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Abstract—As the main driving force for social development in 

the new era, data sharing is controversial in terms of privacy and 

security. Traditional privacy protection methods are a bit 

challenging when faced with complex and massive shared data. 

Given this, firstly, the Byzantine consensus algorithm in 

blockchain technology was elaborated. Meanwhile, a decision tree 

algorithm was introduced for node classification optimization, and 

a new consensus algorithm was proposed. In addition, local data 

training and updating were achieved through federated learning, 

and a new data-sharing privacy protection model was proposed 

after jointly optimizing consensus algorithms. The maximum 

throughput of the optimized consensus algorithm was 1560. The 

maximum consensus delay was 110 milliseconds. After multiple 

iterations, the removal rate of the Byzantine nodes reached 56.6%. 

The optimal reputation value of the new data-sharing privacy 

protection model was 0.75. The lowest reputation value after 10 

iterations was 0.32. As a result, this proposed model achieves 

excellent results in data sharing privacy protection tasks, 

demonstrating high model feasibility and effectiveness. The 

research aims to provide a reliable method for data sharing 

privacy protection in the field. 
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I. INTRODUCTION 

The rapidly developing information technology has fully 
utilized data sharing in various fields such as education, 
healthcare, and manufacturing [1]. At present, privacy 
protection has become a major challenge faced by data sharing. 
Traditional centralized data sharing models carry the risk of 
privacy breaches, especially when dealing with complex and 
large amounts of shared data. To address this issue, many 
researchers have proposed measures such as k-anonymization, 
differential privacy, and privacy measurement [2]. These 
methods can to some extent protect the privacy of data, but 
there are also some issues. For example, k-anonymity methods 
are vulnerable to attribute association attacks and background 
knowledge attacks, while differential privacy methods may 
reduce the availability of data [3]. Federated Learning (FL), as 
an emerging machine learning framework, utilizes distributed 
training to enable model training without leaving the local 
device, effectively protecting user privacy [4]. However, 
classical FL frameworks are still vulnerable to privacy threats 
in the face of data leakage and adversarial attacks in gradient 
transfer operations. Although blockchain technology can well 
solve the node failure or malicious behavior in distributed 
systems, it has limitations in terms of complex node 
communication time, high overhead, and the inability to add or 
delete nodes autonomously. The research innovatively 

combines the two, synthesizes the advantages of both to solve 
these problems and reduce the risk when sharing data. This can 
solve the privacy protection and data security in the data sharing 
at the same time. Using blockchain technology as a model 
framework, its consensus algorithm is optimized. Then, FL is 
trained and updated on local data, aiming to provide a new 
solution in the data sharing privacy protection. The expected 
contribution of the study provides a theoretical foundation and 
practical experience for further exploring and optimizing the 
combination of FL and blockchain technologies in the future, 
which helps to promote the development and application of 
related technologies. The study consists of five sections in total. 
Section II is to analyze and summarize the research of others. 
Secondly, the experiment introduces how the new data sharing 
privacy protection model is built in Section III. Then, the 
performance of the model is tested in Section IV. Finally, this 
paper is summarized in Section V. 

II. RELATED WORKS 

Data sharing privacy protection is a complex and critical 
issue that has attracted widespread attention in the past few 
years. The relevant research mainly focuses on data encryption, 
differential privacy, and multi-party computing. Zhaofeng M et 
al. found that traditional centralized Internet of Things (IoT) 
data management solutions inevitably encountered data 
security challenges. In view of this, this team proposed a 
vehicle networking data security sharing solution that 
combined blockchain technology with intelligent sensors as the 
object. This scheme was feasible for secure sharing on LOV 
datasets and had advantages over traditional methods [5]. At 
present, there is a problem of medical data being too sensitive, 
making it difficult to achieve sharing in IoT data. Chen Y et al. 
proposed a decentralized data management method by 
combining blockchain technology. Under this method, users 
accessed and communicated data normally after verification 
and recording, which had a certain security and privacy [6]. To 
ensure the security of resource sharing in the industrial Internet, 
Zhang Q et al. proposed a data security sharing model for 
privacy protection. This model included privacy authentication, 
storing ciphertext indexes, and log tracking modules. This 
model achieved high anti-attack and data effectiveness while 
maintaining high-throughput data transmission, whose 
performance far exceeded similar models’ [7]. Lv Z et al. 
proposed a privacy protection scheme to ensure the secure 
sharing of drone information to address the privacy protection 
of drone big data. This method had lower computational costs 
in key generation, encryption, and decryption, which was also 
superior to traditional methods [8]. 

