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Abstracts—Given the lack of healthcare resources, the home 

care sector faces a serious challenge in figuring out how to 

maximize the effectiveness of healthcare employees' services and 

raise consumer satisfaction. In this study, a model for healthcare 

worker scheduling and path planning is built. Fuzzy time window 

theory is used to discuss how to determine service duration and 

fuzzy service duration sub-situations. A path-planning algorithm 

based on a non-dominated ranking genetic algorithm is used to 

optimize the decision-making process. To analyze the aspects that 

affect the results of the model runs and use them as a foundation 

for effective planning recommendations, simulation experiments 

based on real data were conducted. According to the findings, 

customer demand under a defined service hour reaches a 

threshold of 343 before additional man-hour expenses starts to 

accrue. Decision-makers must therefore make adequate staffing 

modifications before this happens. The appointment time window 

has a greater impact on customer satisfaction and can be suitably 

extended in the customer appointment interface to raise 

satisfaction. The 


-value, which can be calculated based on the 

carer's fuzzy service hours, high and low peak demand, and the 

percentage of urgent tasks, is related to the time cost and 

satisfaction under fuzzy service hours. The corresponding optimal 


-values are 0.6, 0.3, 0.6, and 0.6, which can balance the time cost 

and customer satisfaction in this scenario. 

Keywords—FTWNSGA-II; aging in place; path planning; 

appointment scheduling; fuzzy time windows 

I. INTRODUCTION 

With economic growth comes a gradual increase in China's 
population's age, and all facets of society are paying attention 
to the problem of senior care. Today, home care (HC), senior 
care and community care are the three main types of care for 
the elderly. The elderly of today are gradually favoring HC, and 
the number of HC service institutions is growing [1-2]. This is 
due to the influence of the traditional notion, the falling 
capacity of family senior care, and the lack of supply of elderly 
care institutions. The need for geriatric care has increased, 
while the rise of healthcare manpower resources among HC 
service providers has been much slower. One of the main 
problems the HC sector is dealing with is how to efficiently 
dispatch healthcare employees to increase service effectiveness 
and client satisfaction [3–4]. The current HC service scheduling 
model has the following shortcomings. First, there is a lack of 
scientific differentiation and scheduling methods for different 
urgent tasks. Secondly, traditional models are inefficient in 
dealing with uncertainty and fuzzy time Windows. Finally, it is 

difficult for existing models to balance service quality and cost-
effectiveness. At the same time, most of the previous studies 
focused on HC service scheduling within the deterministic time 
window, and failed to fully consider the fuzziness and 
uncertainty of service time, resulting in poor results in practical 
applications. Moreover, the traditional algorithm has low 
efficiency when dealing with multi-objective optimization 
problems, and it is difficult to take both service quality and cost 
control into account. To solve these problems, this study 
introduced the fuzzy time window theory, used the improved 
NSGA-II to optimize the decision-making process, and verified 
the effectiveness and feasibility of the model through 
simulation experiments based on real data. 

The innovation of the research is reflected in the following 
two aspects. First, the fuzzy time window theory is introduced 
to help HC deal with the uncertainty of service time. Second, 
the improved NSGA-II optimizes the decision-making process 
and improves the efficiency and accuracy of the model. The 
research contribution has the following three points. Firstly, 
through innovative scheduling and path planning models, the 
problem of limited medical resources in HC industry is 
effectively solved, and service efficiency and customer 
satisfaction are improved. Secondly, the research results 
provide a scientific basis for HC institutions to make decisions, 
and help to rationally allocate medical resources and avoid 
resource waste. Finally, the methods and conclusions of this 
study are not only applicable to the HC industry in China, but 
also provide a useful reference for the elderly care services in 
other countries and regions, and have a wide range of 
application value and promotion significance. 

Section II of the study explains the appointment scheduling 
(AS) for HC development status, the state of PP research, and 
suggests a multi-objective optimisation model to address the 
practical issues with AS for aged services. The creation and 
path optimization of the scheduling model for both 
deterministic and fuzzy service duration are thoroughly 
explained in Section III. Section IV suggests making logical 
service scheduling decisions based on the model's experimental 
findings. Section V is the discussion of the results. Section VI 
summarizes the study procedure, analyzes the flaws, and 
suggests improvements. 

