the network's
interactions.

A. Additional Improvements

HDF5 [29] is a better alternative to current database
architecture, with a hierarchical database structure suitable for
managing large datasets. It is compatible with programming
languages, like Fortran, Octave, Mathematica, Scilab,
MATLAB, R, Julia, and Java. One of its main advantages is
more efficient use of storage resources than conventional
relational databases. Its compact format reduces processing
costs and file space usage and is useful for tiny datasets. It is
possible to duplicate this hierarchical structure in a relational
database but may add redundancy, which raises storage
requirements. Additionally, more complex query operations
like invokes are required in relational databases to extract
certain subtrees. However, HDF5 has a restriction of
performing only one read or write operation at a time.

Contrary to that, the concurrency characteristics of
relational databases allow several simultaneous reads and
writes due to their transaction-savvy design. The choice of
language is crucial when creating a framework with wide
application. Among the languages supported by HDF5, Python
stands out due to its extensive library ecosystem. Although
Python is an interpreted language, meaning it typically
performs less computationally efficiently than compiled
languages—this disadvantage becomes less significant when
considering the dominating disk activities that occur during
runtime. As such, Python's alleged processing latency may not
exceed its advantages. Multi-threading is replaced by Python's
global interpreter lock, though, unless it is augmented by other
tools that function outside of Python's domain, like non-Python
libraries or network requests. The h5py Python library
extension provides Python access to HDF5 features by treating
h5py datasets as NumPy arrays and h5py groups as Python
dictionaries. The implementation of Python and HDF5 for best
speed presented issues because of HDF5's single-threaded
read/write capability and Python's lack of multithreading
support. Multithreading was first used to investigate network
requests—however, this method proved unstable because of
frequent failures and time-outs. Thus, the search was on for a
network-independent solution. The best method for reaching
peak performance was to spread data among the available
servers each running five to six processes to exploit hardware
resources. However, system stability was crucial because high
thread utilization might cause crashes, particularly when the
processes ran under NFS from a notorious home folder for its
sporadic instability. As a result, keeping processes to 5–6
allowed for a compromise between speed and stability.
Managing databases was an essential component of the finished
system. For data sorting, 153 databases were constructed (not
including Contract Creations) in light of HDF5's single
read/write constraint.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1270 | P a g e

www.ijacsa.thesai.org

VII. EXPERIMENTAL ANALYSIS

During the first part of our study, we processed large-scale
datasets that were taken out of BigQuery and used the Web3
API to confirm the addresses' validity. This made it necessary
to distinguish between contract accounts and EOAs. We chose
to implement multi-threading in Python to maximize
efficiency; this choice was influenced by the computing
demands of our task and the limitations imposed by Python's
global interpreter lock. We created a three-threaded pipeline to
expedite the data pre-processing step to demonstrate our
methodology as shown in Fig. 7.

Fig. 7. The first solution is a pipeline through the network.

Components in this pipeline indicated by dark orange boxes
are used to classify transactions that do not include CC. The
performance of a proposed solution heavily relies on its
efficiency, particularly evident in systems utilizing the Web3
API. As an empirical evaluation, the initial approach exhibited
suboptimal results due to extensive network connections.
During time experiments with modest data sets comprising
three small files of 2.42 MB, a stark contrast in performance
emerged. For preprocessing, the preliminary solution
necessitated a substantial 340.825 seconds while the optimized
solution devoid of network interactions accomplished the same
task in a mere 11.093 seconds, boasting a remarkable speed-up
factor of 31. Nonetheless, it is imperative to acknowledge that
the optimized solution introduces its preprocessing phase. This
entails traversing through transaction files to aggregate all
generated contract addresses. Furthermore, an intermediary
enhancement step contributed to the overall acceleration.
Initially, the program loaded all contract addresses into a list.
However, transitioning this data structure to a dictionary
yielded notable improvements. The processing time is reduced
from 259.207 to 16.782 seconds, demonstrating a notable
speed-up factor of 15. The results of using the suggested
technique showed promise in runtime efficiency. After two and
a half hours, the preparation operation was finished, processing
a large dataset of 265 GB. This accomplishment highlights how
well the distributed processing strategy handles a massive
volume of data.