FL does not need to upload data to the spatial server, thus 
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avoiding issues such as data privacy leakage. Nair A K et al. 
believed that classical FL was still vulnerable to privacy threats 
due to data leakage and adversarial attacks in gradient transfer 
operations. Therefore, this team proposed a new privacy 
anonymity protection framework. The central server load under 
this framework was reduced, while the confidentiality of shared 
data was increased [9]. Cho Y J et al. found that personalized 
FL performed well in data transmission on a single edge device. 
However, there were issues such as high cost and bandwidth 
limitations. In view of this, the team proposed a new 
personalized FL framework. This framework significantly 
reduced the heavy communication burden of large models and 
achieved higher testing accuracy than general models. 
Blockchain technology is a distributed ledger technology that 
ensures data security and transparency through consensus 
mechanisms among multiple nodes [10]. Ghotbabadi MD et al. 
proposed a multi-module partitioning microgrid strategy by 
combining blockchain technology to optimize the operation of 
networked microgrids for wind turbines in related 
environments. The operating cost of microgrids under this 
strategy was reduced by about 23%, and the operational 
reliability significantly increased [11]. Yu X et al. found that 
traditional multi-level security systems had the drawback of 
centralized authorization facilities, which made it difficult to 
meet the security requirements of modern distributed peer-to-
peer network architectures. In view of this, this team proposed 
a new environmental access control model by combining 
blockchain technology. This model adapted well to the needs of 
multi-level security environments and had feasibility in 
practical scenarios [12]. 

In summary, many past studies in data sharing have also 
demonstrated the value of their respective applications. 
However, there are still some notable gaps that need to be filled 
in these approaches while sharing data. First, existing FL 
models are often limited in terms of computational and 
communication efficiency while protecting privacy. In addition, 
traditional blockchain consensus algorithms have limitations in 
handling node communication complexity and overhead. 
Second, most of the existing research focuses on the application 
of a single technology, e.g., using only FL or blockchain 
technology to address privacy protection in data sharing. 

However, it is often difficult to apply a single technology to 
simultaneously balance data privacy protection and system 
performance optimization. This limitation is especially obvious 
when dealing with large-scale and complex data sharing tasks. 
Therefore, an innovative approach combining FL and 
blockchain technologies is proposed. This combination is able 
to synthesize the privacy-preserving advantages of FL and the 
security and trustworthiness features of blockchain, while 
improving the efficiency and reliability of the system by 
optimizing the consensus algorithm. The privacy protection and 
security challenges in the data sharing process can be addressed 
more effectively through this multi-technology fusion approach. 

III. CONSTRUCTION OF DATA SHARING PRIVACY 

PROTECTION MODEL 

Firstly, the consensus algorithm in blockchain technology is 
elaborated. Simultaneously, C4.5 Decision Tree (DT) is 
introduced for performance optimization. Finally, a novel data 
consensus algorithm is proposed to construct the final data 
sharing privacy protection model. Based on blockchain and FL, 
a data sharing privacy protection model targeting hospitals is 
constructed. Meanwhile, a reputation value calculation method 
is proposed to ensure privacy and security during data sharing. 

A. Construction of Fault-Tolerant Mechanism Based on 

Improved Blockchain Consensus Algorithm 

Blockchain is a distributed database technology in which 
data are linked together in chronological order in the form of 
blocks, forming an immutable chain structure [13]. Each block 
contains a batch of transaction records and the hash value of the 
previous block, ensuring the integrity and security of the entire 
chain in Fig. 1. 