II. RELATED WORKS 

Since the 1990s, the HC service scheduling issue has 
increasingly drawn scholarly attention, with more international 
research findings in this field. In order to connect client services 
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with nearby care service centers using IoT and artificial 
intelligence, Lam et al. developed an IoT artificial intelligence-
based home care service matching system and implemented it 
into an e-health system. The outcomes show that the strategy 
can enhance customer happiness and the caliber of service 
provided [5]. To assign caregivers to home healthcare rooms 
close to the client's home, Decerle et al. offer a mixed integer 
planning model for the multi-station home healthcare allocation, 
routing, and scheduling problem. The approach features a low 
bias rate and a quick computation time, according to 
experiments [6]. Grenouilleau et al. looked into an ensemble 
partitioning heuristic algorithm that incorporates the realistic 
constraint situation of HC, solves the problem of linear 
relaxation in the ensemble partitioning model using columns 
generated by large neighbourhood search, and gets the answer 
by solving the integer with the heuristic algorithm. Studies 
revealed that the approach might cut travel time by 37% and 
boost continuity of service by 16% [7]. Xiang et al. built a bi-
objective mixed integer linear programming model based on the 
goals of minimizing total cost and maximizing satisfaction, and 
paired a local search method with a genetic algorithm to solve 
the model. The approach was able to generate a roughly Pareto 
optimal solution more quickly, according to experiments [8]. 

The derived branch of the vehicle PP problem includes the 
AS problem for HC services, which is solvable using the related 
algorithm. With the use of real-time price signals from the 
distribution system operator, Wang et al. present a deep 
reinforcement learning-based distributed scheduling approach 
for electric vehicle clusters. A deep reinforcement learning 
technique is used to optimize the EV orderly charging and 
discharging strategy. The strategy is characterized by a Markov 
decision process. The technique can cut the cost of user fees by 
US$133.7 [9]. By optimizing the weighting parameters and 
deadline miss rate through reinforcement learning and adjusting 
the reinforcement learning action step size and reward function 
to improve the learning speed and optimisation capability, 
Meng et al. enhanced the dynamic priority scheduling 
algorithm in real-time scheduling strategy for power systems. 
The strategy can increase scheduling effectiveness and lower 
operating expenses, according to experiments [10]. Li et al. 
suggested adding a "distance" clique approach and a circular 
Jaccard distance metric to an ant colony algorithm for the 
traveler problem's multi-solution optimization. In order to find 
the Pareto ideal solution, Tang et al. developed a bi-objective 
optimisation model based on minimizing both the overall 
passenger waiting time and the bus company departure time. 
The model can offer managers of urban rail transit systems 
logical bus route scheduling solutions, according to 
experiments [11-12]. 

In conclusion, it is clear that although multi-objective 
HCAS models based on variables like caregiver skills, 
caregiving style, and caregiver starting point are more 
frequently investigated, they also have drawbacks such difficult 
mathematics and poor efficiency. Fuzzy time windows (FTW) 
have been used successfully in vehicle routing issues and have 
steadily gained attention thanks to literature research. In this 
study, FTW is first introduced into the HC service scheduling 
model [13]. Customer satisfaction is calculated under various 
levels of urgency using an affiliation function, and the optimal 

value is solved using an improved non-dominated ranking 
genetic algorithm, which allows HC service businesses to make 
wise and scientific decisions based on the optimal value. 

III. METHODS AND MATERIALS 

In order to carry out reasonable home nursing service 
scheduling, it is necessary to consider the factors such as labor 
cost, customer demand and customer satisfaction. In this study, 
a nursing staff scheduling model was constructed from the 
perspective of time cost and satisfaction, and an improved non-
dominated sorting genetic algorithm (NSGA-II) was designed 
to solve the model. Firstly, the fuzzy time window theory is 
used to deal with the uncertainty of service time, and the 
NSGA-II algorithm is optimized by setting different parameter 
configurations. Secondly, the triangular fuzzy number is used 
to represent the customer's service time demand, and the fuzzy 
confidence level is used for comparative analysis, so as to deal 
with the time uncertainty in the actual service more accurately. 

A. Construction of HCAS Model and NSGA-IIPP Algorithm 

under Determined Service Duration 

Given a service agency, the agency has M  clients and 
M  dispatchable carers. The origin of the carer is designated 

as service agency O , and a client corresponds to a task and a 

carer, which are classified as urgent task e (1,2, , )M e
 and 

general task g ( 1, , )M e M 
 according to the degree of 

urgency. the rated working time of the carer is T , and its path 
distance is the round trip distance between the service agency 
and the client's address. The skill level of the carer must match 
or exceed the task level of the client. Assume that client m  has 