VIII. RESULT ANALYSIS

When using blockchain systems in real-world applications
across different industries, scalability, and efficiency are
critical factors to be considered. The performance of the
underlying hardware becomes a bottleneck for transaction
processing and examination, where a significant volume of
transactions may be involved. As per the given data, it has taken
up to 9.5 hours to process and comment for the 408,137,399

transactions via the hardware as illustrated in Table III. The
number of transactions highlights the requirement for a strong
hardware infrastructure to manage these processing demands.
Clustering and creating the Invokes tree are two
computationally intensive processes; considered elements of
the inspection phase detailed in the data. Clustering is
assembling transactions based on many parameters, such as
transaction type, origin, or destination to understand transaction
trends and behaviors. Significant computer resources are
needed for this procedure, especially when working with huge
datasets like the one mentioned. The trade-off between
computational complexity and hardware capability is shown in
the execution time of 9.5 hours for processing and reviewing
over 400 million transactions. Although huge workloads may
be handled by modern hardware, processing massive datasets
quickly is challenging, especially in distributed and
decentralized contexts where resource limitations and network
delay are issues.

TABLE III. PERFORMANCE ON HARDWARE

Hardware Configuration
Transactions

Processed
Execution Time

Intel Xeon Gold 6248 408,137,399 9.5 hours

A. Clustering Analysis

The results shown in Fig. 8, 9, and 10 on the clustering
equivalency classes among owners with an equal number of
contracts are the focus of the analysis in this section. The Elbow
method, which is explained, is applied in Fig. 8 and 9. In
particular, Fig. 8 illustrates the Elbow method's use throughout
a k range of up to 15, showing a clear bend in the graph around
the point where three clusters correspond. Similarly, Fig. 9
presents the Elbow method utilizing a k range up to 25, wherein
the inflection point aligns with the presence of three clusters.
Consequently, it can be inferred that the optimal number of
clusters is three. Subsequently, Fig. 10 visually presents the
clustering outcome with three clusters, with the centroids
depicted as black spots. The clustering analysis indicates
variations in the distribution of EOAs based on contract
frequency. It reveals that certain EOAs exhibit a high
concentration of contracts, while others demonstrate a more
dispersed pattern with increased occurrences. Notably, a
significant portion of EOAs falls within the green cluster,
indicating a range of approximately 1 to 1000 contracts per
EOA.

Similarly, Fig. 11 and 12 illustrate the outcomes of the
analysis. Fig. 11 depicts the application of the Elbow method
within a k range extending to 15, revealing a pivotal bend in the
graph around three clusters. This methodology was further
extended to k values up to 25, yet consistent with prior findings,
the optimal number of clusters remained at three. The analysis
depicted in Fig. 12 highlights the prevalence of numerous
distinct contracts associated with each EOA, primarily
represented by the purple segment. However, a notable
observation emerges from the red cluster, indicating instances
where individual proprietors possess over 100,000 identical
contracts. An escalation in the number of contracts and the
distribution shifts indicate a transition towards a multitude of
unique contracts or a proliferation of duplicates.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1271 | P a g e

www.ijacsa.thesai.org

Fig. 8. Using k in the range of 15, determine the appropriate number of

clusters for the range of contracts that occur each EOA concerning the number

of times that this amount occurs.

Fig. 9. Using k in the range of 25, determine the appropriate number of

clusters for the range of contracts that occur every EOA concerning the

number of times this amount occurs.

Fig. 10. The distribution of contracts per EOA compared to how frequently

this amount occurs, shows three clusters.

Fig. 11. Using k in the range of 15, determine the appropriate number of

clusters for the number of contracts per EOA with the number of unique
contracts per EOA.