In Fig. 1, blockchain mainly consists of six modules, 
namely data, network, consensus, incentive, contract, and 
application layer. A consensus algorithm in the consensus layer 
is the only way to ensure that all data information in this 
database is tamper proof. The Practical Byzantine Fault 
Tolerance (PBFT) is a classic fault-tolerant consensus 
algorithm used to solve consensus in distributed systems in the 
presence of Byzantine errors, such as node failures or malicious 
behavior [14]. Fig. 2 shows the process of PBFT. 
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Fig. 1. Blockchain structure. 
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Fig. 2. PBFT algorithm process. 

In Fig. 2, first, the client sends a request to the master node, 
which broadcasts the request to other nodes and waits for 
confirmation from the majority of nodes. Other secondary 
nodes verify and send pre prepare, prepare, and submit 
messages after receiving the request. When the master node 
receives a sufficient number of preparation messages, it submits 
the request and broadcasts it to other secondary nodes. Finally, 
all nodes accept the submission message and execute the 
request to ensure consensus and prevent the impact of 
Byzantine errors. The configuration information of each node 
in the blockchain when working under the same configuration 
information is called a view. If the master node fails, the node 
needs to be replaced at this time. The protocol formula for this 
process is represented by Eq. (1). 

1

mod

V V

P V N

 


 
               (1) 

In Eq. (1), V  is a view number. P  represents the 

master node number. N  refers to the nodes quantity within 

the blockchain system. PBFT can effectively solve the 
Byzantine problem through this coordination, that is, how to 
ensure consensus among nodes in a distributed system in the 
presence of faults. However, PBFT itself also has problems 
such as complex node communication time, high overhead, and 
inability to autonomously add or delete nodes. In view of this, 
this study introduces C4.5 DT for node optimization, which has 
stronger data applicability and more precise standards for 
handling incomplete data attributes. After each round of 
consensus is completed, the continuous consensus count, 
incorrect communication frequency, and node activity of a 
single node are counted in the form of reputation points. These 
nodes are adjusted and assigned to primary, secondary, and 
tertiary nodes through DT. In addition, excellent or malicious 
nodes are added or removed in real-time through dynamic 
adjustment. The view protocol of the system is changed. The 
first level node with high reputation is selected as a candidate 
node for the master node. Fig. 3 shows the entire DT-PBFT 
consensus algorithm. 
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Fig. 3. Process of DT-PBFT. 

In Fig. 3, first, the client makes a consensus request to the 
system. If a new node joins or exits at this time, it is classified 
through DT. If there are no new nodes, the master node and 
subsequent nodes are selected through the protocol, and the 
selected information is sent to all consensus nodes. If the master 
node receives preparation information that meets the threshold 
at this time, it determines whether the errors that occur in the 
consensus node are less than another threshold. If no 
preparation information is received, the candidate node replaces 
the master node and resends the information. If all requirements 
are met, block generation will begin until reaching the 
consensus count and stop. In this process, node classification is 
the most important step, which includes three main steps: 

information entropy, information gain, and gain rate calculation. 
Information entropy is a key indicator for measuring the 
categories of three types of nodes, represented by Eq. (2). 

3

1

( ) k k

k

Info D P lbP


             (2) 

In Eq. (2), 
kP  represents the proportion of nodes with a 

single category to the total nodes. ( )Info D  represents the 

category information entropy of sample D . The information 

gain represents the degree of uncertainty of the information, 
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combined with the four attribute indicators in DT-PBFT, 
namely node reputation score, continuous consensus, downtime, 
and incorrect communication. The information gain at this 
point is represented by Eq. (3). 

4

1

( , ) ( ) ( )

v

v

v

D
Gain D a Info D Info D

D

      (3) 

In Eq. (3), a  represents the feature vector. vD  represents 

the v th attribute indicator in sample D. The gain rate is 
represented by Eq. (4). 
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In Eq. (4), ( )IV a  means the characteristic vector of the 

fourth type of indicator error communication frequency, 
represented by Eq. (5). 
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In Eq. (5), all algebraic meanings are consistent with the 
previous explanation. According to the above formula, these 
three types of nodes in C4.5 DT account for 20%, 30%, and 50% 
of the total, respectively. The node view switching protocol at 
this time is represented by Eq. (6). 

mod HP V R               (6) 

In Eq. (6), HR  represents the number of first level nodes 

that have completed classification sorted by reputation points. 

The lower the H  in HR , the lower the reputation score and 

the easier it is to be selected as the master node. 