a time window (TW) of 
[ , ]m ma b

 and a maximum tolerated 

TW of 
[ , ]m mast bst

. 
[ , ]m ma b

 indicates that the client's 

desired start time is ma
 and the required latest start time is 

mb
, and the client's satisfaction is 1 if the service is started 

within this TW. 
[ , ]m mast bst

 indicates that the earliest and 
latest service start times that the client can tolerate outside of 

the TW appointment are mast
 and mbst

, and the client's 
satisfaction beyond this range is 0. Since client satisfaction is 
directly influenced by the start time of the carer, it can be 
described using fuzzy constraint theory [14-15], as shown in Eq. 
(1). 
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In Eq. (1) 
( )m mu t

 is the fuzzy affiliation function of the 

service start time, indicating user satisfaction; mt  is the time 
when the carer starts the service. The maximum tolerated TW 
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differs in everyday situations for different urgent types of task 
clients. Defining this as urgent tasks customers are only allowed 
to be early and not late, general tasks can be solved for 

according to Eq. (1) for customer satisfaction. The two 
definitions can be represented visually by Fig. 1. 

100%

Customer 

satisfaction

Attendant 

arrival timeastm

bm=bstm

bstmam

Attendant 

arrival time
Customer 

satisfaction

100%

astm am

bm

Urgent task

Generic task

 

Fig. 1. FTW based on customer satisfaction at different levels of urgency. 

Based on the above assumptions, the PP model is 
constructed using the concept of directed graph, as shown in Eq. 

(2) [16]. Where V  and A  denote the set of vertices and the 

set of arcs respectively; G  denotes the planar graph containing 
all points and arcs. 

( , )G V A
        (2) 

By labelling the position where the escort departs as 0 and 

the position where it ends as 1m , the calculation of the arc in 
the directed graph proceeds as shown in Eq. (3). 

{( , ', ) \{ 1}, {0}, , '}A m m n m V m M V n N m m     
 (3) 

In Eq. (3) n  denotes the n th carer; 'm  is the 'm th 

client, 'm m  denotes that a carer serves only one client at a 
time and does not repeat the service for clients already served. 
As different carers have different skill levels, the total hours of 

each carer cannot exceed T . Using nQ
 to denote the skill 

level of the n  carer, mS
 to denote the demand level of user 

m  and nt  to denote the total hours of carer n , the carer and 
the task need to meet the conditions shown in Eq. (4) in order 
to be matched. 

n m

n

Q S

t T




                    (4) 

To balance the maximum tolerable TW for general and 
urgent tasks and to prevent loss of clients due to too early or too 

late service, a minimum service level factor 
( )m m mu t 

 is set 

and must meet 
( )m m mu t 

. This minimum service level 

factor corresponds to a TW of 
[ ' , ' ]m ma b

, and when an escort 

arrives early at client m , he/she needs to wait until time 
'ma

 to 

perform the service, and those arriving after time 
'mb

 incur a 
penalty time cost. The scheduling optimisation objectives for 
this study were to minimise working hours and maximise 
average customer satisfaction within the constraints of a fixed 
number of people working and TW. Job duration includes 
point-to-point movement time, early arrival waiting time, late 
arrival penalty time and service time. Of these, travel time is 
related to path length, so that time minimisation translates into 
path minimisation. For the penalty time, the penalty coefficient 
is calculated by multiplying it with the tardiness time. In 
summary, the equation for optimising escort scheduling based 
on task urgency is shown in Eq. (5) when the length of service 
is determined. 

, , ' , , ' , ,

0 1 0 ' 0 0 0 0

min max {0, }
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m M
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   


              (5) 

,n mst
 in Eq. (5) indicates the time for carer n  to start the 

task at client m 's home; , , 'n m mx
 is a decision variable 

indicating the path choice of carer n  from client m  to client 

'm , with 1 for going and 0 for not going; nw
 is the waiting 

time for the carer to arrive early; , , 'n m mvt
 is the distance from 

client m  to client 'm ; D , U  and C  are the working 
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hours, average satisfaction and penalty coefficient respectively. 
For the solution of the multi-objective optimal scheduling 
problem of carers, the solution idea of combinatorial 
optimization can be used. For this type of problem, the current 
commonly used algorithms include genetic algorithms and 
particle swarm algorithms [17-18]. In this study, NSGA-II was 