Fig. 12. Using three clusters, the unique number of contracts per EOA is

clustered with the total number of contracts per EOA.

Additionally, Fig. 13 and Fig. 14 delve into a comparative
examination concerning the recurrence of contract instances
and the number of distinct EOAs utilizing each contract. Fig.13
employs the Elbow method across a range of k values up to 15,
elucidating that three emerge as the optimal cluster count.
Subsequent iterations of this method reaffirm the consistency
of three as the most favorable cluster count. In the clustering
analysis illustrated in Fig.14, we examine the distribution of
contract duplications across various Ethereum-based
organizations. Notably, the initial instance of an EOA is
excluded from consideration, allowing us to observe
subsequent EOAs adopting a contract already in circulation.
The depiction highlights a discernible pattern—a distinct
concentration of contracts utilized by multiple EOAs,
represented by the purple area, alongside a cluster of contracts
scarcely replicated by EOAs. This observation suggests a dual
inclination among EOAs, favoring either widely duplicated
contracts or those with minimal replication.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1272 | P a g e

www.ijacsa.thesai.org

Fig. 13. Using k in the range of 15, get the number of clusters for the number

of times a contract happens more than once using the number of unique EOAs

using each contract.

Fig. 14. Three clusters used to group the number of times a contract happens

more than once and the number of distinct EOAs that use each contract.

B. Invokes Tree Analysis

Analyzing the execution of smart contracts is essential for
locating any weak points and illegal activity in blockchain
networks. A structured network of invokes is revealed in the
performed examination, providing insight into the complex
relationships between different smart contracts. This network is
illustrated graphically in Fig. 15, where the contract code for
the address Green Ethereus is highlighted along with its
interactions with three different contracts—SuperFOMO,
UCashBank, and Smar-tHash. However, a closer look at the
SuperFOMO contract, reveals more calls than were first
thought to be there, including exchanges with Gorgona,
EtherSmart, and self-referential messages. A hierarchical
pattern of invokes similar to a tree-like structure is shown in
this study, describing the relationship complexity within smart
contracts. A closer verification of the contract addresses in the
invokes tree clarifies that there are questions about the true
nature of the root contract, Green Ethereus. Green Ethereus

operates more like a Ponzi scam, using its ties to other contracts
to perpetrate more fraud. Furthermore, a thorough examination
of each contract that Green Ethereus has cited explores
characteristics common to Ponzi schemes, emphasizing the
interconnectedness of the fraudulent activity inside the
network. These findings demonstrate the significance of the
Invokes Creator's role in avoiding circular reference
connections in contracts. The blockchain network, as a whole,
may become vulnerable to vulnerabilities introduced by
circular references, jeopardizing its integrity and security.

Fig. 15. An illustration of a ‘Transaction Tree’ from the generated data that

combines multiple confirmed Ponzi schemes.

To improve readability and avoid misunderstandings when
displaying invokes, the existing method suggests repeating the
contract address as a sub-group, as seen in Fig. 16. This
approach makes it easier to comprehend how smart contracts
interact by providing a simple enhancement to the visualization
tool. It should be noted that time restrictions prevented this
approach from being implemented, but only highlighting the
practical issues that must be critical. The iterative and resource-
constrained nature of blockchain is reflected in the decision to
prioritize features or performance enhancements. The sequence
of essential capabilities, time constraints, and technical
limitations often guides the execution trajectory of a study. In
this instance, the suggested course of action might be clearer
and easier to understand than the others; the other urgent issues
might have prevented it from being put into action immediately.
Besides, potential Ponzi schemes and fraudulent behaviors
within the blockchain network urge the development of scrutiny
and supervision protocols.

Fig. 16. Current invokes tree cyclic reference solution.