B. B. Construction of a Data Sharing Privacy Protection 

Model Combining Fault-Tolerant Consensus Mechanism 

and Federated Learning 

This study introduces FL to continue building a shared 
privacy protection model after optimizing the consensus 
algorithm mechanism in blockchain technology. Intelligent FL 
gradually becomes the best choice for optimizing privacy 
through evolution and upgrading. Fig. 4 shows a typical FL. 
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Fig. 4. Schematic diagram of FL. 

In Fig. 4, the entire FL framework can be divided into three 
main bodies, namely the central server, participants, and local 
model training. Firstly, participants achieve global model 
training and updating by training the model locally and only 
sharing model parameter updates [15]. This process is then 
regulated and updated by the central server to reflect the local 
parameters of the participating parties. Meanwhile, security 
measures are taken to reduce communication costs and achieve 
model training under distributed data. However, as participants 
increase, the privacy leakage during model training becomes 
increasingly apparent. In response to this issue, this study 
attempts to integrate DT-PBFT with FL and proposes a novel 
data-sharing privacy protection model, namely DT-PBFT-FL in 
Fig. 5. 
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Fig. 5. Architecture of privacy protection model for medical data sharing. 
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Fig. 6. Reputation calculation update. 

In Fig. 5, the entire structure is divided into blockchain, 
reputation, and model modules. Blockchain is the foundation of 
the entire architecture, responsible for collecting all 
communication node information that responds to publishing 
nodes. The blockchain mainly stores the latest model training 
and update information. The reputation module is mainly 
responsible for evaluating the reputation of data publishers to 
ensure the quality of their published data and node stability. A 
model layer is mainly responsible for training FL tasks. Factors 
such as spatial location differences, spatiotemporal differences, 
and network latency can affect the task release of data owners. 
Therefore, this study proposes a new strategy using reputation 
computing to enable quantitative information exchange 
between data owners and requesters. Fig. 6 shows the new 
strategy’s operational process. 

In Fig. 6, the entire process is roughly divided into six stages. 
This includes training local models, evaluating data interaction 
behavior, evaluating interaction frequency, evaluating data 
timeliness of participants, calculating direct and indirect 
reputation values, calculating comprehensive reputation values 
and uploading them to blockchain terminals. Reputation is 
mainly used to evaluate the credibility of FL nodes, and its 
evaluation indicators have three directions: reliability, un-
credibility, and uncertainty. The relationship between the three 
indicators is represented by Eq. (7). 

, , , 1i j i j i jb d u                  (7) 

In Eq. (7), ,i jb , ,i jd , and ,i ju  represent credibility, un-

credibility, and uncertainty, respectively. Direct reputation is 
represented by Eq. (8). 
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In Eq. (8),   and   represent the positive and 

negative times of the task publishing node and participating 

nodes in the event, respectively. q  represents the data model’s 

successful transmission probability. The calculation formula 
related to probability is represented by Eq. (9). 

( 1)k k                      (9) 

In Eq. (9),   represents a weight parameter. k  represents 

the interaction coefficient between the model and nodes during 

the data sharing. The larger k , the smaller  , indicating that 

the reputation of the learning task publisher is affected, such as 
network attacks or restrictions. Indirect reputation is 
represented by Eq. (10). 
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In Eq. (10), e  refers to the publisher of the data. E  

represents a collection of publishing nodes for other tasks. yk  

is a weight factor of the publisher. By combining direct 
reputation and indirect reputation, it is convenient to store 
reputation through node maintenance and verify the node 
reputation value during data sharing, thus avoiding data loss 
and leakage. The comprehensive reputation is represented by 
Eq. (11). 
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In Eq. (11), y  represents the freshness decay function of 

a node, 
Y y

y Z  . Z  represents any number between 

0 1 . (0, )y Y  represents any time period. Considering 

the variation of time length in data sharing, both FL task 
publishers and learners can affect their respective reputation 
values at any time. 

IV. PERFORMANCE TESTING OF DATA SHARING PRIVACY 

PROTECTION MODEL 

Firstly, multiple indicators were tested on DT-PBFT and 
compared with similar algorithms to verify the performance of 
the proposed data sharing privacy protection model. Secondly, 
the optimal reputation value of DT-PBFT-FL was detected. The 
security of different data sharing privacy protection models was 
compared. Finally, user evaluations were conducted. 