used to solve the problem. 1 2( , , )S s s
 chromosome A is 

obtained by using natural numbers to encode the order of the 

caregiver's moving path, where 0,1,2,s   indicates the 
path moved by a certain caregiver and 0 is used to distinguish 
different caregivers. The initialised population is generated by 
random matching if the constraints of the scheduling model are 
satisfied. The end times of the maximum tolerable TW for 
different clients are extracted and all clients are sorted in order 
from smallest to largest to form a new set of clients. A client is 
randomly taken out and placed into the path of the carer, and if 
the scheduling model constraint is satisfied, it is removed from 
the original set and placed into the path of that carer, and vice 
versa, the client is reselected. The cycle ends when the total 
service time is greater than the rated hours of the carer, and is 

then repeated for the next carer until the client is empty or all 
the carers' hours are scheduled. The initialised population is 
adjusted to the initial position according to the fitness function, 
i.e. the carer service path is assigned the corresponding client 
point using fuzzy plausibility theory. Variation operations are 
applied to duplicate individuals and infeasible individuals are 
eliminated to ensure that each individual is a feasible solution. 
The optimisable paths in the feasible paths are treated as objects, 
and the service start times are adjusted according to the optimal 
movement shown in Eq. (6) until all feasible solutions are 
adjusted. 

' 1min{(min( ) , 1, , '), }k n mG t k m m m w t    
   (6) 

In Eq. (6) G  denotes the optimal amount of movement; 

kt  denotes the difference between the actual start time of the 

escort ,n mst
 and ma

, mb
 and 

'mb
. Finally, the optimal PP 

is obtained by iterating according to the selection, crossover and 
variation process of NSGA-II. The solution flow of the NSGA-
II-based algorithm is shown in Fig. 2. 
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Fig. 2. NSGA-II based algorithm solution flow. 
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B. HCAS Model and NSGA-IIPP Algorithm Construction 

under Fuzzy Service Hours 

Due to the dynamic nature of client demand in real life HC, 
there is a high degree of uncertainty about the length of time a 
carer will be available and when they will end their service. 
This makes it more difficult to constrain the client's TW 
appointment and the risk of the carer working beyond the rated 
working hours. Therefore the issue of scheduling optimisation 
in the case of fuzzy service lengths needs to be discussed. On 
the basis of the determined service length, a triangular fuzzy 
number is created for each client with uncertain service length 
[19], then for client m , its service length is expressed as 

1 2 3( , , )m m mt t t t
. When the service of client k  is completed, 

the total working hours of the carer in the current state are 
calculated in Eq. (7). 

1 1 1

k m m

k i iji i j
T t vt

  
   

   (7) 

In Eq. (7), i , 
j
 and k  are all clients. kT

 is a triangular 

fuzzy number, and the remaining working time of the carer after 
serving the client is also a fuzzy number, as shown in Eq. (8). 
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(8) 

According to fuzzy plausibility theory [20], the plausibility 

Cr  that the next client's service hours are less than the 
remaining hours of that carer is shown in Eq. (9). 

1
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 (9) 

If the client service hours are fuzzy time, the more 
credibility the carer currently has left, the greater the chance of 
successfully serving the next client. Expanding Eq. (9) 
according to the triangular fuzzy number multiplication and 
division operation gives the result shown in Eq. (10). 
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A confidence level 


 is set so that the next client is only 
assigned to a carer if the demanded length of time is less than 

the plausibility that the remaining hours of the carer are greater 
than that of the carer. The path optimisation calculation under 
fuzzy service hours is shown in Eq. (11). 

, , , , , ,
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max ( ) /
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      (11) 

The confidence level represents the subjective preference of 
the decision maker. If the decision maker prefers high risk and 
can bear the risk of time cost of task failure caused by the rated 
hours of the caregiver being less than the task length, then a 

smaller 


 can be chosen; if the decision maker prefers 

stability, then a larger 


 can be chosen to avoid risk. For the 
optimal PP under fuzzy service hours, a combination of 
stochastic simulation and NSGA-II algorithm is used to solve 
the problem. In the case of fuzzy hours, there may be additional 
time costs due to insufficient remaining hours when the carer 
reaches a client by PP, but it is not clear which client to serve 
will increase the cost risk and what the risk cost is, so the 
valuation of the additional hours needs to be obtained according 

to the stochastic simulation algorithm. A value 


 is randomly 
generated in a range of fuzzy service hours for a particular 
customer, and the value is subjected to an affiliation function 
according to the triangular fuzzy number, as shown in Eq. (12). 
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An additional random number c  is generated to satisfy 
[0,1]c

. The affiliation function is compared with c  and if 
( )tu y c

, then 
y

 is the actual service hours; if not, the 
process of randomly generating values is repeated and 
compared again. All actual service hours obtained from the 
comparison are used to calculate the extra work time present in 
the escort scheduling. After performing I  iterations, the 
average of the I  iterations is obtained based on subjective 
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preference 


 and this is used as the valuation of the extra 
hours worked by the carer. The sequence of feasible carer 
movement paths is encoded in natural numbers, and one 
feasible solution, also a chromosome in the genetic algorithm, 
is shown in Fig. 3. A number represents a client and 0 indicates 
the carer's movement path. All numbers except 0 are associated 
with the original position, which is obtained by crossover and 
mutation operations. 