Continuous monitoring and subsequent preventative actions
are required to ensure the reliability and authenticity of
blockchain-based systems. Participants should effectively
minimize the adverse impacts of fraudulent activities to provide
a more resilient and secure blockchain ecosystem by applying
insights gained from smart contract analysis and proactive risk
mitigation strategies. Thus, the intricate invoke network
facilitating smart contract communication is made visible by
incorporating it into the smart contract implementation process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1273 | P a g e

www.ijacsa.thesai.org

The discovery of fraudulent activity and Ponzi schemes
highlights the strength and usefulness of blockchain networks.
Although suggested solutions by the Invokes Creator are
beneficial to reduce risk, real concerns can be challenging in
practical situations. Proactive security and risk management are
required to maintain the integrity and reliability of blockchain
systems.

IX. CONCLUSION

The attainment of goals for the research work is rigorously
tried. The goals are achieved, leading to discoveries that open
new avenues for blockchain data research and analysis. The
proposed framework and the obtained outcomes demonstrate
that the objectives are met. Firstly, collecting a required
quantity of well-organized data is an important task. The dataset
contains extra categories that are not directly related to the
study. The analysis of categorized token data and Ether
transfers can provide trends and insights on blockchain activity
that do not fall within the scope of the study, allowing further
investigation and analysis. Moreover, the clustering data reveal
both normal and aberrant equivalence groups of owners with
identical contract numbers, offering compelling proof of
contract repetitions. This discovery advances our understanding
of blockchain dynamics and highlights the significance of
locating and analyzing contract replication patterns inside the
network. Lastly, the invokes tree exposes important distinctions
between contract-to-contract invocations, exposing in-stances
such as pyramid schemes. It is acknowledged that
chronological constraints have limited the fullness of the CC
tree. In particular, it is difficult to fully capture the scope of
contract interactions when contracts are not included as sub-
groups to other contracts. This restriction is due to the way
contracts are created; which forces the sender to default to the
EOAs whether or not the contract was created through the
instantiation of another contract. Despite this problem, possible
ways to address the disparity are suggested. This constraint
could be addressed by doing checks against each contract
account nonce and combining tree patterns from the invokes
tree to provide a more complete picture of contract interactions.
Crucially, it is seen that this structural problem does not
interfere with the clustering process, allowing for further
investigation even in the absence of an instant answer.

X. FUTURE WORK

Our research extends the existing framework to incorporate
the latest blocks from the Ethereum blockchain. Presently, the
framework holds data up to March 18, 2019. This augmentation
facilitates the gathering and processing of up-to-date
blockchain information. The clustering analysis illustrates
discernible patterns within the data. Notably, the identified
clusters consist of three distinct groups. An intriguing avenue
for future investigation involves conducting clustering analyses
on the subgroups within these clusters to unveil deeper insights
into underlying patterns and structures. We acknowledge the
existence of platforms cataloging registered scams within the
Ethereum ecosystem. Promising future research entails
scrutinizing these scam patterns to develop a predictive model
to pre-emptively identify potential future scams. Our structure
carefully arranges information, providing a rich environment
for studying transfers among EOAs. This research can

potentially identify Ether's flow and stall in the network.
Moreover, our research can extend the Invokes tree to
incorporate links revealing cycles within the blockchain
ecosystem. An integral aspect of our research involves
developing an extension that traverses through each database,
elucidating the flow of Ether, colloquially termed as following
the money. This comprehensive analysis of the movement of
Ether among contract-to-contract involves Ether transfers.
Additionally, our investigation entails juxtaposing our findings
with the dates of well-known attacks, enriching our
understanding of the security landscape within the Ethereum
ecosystem.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

Data is available on request from the corresponding author.

ACKNOWLEDGMENT

The authors extend their appreciation to the Deanship of
Scientific Research at Saudi Electronic University for funding
this research (8154).

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” SSRN
Electronic Journal, 2022, doi: 10.2139/ssrn.3977007.