A. Performance Testing of Block Consensus Algorithm 

The operating system adopted Windows 10, with 
Intel®CoreTMi7-9700CPU@3.00GHz×32 CPU and NVIDIA 
GeForce RTX 1660 GPU. Hyperledger was selected as the 
application scenario framework. A blockchain network was 
built to store 100 nodes. Messages were sent through nodes, 
simulating Byzantine attacks. In addition, the Netflix Price and 
Enron datasets were introduced as data sources. Netflix Prize is 

a public dataset that focuses on sharing movie recommendation 
data information, containing nearly 20000 evaluation data from 
different users. Enron contains the metadata and content of 
millions of emails, covering communication between hundreds 
of users. This study compared DT-PBFT with similar popular 
consensus protocol algorithms: Raft Consensus Algorithm 
(RCA), ZooKeeper Atomic Broadcast (ZAB), and Tendermint 
algorithms, using throughput as a testing metric. RCA had a 
leader election timeout set to 150ms and a maximum batch size 
of 10. ZAB had a synchronization limit of 5, a time interval of 
2000ms, and an initialization limit of 10. The Tendermint 
algorithm had a block time of 1s. Fig. 7 shows the test results. 

Fig. 7(a) and 7(b) show the throughput of four algorithms 
on the Netflix Prize and Enron datasets. As the nodes used in 
blockchain networks increased, the throughput of various 
algorithms continued to increase and gradually stabilized in the 
later stages. The highest throughput of ZAB was only 1150, 
indicating that the transactions consensus per unit time was low 
and the algorithm performance was not high. The maximum 
throughput of DT-PBFT was 1560, which was not much 
different from Tendermint. However, at this point, there were 
only 40 nodes, which were reduced by about 4 compared to 
Tendermint. This study continued to test the above models 
based on the time difference between the initiation and 
completion of events in blockchain, i.e. consensus delay. 
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Fig. 7. Comparison results of throughput of different consensus algorithms. 
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Fig. 8. Consensus latency test results for different algorithms. 
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Fig. 8(a) and 8(b) show the consensus delays of four 
algorithms on the Netflix Prize and Enron datasets. Compared 
to Tendermint, DT-PBFT had a significant improvement. 
Especially when there were 25-30 nodes, the consensus delay 
was greatly reduced. The consensus delay of DT-PBFT was 
only up to 110ms, which was effectively reduced by 28ms 
compared to Tendermint's 138ms. The above data indicated that 
the proposed algorithm was more suitable for current data 
sharing work and had excellent computational performance. 
Finally, this study used consensus rounds as a variable and set 
the initial number of Byzantine nodes to 300. The security of 
the above four algorithms and similar algorithms in references 
7 and 8 were tested using the Byzantine nodes in the system as 
an indicator. The test results are shown in Table I. 

In Table I, after 8 iterations, the lowest number of Byzantine 
nodes in RCA was 196. The minimum number of Byzantine 
nodes for ZAB after 8 iterations was 172. The minimum 
number of Byzantine nodes in Tendermin after 8 iterations was 
139. The minimum number of Byzantine nodes in reference 7 
was 151 after 8 iterations in similar approaches, while the 
minimum number of Byzantine nodes in reference 8 was 142. 
The proposed DT-PBFT had a minimum of 130 Byzantine 
nodes after 8 iterations. In summary, the proposed method 
effectively removed the Byzantine nodes in the system, 
reducing the probability of Byzantine nodes being selected as 

the main node and ensuring the security of the entire system. 
The Netflix Prize dataset and the Enron dataset had significant 
differences in the performance of each model under the 
comparison test due to the different uniformity of data 
distribution, different feature complexity, and different data 
noise outliers. For data types that were distributed, with high 
security requirements, multiple nodes, and frequent data 
updates, the algorithm was able to give full play to its 
advantages and provide an efficient and secure data sharing 
solution. 