 
Fig. 3. Chromosome representation of feasible solutions. 

Starting from the left of the randomly generated sequence 
of clients, the values representing the clients are taken out in tu 

rn and the corresponding Cr  values are calculated by 
comparing the simulated service hours of the client with the 

remaining hours of the carer. If 
Cr 

, the client is assigned 

to the current carer; if not, the Cr  of the next carer's remaining 
hours and the simulated service hours of that client is calculated 

and compared with 


 until the condition is met. A 
chromosome is formed when the last client on the right side of 
the random sequence is matched with a carer. The above steps 
are repeated until the chromosome reaches the size of the 
initialised population. The initial position order is then adjusted 
according to the fitness function shown in Eq. (13), i.e. the 
fuzzy plausibility theory is used to assign corresponding client 
points to the carer service path. 

2( 1)
( ) 2

1

position
FitnV position

nind


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    (13) 

FitnV  in Eq. (13) is the fitness function; 
position

 
denotes the location attribute of each value after the first sorting; 

and nind  denotes the number of individuals in the population. 
In the NSGA-II selection process, the population is stratified 
according to the level of individual non-dominance solutions 
and cycled according to the fitness of the individuals. The 

crowding degree ncrowd
 is used to indicate the density of non-

dominated individuals at the same level, as shown in Fig. 4. 

FitnV

FitnV

n+1

n-1

n

 
Fig. 4. Graphical representation of the crowding of an individual n . 

Crowding is expressed as the sum of the length and width 
of the rectangle in Fig. 4 with the two individuals adjacent to 
the non-dominant individual as the diagonal, and is calculated 
as shown in Eq. (14). 

( 1) ( 1)  ,    2,3, ,n ncrowd crowd FitnV n FitnV n n N     

(14) 

The population is sorted according to the value of the 
objective function, with the first and last two individuals 
considered to be infinitely crowded. Solutions with smaller 
crowding are removed according to the value of the fitness 
function, and the remaining solutions are reordered according 
to the size of the fitness until the number of solutions meets the 
requirements. To improve the diversity of the population, 
crossover and mutation operations are performed. The 
crossover positions of individuals in the population are 

randomly set with probability cp
. The crossover positions of 

the two parent chromosomes are swapped, and the crossover 

population is then mutated with probability mp
. The new 

chromosomes obtained by the crossover and mutation 
operations must meet the full alignment requirements and 
constraints of the caretaker's movement route, otherwise the 
crossover and mutation operations will be repeated. 

IV. RESULTS 

Firstly, the study conducted experiments on minimum total 
time cost and maximum customer satisfaction by using 
improved NSGA-II, and analyzed and discussed the influence 
of different parameter variables on time cost and customer 
satisfaction in detail. Secondly, the study also discusses the 
performance of the fuzzy service time scheduling model under 
different demand and urgent task proportions, so as to further 
optimize the scheduling scheme and improve the service 
efficiency and customer satisfaction. 

A. Decision Analysis Based on NSGA-IIPP for Determining 

Service Duration Scenarios 

As an example, the staffing of health care workers at home 
and the volume of client tasks at high and low peaks were 

7 10 2 0 1 5 9 4 0 6 3 8

Nurse1 Nurse2 Nurse3

7 10 2 1 5 9 4 6 3 8

Crossover

Mutation

Cr
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collected from an HC service centre in Chengdu. There were 10 
general practitioners and 25 nurse practitioners in the home 
visiting service. To simplify the research questions, all doctor 
levels were set to 2 and all nurse practitioner levels were set to 
1. Client tasks were also divided into two levels, with task levels 
such as visits and medication injections set to 2 and nursing 
tasks such as medicine changes and massages and routine 
checks such as blood pressure and blood glucose set to 1. The 
centre had 387 client appointments during peak periods and 260 
client pre-volumes during low peak periods. Of these, 103 were 
Level 2 tasks and 284 were Level 1 tasks during the peak period; 
59 were Level 2 tasks and 201 were Level 1 tasks during the 
low peak period. From the peak and low peak tasks, 20% of the 
data were randomly selected as urgent tasks respectively, and 
the rest as general tasks. The client's appointment time period 
was used as the appointment TW, and the maximum tolerable 
TW was extended 20 min forward for urgent tasks and 20 min 