[2] Buterin and Vitalik, “Ethereum White Paper: A Next Generation Smart
Contract & Decentralized Application Platform,” Etherum, no. January,
pp. 1–36, 2014, Accessed: April 07, 2024. [Online]. Available:
https://github.com/ethereum/wiki/wiki/White-Paper.

[3] M. E. Peck, “Blockchains: How they work and why they’ll change the
world,” IEEE Spectrum, vol. 54, no. 10, pp. 26–35, Oct. 2017, doi:
10.1109/MSPEC.2017.8048836.

[4] M. K. I. Rahmani et al., “Blockchain-Based Trust Management
Framework for Cloud Computing-Based Internet of Medical Things
(IoMT): A Systematic Review,” Computational Intelligence and
Neuroscience, vol. 2022, p. 18, 2022.

[5] M. K. I. Rahmani et al., “Automatic Real-Time Medical Mask Detection
Using Deep Learning to Fight COVID-19,” Computer Systems Science
and Engineering, vol. 42, no. 3, pp. 1181–1198, 2022.

[6] S. Safdar et al., “Bio-Imaging-Based Machine Learning Algorithm for
Breast Cancer Detection,” Diagnostics, vol. 12, no. 5, p. 1134, 2022.

[7] N. Awan et al., “Machine learning-enabled power scheduling in IoT-
based smart cities,” Computers, Materials & Continua, vol. 67, no. 2, pp.
2449–2462, 2021.

[8] M. A. Khan et al., “Investigation of Big Data Analytics for Sustainable
Smart City Development: An Emerging Country,” IEEE Access, vol. 10,
pp. 16028-16036, 2022.

[9] P. Kaur, G. S. Kashyap, A. Kumar, M. T. Nafis, S. Kumar, and V.
Shokeen, “From Text to Transformation: A Comprehensive Review of
Large Language Models’ Versatility,” Feb. 2024, Accessed: Mar. 21,
2024. https://arxiv.org/abs/2402.16142v1

[10] K. Bhalla, D. Koundal, S. Bhatia, M.K.I. Rahmani, and M. Tahir "Fusion
of Infrared and Visible Images Using Fuzzy Based Siamese
Convolutional Network," Comput. Mater. Contin., vol. 70, no. 3, pp.
5503-5518. 2022.

[11] R. E. Bryant et al., “Computer systems: a programmer’s perspective,” p.
1043, 2011, Accessed: May 07, 2024. [Online]. Available:
https://thuvienso.hoasen.edu.vn/handle/123456789/8621.

[12] M. Wohrer and U. Zdun, “Smart contracts: Security patterns in the
ethereum ecosystem and solidity,” in 2018 IEEE 1st International
Workshop on Blockchain Oriented Software Engineering, IWBOSE 2018

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1274 | P a g e

www.ijacsa.thesai.org

- Proceedings, Mar. 2018, vol. 2018-Janua, pp. 2–8. doi:
10.1109/IWBOSE.2018.8327565.

[13] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “SmartBugs: A
Framework to Analyze Solidity Smart Contracts,” in Proceedings - 2020
35th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2020, Sep. 2020, pp. 1349–1352.

[14] T. Krupa, M. Ries, I. Kotuliak, K. Košál, and R. Bencel, “Security issues
of smart contracts in ethereum platforms,” in Conference of Open
Innovation Association, FRUCT, Jan. 2021, vol. 2021-Janua.

[15] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “SmartInspect:
Solidity smart contract inspector,” in 2018 IEEE 1st International
Workshop on Blockchain Oriented Software Engineering, IWBOSE 2018
- Proceedings, Mar. 2018, vol. 2018-Janua, pp. 9–18. doi:
10.1109/IWBOSE.2018.8327566.

[16] H. Rocha, S. Ducasse, M. Denker, and J. Lecerf, “Solidity parsing using
SmaCC: Challenges and irregularities,” in IWST 2017 - Proceedings of
the 12th International Workshop on Smalltalk Technologies, in
conjunction with the 25th International Smalltalk Joint Conference, Sep.
2017. doi: 10.1145/3139903.3139906.