B. Performance Testing of Data Sharing Privacy Protection 

Model 

This study used the software environment of Python 4.0 to 
test the proposed DT-PBFT-FL data sharing model on the 
platform of Python 3.9. The Cerner Health Facts dataset was 
used as the testing data source. This dataset contains clinical 
data from multiple hospitals, including over 40000 pieces of 
information on patient diagnosis, treatment, medication 
prescriptions, and more. The training set and test were divided 
in an 8:2 ratio, with 50 initial nodes and weight parameters 

0.4k   and 0.6  . This study first determined the 

reputation threshold within the 0-1 range to determine the 
optimal state of DT-PBFT-FL in Fig. 9. 

TABLE I. COMPARISON OF BYZANTINE NODE REMOVAL RESULTS USING DIFFERENT ALGORITHMS 

Data set Algorithm 
Consensus round 

1 2 3 4 5 6 7 8 

Netflix Prize 

RCA 285 274 263 250 242 239 218 204 

ZAB 282 273 264 251 237 219 204 185 

Tendermin 280 261 242 227 201 186 164 139 

Reference 7 283 276 263 241 219 186 174 152 

Reference 8 288 271 253 237 221 198 179 165 

DT-PBFT 279 264 240 221 200 173 152 131 

Enron 

RCA 286 271 261 248 229 210 206 196 

ZAB 285 270 254 232 211 203 189 172 

Tendermin 280 267 246 231 214 197 172 158 

Reference 7 281 266 247 227 204 187 163 151 

Reference 8 279 264 232 209 187 164 153 142 

DT-PBFT 279 254 236 204 183 164 143 130 
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Fig. 9. Changes in model accuracy under different reputation values. 
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Fig. 9(a) shows the model training accuracy results for four 
different reputation values on the training set. Fig. 9(b) shows 
the model training accuracy results for four different reputation 
values on the test set. After introducing reputation values in the 
early stages of iterative changes, the training accuracy of the 
entire model was significantly improved. The higher the 
reputation value, the better the training effect. However, not a 
reputation value of 1.0 performed the best. When the reputation 
value was 0.75, the model training accuracy changed more in 
line with the standard change line, indicating that the training 
data were completely reliable and the data quality was better. 
At this time, the highest accuracy of DT-PBFT-FL was 96%. 
On this basis, this study introduced Role-Based Access Control 
(RBAC), Peer Trust Model (PTM), Eigen Trust Model (ETM), 
Reputation-based Trust Management (RTM), Fuzzy 
Reputation Model (FRM), and Web of Trust (WoT) of the same 
type. The initial roles for the RBAC algorithm were set to 4. 
The maximum number of maximal privileges was set to 10. The 
trust threshold for PTM was 0.6. The maximum number of 
interactions was 50. The trust decay rate for ETM was set to 0.1. 
The reputation decay rate for the RTM was 0.05. The depth of 
trust propagation for WoT was 3. The maximum number of 
nodes was 20. Similar methods in the literature were also 
introduced, i.e., methods in references 9 and 10. In the 
experiment, reputation value was used as the testing indicator 
and 10 iterations were conducted. The model reputation after 
each iteration was recorded in Table II. 

In Table II, in the first 5 iterations, the reputation changes 
of the 7 data sharing models were relatively small. However, in 
the subsequent 5 iterations, various models demonstrated 
significant node updating capabilities. The magnitude of 
change in the values of the more popular methods of the same 
type was greater and more pronounced than those detected in 
studies 7 and 8, especially after the 8th iteration. Relatively 
speaking, DT-PBFT-FL had the largest change in reputation 
value, with the lowest reputation value of 0.32. This indicated 
that the greater the magnitude of data changes, the greater the 
model ability to detect malicious nodes. If malicious nodes 

disguised themselves as normal data nodes in the first 5 
iterations, none of the 7 models exhibited excellent diagnostic 
capabilities. Therefore, within a certain iteration range, the 
proposed model had superiority and feasibility. The study 
validated the medical clinical information data in the Cerner 
Health Facts dataset using the effectiveness of malicious node 
detection as an indicator. The results are shown in Fig. 10. 