backward and forward for general tasks. The client's address 

was scaled down to the coordinate map of 500 500 . The 
rated service hours for medical care are 8h, starting at 9:00am 
and stacked in minute increments. For NSGA-II algorithm, 
when the number of iterations is 800, population size is 200, 
crossover probability is 0.9, mutation probability is 0.3, the 
algorithm has the best effect. In addition, the service time is 30 
minutes for Level 2 tasks, 20 minutes for Level 1 tasks, the 
reservation time window range is 30 minutes, the minimum 
service level coefficient is 0.6, and the penalty coefficient is 2. 
For the fuzzy service time scheduling model, the triangular 
fuzzy number is used to represent the customer service time 
demand, and the fuzzy confidence level is set as 0.5 and 0.6 to 
compare different experimental scenarios. To explore the effect 
of different algorithm parameters on the experimental results, 
parameter test values were set as shown in Table I. 

TABLE I. ALGORITHM PARAMETER TEST VALUE SETTINGS 

Parameter category 
Test category 

Class 1 Class 2 Class 3 

Iterations 500 800 1200 

Population size 100 150 200 

cp
 

0.7 0.8 0.9 

mp
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Fig. 5. RPD values and /S N -ratios for different parameters. 

The minimum service level coefficient for the experiment 
was set to 0.6 and the penalty coefficient was set to 2. The 

relative percentage difference (RPD) and the /S N -ratio 
solved by the RPD were used as indicators for the experiment, 
and the results of the experiment were shown in Fig. 5 using the 
control variable method for each parameter setting in the table. 

In Fig. 5, the RPD represents the deviation of the feasible 
solution from the optimal solution, the smaller the mean value 
of the RPD the smaller the deviation; the ratio is the negative 

logarithm of the mean squared RPD, the larger the value the 
better the feasible solution. As can be seen from Fig. 5, the best 
results were obtained when the number of iterations was 800, 
the population size was 200, the probability of crossover 
operation was 0.9 and the probability of variation operation was 
0.3. Therefore, this set of parameters was chosen as the model 
parameters for the subsequent analysis. Under the 
determination of service duration, the factors that have a greater 
impact on time cost and customer satisfaction include demand 
sensitivity and TW sensitivity. For the demand sensitivity, set 
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the service time for level 2 as 30min, level 1 as 20min, the TW 
range for booking as 30min, the minimum service level 
coefficient as 0.6 and the penalty coefficient as 2. Using the 
peak task volume as the upper limit, the low peak task volume 
as the lower limit, and 10 as the interval to set 14 groups of 
demand, the algorithm was tested to observe the impact of 
demand changes on the time cost of carers. The results are 
shown in Fig. 6. 

Fig. 6 illustrates how the service center has a total rated 
work time of 16,800 minutes and starts to accrue extra work 
time charges once the task volume surpasses 343. This shows 
that the current personnel is unable to satisfy the demand for 
tasks more than 343 within the allotted work hours. The service 
center can therefore set customer demand at various times of 

the day based on historical data and use the scheduling 
outcomes from the NSGA-II model simulation to adjust the 
healthcare configuration beforehand, for instance by taking 
measures to increase the number of nursing staff before the 
peak period, to prevent a decrease in average customer 
satisfaction due to a decrease in the ability to meet demand. 
FTW includes the customer's appointment TW and the potential 
maximum tolerable TW. To verify the effect of FTW interval 
settings on waiting/late time and customer satisfaction, the 
model was used to test three different appointment TW 
intervals of 30min, 40min, and 50min, with the corresponding 
maximum tolerable TW for the general task of extending 20min 
before and after, 30min, and The experimental results are 
shown in Fig. 7. 
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Fig. 6. Impact of low to peak demand changes on time costs. 
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Fig. 7. Waiting/late hours and average satisfaction under different FTW. 

As can be seen from Fig. 7, as the TW interval between 
appointments increases, the average waiting/late time decreases 
and customer satisfaction increases. The maximum tolerable 
TW also shows the same trend. This means that the greater the 
TW interval between appointments, the less likely it is that a 
healthcare professional will arrive early or be late; the greater 
the maximum tolerable TW, the longer the wait time acceptable 

to the customer and the higher the satisfaction level. In 
comparison, the average increase in customer satisfaction is 
31.5% at the TW interval and 12.4% at the maximum tolerable 
TW, indicating that the TW interval has a greater impact on 
customer satisfaction. The service centre can therefore consider 
increasing the length of the appointment TW as much as 
possible to meet customer needs and collect as much 
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information as possible in terms of customer maintenance to 
reasonably classify and plan the maximum tolerable TW for 
customers. 