[17] J. Jiao, S. Kan, S. W. Lin, D. Sanan, Y. Liu, and J. Sun, “Semantic
understanding of smart contracts: Executable operational semantics of
solidity,” in Proceedings - IEEE Symposium on Security and Privacy,
May 2020, vol. 2020-May, pp. 1695–1712. doi:
10.1109/SP40000.2020.00066.

[18] Z. Wang, X. Chen, X. Zhou, Y. Huang, Z. Zheng, and J. Wu, “An
Empirical Study of Solidity Language Features,” in Proceedings - 2021
21st International Conference on Software Quality, Reliability and
Security Companion, QRS-C 2021, 2021, pp. 698–707. doi:
10.1109/QRS-C55045.2021.00105.

[19] Á. Hajdu and D. Jovanović, “SOLC-VERIFY: A modular verifier for
solidity smart contracts,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2020, vol. 12031 LNCS, pp. 161–179. doi:
10.1007/978-3-030-41600-3_11.

[20] I. Garfatta, K. Klai, W. Gaaloul, and M. Graiet, “A Survey on Formal
Verification for Solidity Smart Contracts,” in ACM International

Conference Proceeding Series, Feb. 2021. doi:
10.1145/3437378.3437879.

[21] S. W. Lin, P. Tolmach, Y. Liu, and Y. Li, “SolSEE: a source-level
symbolic execution engine for solidity,” in ESEC/FSE 2022 - Proceedings
of the 30th ACM Joint Meeting European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
Nov. 2022, pp. 1687–1691. doi: 10.1145/3540250.3558923.

[22] M. S. Islam, M. A. B. Ameedeen, M. A. Rahman, H. Ajra, and Z. B.
Ismail, “Healthcare-Chain: Blockchain-Enabled Decentralized
Trustworthy System in Healthcare Management Industry 4.0 with Cyber
Safeguard,” Computers, vol. 12, no. 2, p. 46, 2023.

[23] S. B. Khan et al., “Artificial Intelligence in Next-Generation Networking:
Energy Efficiency Optimization in IoT Networks Using Hybrid LEACH
Protocol,” SN Computer Science, vol. 5, no. 5, p. 546, 2023.

[24] L. Stockburger et al., “Blockchain-enabled decentralized identity
management: The case of self-sovereign identity in public transportation,”
Blockchain: Research and Applications, vol. 2, no. 2, 2021.

[25] Y. F. Khan et al., “HSI-LFS-BERT: Novel Hybrid Swarm Intelligence
Based Linguistics Feature Selection and Computational Intelligent Model
for Alzheimer’s Prediction Using Audio Transcript,” IEEE Access, vol.
10, pp. 126990-127004, 2022.

[26] M. A. Khan et al., “Artificial Intelligence in Commerce and Business to
Deal with COVID-19 Pandemic,” Turkish Journal of Computer and
Mathematics Education (TURCOMAT), vol. 12, no. 13, pp. 1748-1760,
2021.

[27] M. K. I. Rahmani, N. Pal, and K. Arora, “Clustering of Image Data Using
K-Means and Fuzzy K-Means, (IJACSA) International Journal of
Advanced Computer Science and Applications, vol. 5, no. 7, 2014.

[28] Arwa Mukhtar, Awanis Romli and Noorhuzaimi Karimah Mohd,
“Blockchain Network Model to Improve Supply Chain Visibility based
on Smart Contract,” International Journal of Advanced Computer Science
and Applications(IJACSA), 11(10), 2020.

[29] Normaizeerah Mohd Noor, Noor Afiza Mat Razali, Nur Atiqah Malizan,
Khairul Khalil Ishak, Muslihah Wook and Nor Asiakin Hasbullah,
“Decentralized Access Control using Blockchain Technology for
Application in Smart Farming” International Journal of Advanced
Computer Science and Applications(IJACSA), 13(9), 2022.