Fig. 10 (a) shows the outlier detection results of RBAC, Fig. 
10(b) shows the outlier detection results of WoT, Fig. 10(c) 
shows the outlier detection results of the model proposed in 
study 10, and Fig. 10(d) shows the outlier detection results of 
the proposed model. From Fig. 10, the outlier detection results 
of RBAC and the model proposed in study 10 were poor as the 
test samples increased. Although the outlier detection of WoT 
had greater similarity with the standard value, there were still 
some data samples with lower outlier detection. The detection 
efficiency and effectiveness of the proposed method matched 
the standard values to a high degree, which indicated that the 
data transmission security of DT-PBFT was improved to a 
greater extent by combining FL. Finally, to explore the actual 
differences between the proposed new model and the WoT with 
the best data performance, the study used stability, safety, 
economy, and data validity as test indicators. Customer 
evaluations were scored through random selection. The 
maximum score was 100 points, and the passing score was 60 
points. Fig. 11 shows the scoring results. 

Fig. 11(a) and Fig. 11(b) show the customers' rating results 
for WoT and DT-PBFT-FL. The rating range for WoT from 4 
clients was between 70-90, while the evaluation scores for the 
proposed model were concentrated at 90 or above. The highest 
stability score was 97, safety was 95, data validity was 97, and 
economy was 94. Comparing the average scores of the two 
models, the average score of WoT was 80.5, and the average 
score of DT-PBFT-FL was 93.8%. In summary, from customer 
evaluations, the proposed model had better overall performance 
and was more popular than similar models. 

TABLE II. THE REPUTATION VALUE AFTER 10 ITERATIONS 

Iterations/time 1 2 3 4 5 6 7 8 9 10 

RBAC 0.75 0.75 0.74 0.73 0.73 0.68 0.64 0.58 0.54 0.50 

PTM 0.75 0.75 0.74 0.73 0.73 0.69 0.64 0.61 0.55 0.51 

ETM 0.74 0.74 0.74 0.73 0.71 0.68 0.64 0.57 0.52 0.48 

RTM 0.75 0.75 0.73 0.73 0.72 0.67 0.65 0.62 0.57 0.52 

FRM 0.75 0.75 0.75 0.73 0.72 0.68 0.66 0.61 0.57 0.52 

WoT 0.75 0.75 0.73 0.73 0.72 0.67 0.63 0.52 0.44 0.41 

Reference 9 0.75 0.75 0.74 0.72 0.71 0.68 0.65 0.64 0.59 0.53 

Reference 10 0.75 0.74 0.73 0.72 0.69 0.68 0.64 0.61 0.55 0.48 

DT-PBFT-FL 0.74 0.73 0.73 0.72 0.7 0.52 0.45 0.4 0.32 0.34 
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Fig. 10. Test results of anomalous data detection for four model. 
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Fig. 11. Customer rating results for two models. 

V. CONCLUSION 

Data sharing has significant significance in the era of big 
data, but privacy protection is a major challenge in data sharing. 
Therefore, first, this study took blockchain technology as the 
framework, analyzed the PBFT consensus algorithm, and 
introduced C4.5 DT for optimization. After completion, local 
data model training was achieved through FL. An optimized 
PBFT was used for data sharing services and data supervision. 
Finally, a new data sharing privacy protection model, DT-
PBFT-FL, was proposed. The maximum throughput of DT-
PBFT was 1560, and the number of nodes at this time was only 

40. The consensus delay of DT-PBFT was up to 110ms, which 
was effectively reduced by 28ms compared to Tendermint's 
138ms. After 8 iterations with an initial 300 Byzantine nodes, 
the minimum number of Byzantine nodes in DT-PBFT was 130. 
In addition, when the reputation was 0.75, the training accuracy 
of DT-PBFT-FL was more in line with the standard change 
curve, and the model performance was optimal. After 10 
consecutive iterations, the reputation value of this model was as 
low as 0.32. After user evaluation, the stability score was the 
highest at 97, the safety was the highest at 95, the data validity 
was the highest at 97, and the economy was the highest at 94. 
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In summary, the proposed DT-PBFT-FL data sharing privacy 
protection model can complete current data sharing tasks with 
high standards, and has high feasibility and stability. Future 
research can further explore the model’s performance overhead 
and scalability to enhance its effectiveness in more practical 
application scenarios. 
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