B. NSGA-IIPP-based Decision Analysis for Fuzzy Service 

Hours Scenarios 

In the fuzzy service duration scheduling problem, time cost 
and customer satisfaction depend on the decision maker's 

subjective preference 


, which is influenced by demand and 
task urgency. Therefore, time cost and customer satisfaction are 

used as indicators to analyse the optimal 


 values for different 
scenarios. Again, using the example of a home healthcare 
service in an HC service centre in Chengdu, the service time 
required for Level 1 and Level 2 tasks is set as the triangular 

fuzzy numbers 
(15,25,35)

 and 
(20,30,40)

, and tested by 
the NSGA-II model, the results of the carers' 
moving/waiting/late time, extra working hours, total time and 

average satisfaction for different 


 values can be obtained as 
shown in Fig. 8. 
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Fig. 8. Cost of time and average satisfaction of carers at different 


 values. 

As can be seen from Fig. 8, as the decision maker's 
subjective preference value increases, the cost of 
moving/waiting/late time is gradually increases and the extra 

working hours decrease. When the value of 


 is less than 0.5, 
the increment of moving/waiting/late time is lower than the 
decrease of extra working hours, which makes the total time 

cost tend to decrease as the value of 


 increases. The total 

time cost reaches a minimum of 9930 min when the 


 value 
is equal to 0.5, and tends to increase from there as the increment 
of movement/waiting/late time is higher than the decrease of 
extra hours. Therefore, the subjective preference in the fuzzy 

service time scheduling for carers is 0.5 in terms of minimising 
the total time cost, and in terms of average customer satisfaction, 

customer satisfaction increases for 


 values less than 0.6; 

after 


 values reach 0.6 customer satisfaction does not change. 
Therefore, considering customer satisfaction and total time cost, 
the value should be set to 0.6 in terms of fuzzy service time 
scheduling for carers to explore the effect of high and low peak 

demand on 


-value, experiments were conducted on peak 
demand of 387 and low peak demand of 260, and the results are 
shown in Fig. 9. 
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Fig. 9. Time costs and customer satisfaction for different 


 values at high and low peak demand levels. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

1336 | P a g e  

www.ijacsa.thesai.org 

As can be seen from Fig. 9, the trend from a total time cost 
perspective is the same for peak and low peak periods at 

different 


 values. The optimal 


 value for both is 0.5. 
However, they differ significantly in terms of customer 
satisfaction. Customer satisfaction during the peak period 

increases and then decreases with the 


 value, and it can be 

seen that when the 


 value increases from 0.3 to 1, the time 
cost decreases by only 264, while customer satisfaction 

decreases by 15%. The optimal 


 value for the peak period is 

therefore 0.3. Customer satisfaction increases with the 


 
value during the low peak period, and after the BBB value 
reaches 0.7, the satisfaction level stabilizes at 82%, and the 

optimal 


 value, taking into account time cost and satisfaction, 
is 0.6. As the urgency of the task has a direct impact on the 
scheduling results, the total time cost and customer satisfaction 
vary with the value for different levels of urgency. The results 
are shown in Fig. 10. 
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Fig. 10. Variation of total time cost and customer satisfaction with 


-value for different levels of urgency. 

As can be seen from Fig. 10, the higher the proportion of 

urgent tasks, the greater the total time cost at all 


 values. The 
lowest time cost exists for different urgent task ratio situations 

when the 


-value is between 0.3 and 0.6. In contrast, customer 

satisfaction varies, with a higher 


-value resulting in higher 

satisfaction. When the 


-value is less than 0.6, customers with 
20% of urgent tasks are more satisfied than those with 30% and 

40% of urgent tasks. When the 


-value exceeds 0.6, customer 
satisfaction is highest at 40% of urgent tasks, followed by 30% 

and lowest at 20%. On balance, the impact of different urgent 
task ratios on customer satisfaction is less than the impact on 

time costs, so the optimal 


-value can be set at 0.6 for different 
urgent task ratios. 

To further verify the effectiveness of the proposed method 
in home care service scheduling, this study compared it with 
three recent studies. In the experiment, the same data set was 
used for scheduling and path planning of the four methods, and 
the results of each method under different performance 
indicators were recorded, as shown in Table II. 

TABLE II. PERFORMANCE COMPARISON OF DIFFERENT METHODS 

Method Total time cost /min 
Average customer 

satisfaction /% 
Total service time /h 

Energy consumption 

/kWh 

The method proposed in this paper 9532 96.9 152 486 

References [21] 9836 90.5 158 502 

References [22] 9775 88.2 165 508 

References [23] 9649 85.1 168 512 
 

Table II shows the performance comparison between the 
latest methods and those proposed in the text under the same 
conditions. As can be seen from Table II, the proposed method 
has the best performance in total time cost, which is as low as 
9532min, indicating that the method has significant advantages 
in time optimization. In addition, the average customer 

satisfaction rate of the method is also excellent, up to 96.9%, 
indicating that the quality of service is competitive. Finally, the 
total service time of the method is as low as 152h and the energy 
consumption is as low as 486kWh. In summary, the proposed 
method has significant advantages in optimizing total time cost, 
and service time cost, improving customer satisfaction and 
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reducing energy consumption, which verifies its effectiveness 
and practicability. 

V. DISCUSSION 

To verify the validity of the proposed NSGA-II and FTW 
theories in home care service scheduling, a detailed experiment 
was conducted and the results were compared with two recent 
studies. Compared with the multi-objective model proposed in 
literature [24] for medical resource management and site 
selection planning during the epidemic, although literature [24] 
has excellent performance in responding to public health 
emergencies, it still has shortcomings in dealing with complex 
time scheduling problems in daily home care services. In 
contrast, NSGA-II combined with FTW not only performs well 
in optimizing resource allocation, but also effectively deals 
with the uncertainty of service time. The results show that the 
proposed method is significantly better than the methods in the 
literature [24] in terms of total time cost, with the total time cost 
as low as 9532 minutes. In addition, the literature [25] performs 
well in dealing with skill matching and uncertainty, but there is 
still room for improvement in customer satisfaction and time 
cost optimization. NSGA-II combined with FTW method has 
excellent performance in customer satisfaction, with an average 
customer satisfaction of 96.9%, which is higher than the 
literature [25]. At the same time, the total service time of 
NSGA-II combined with FTW method was as low as 152 hours. 

In summary, NSGA-II combined with FTW method shows 
strong ability in home nursing service scheduling, which can 
provide new technical support and optimization ideas for 
service organizations. Future research could further optimize 
the method, including introducing more types of user behavior 
data, enhancing the algorithm's generalization ability, and 
testing its performance in other service scenarios to improve its 
applicability and utility. 

VI. CONCLUSION 

The already scarce health care resources look to be even 
more scarce in light of the rapidly increasing HC demand and 
the current low planning rate of caregiver scheduling. For two 
separate scenarios of deterministic and fuzzy service hours, the 
nurse scheduling and PP models are discussed in this work 
using the FTW theory. The models are then solved using a PP 
optimisation technique based on NSGA-II. Real data is used to 
analyze the impact of various elements on the outcomes of 
model operation, and a sound planning approach is suggested. 
The model's 800, 200, 0.9, and 0.3 iterations, population size, 
crossover operation probability, and variation operation 
probability were determined via experiments using the RPD 

and /S N  ratio. When the demand exceeded 343, the total 
time cost exceeded the total fixed man-hours, indicating that the 
decision-maker needed to make adjustments in advance in 
accordance with the actual situation. The total time cost 
calculated by the model under the determined service hours 
increased with the increase in demand. The average increase in 
appointment TW is much greater than the maximum tolerable 
TW, indicating that the appointment TW interval setting has a 
greater impact on customer satisfaction and that TW can be 
increased appropriately at the customer appointment interface. 

Customer satisfaction rises as FTW rises. The 


-value of fuzzy 
service time scheduling for carers is set to 0.6 under the fuzzy 
service duration, and the A-values for peak and low peak 
periods are set to 0.3 and 0.6, respectively. The A-value for the 
proportion of urgent jobs should be set to 0.6 in order for the 
model's time cost and customer satisfaction calculations to be 
more accurate. Overall, this study can help HC service centres 
make appropriate judgments to a certain extent, although there 
are still issues with the study's applicability. First, the model 
still has some challenges in dealing with complexity and 
uncertainty in practical applications. Although the fuzzy time 
window theory is introduced, the variable factors and 
unexpected situations that may be encountered in practice may 
exceed the preset range of the model. Second, limitations in 
data sources and experimental Settings may affect the 
generalizability of the results. This study is based on data from 
specific regions and time periods, and data from other regions 
or different time periods may vary, so the broad applicability of 
the results needs to be further verified. 
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