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Abstract—The overarching objective of this study lies in the 

thorough evaluation of the effectiveness of K-nearest neighbors 

(KNN) models in the precise estimation of building cooling load 

consumption. This assessment holds significant importance as it 

pertains to the feasibility and reliability of implementing machine 

learning techniques, particularly the KNN algorithm, within the 

domain of building energy management. This evaluation process 

centers on scrutinizing five distinct spatial metrics closely 

associated with the KNN algorithm. To refine and enhance the 

algorithm's predictive capabilities, this endeavor incorporates 

utilizing test samples drawn from an extensive database. These test 

samples serve as valuable resources for augmenting the overall 

predictive accuracy of the model, ultimately leading to more 

robust and reliable predictions of cooling load consumption within 

the building systems. Ultimately, the research endeavors to 

contribute substantially to advancing more energy-efficient and 

automated cooling system control strategies. Developed models 

encompass a single base model, another model optimized through 

the application of African Vultures Optimization, and a third 

model optimized using the Sand Cat Swarm Optimization 

technique. The training dataset includes 70% of the data, with 

eight input variables relating to the geometric and glazing 

characteristics of the buildings. After validating 15% of the 

dataset, the performance of the remaining 15% is tested. An 

analysis of various evaluation metrics reveals that KNSC (K-

Nearest Neighbors optimized with the Sand Cat Swarm 

Optimization) demonstrates remarkable accuracy and stability 

among the three candidate models. It achieves a substantial 

reduction in the prediction Root Mean Square Error (RMSE) of 

32.8% and 21.5% in comparison to the other two models (KNN 

and KNAV) and attains a maximum R2 value of 0.985 for cooling 

load prediction. 

Keywords—K-nearest-neighbors; machine learning; cooling 

load prediction; African Vultures Optimization; Sand Cat Swarm 
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I. INTRODUCTION 

A. Background 

Amid growing apprehension about rising 𝐶𝑂2  emissions, 
there has been a substantial increase in energy consumption by 
buildings [1–3]. Numerous endeavors have been made to curtail 
or enhance the efficiency of building energy consumption [4]. 
Concentrating on passive and active design strategies, many 
research studies have conducted investigations aimed at 
augmenting energy efficiency in buildings. These efforts have 
encompassed initiatives to facilitate the thermal properties of 
building envelopes, upgrade mechanical systems to advanced 
technologies, and integrate renewable energy systems [5–8]. 

Although these design strategies have been instrumental in 
managing building energy, their impact on reducing building 
energy consumption ranges from 3% to 10% of the total energy 
consumption in buildings [9]. Furthermore, enhanced energy 
performance can be anticipated only when these design 
strategies are integrated during the initial phases of building 
design [10,11]. 

The swift advancement in information and communication 
technologies has made building energy management and 
prediction essential for enhancing energy efficiency and 
diminishing building energy consumption [12]. The 
incorporation of metering technologies has rendered specific 
data on building operations and energy consumption readily 
accessible, facilitating comprehensive analyses of energy 
consumption patterns within buildings [13]. The copious 
datasets gathered by specific systems, such as building 
automation systems and building energy management systems, 
offer the potential to anticipate the dynamic interplay among 
them, thereby influencing building energy consumption [14,15]. 

A crucial direction for future research involves evaluating 
the efficacy of these sophisticated statistical models in 
forecasting actual building energy performance rather than 
exclusively depending on simulated results. Previous studies 
have unveiled notable disparities between initial design 
simulations and real energy consumption estimations, largely 
arising from uncertainties linked to modeling assumptions, 
construction quality, weather fluctuations, operational 
procedures, and occupant behaviour [16]. Given the increasing 
accessibility of data concerning real energy consumption, a 
wealth of prospects exist for harnessing advanced 
methodologies to explore the intricate relationship between 
building attributes, occupant behavior, and actual energy 
performance. This can be achieved through the scrutiny of 
extensive datasets [17–19]. 

B. Related Work 

In studies [20], [21], [22], [23] and [24–30] have focused on 
applying different machine learning techniques to predict 
building energy loads. For instance, Lin et al. [31] introduced a 
short-term load forecasting method using data-driven techniques 
to anticipate the cooling load of buildings. Their method 
demonstrated high precision and efficacy through rigorous 
evaluation, underscoring the potential of data-driven approaches 
for accurate cooling load forecasts. Wang et al. [32] advanced 
the Enhanced Harris Hawk Optimization (EHO) by developing 
the Improved EHO (IEHO) neural network. Their findings 
revealed that integrating the Back Propagation (BP) neural 
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network with the IEHO, forming the IEHO-BP neural network 
model, significantly improved the accuracy of heating and 
cooling load predictions. This hybrid neural network model 
exhibited superior robustness and precision, indicating its 
effectiveness for load forecasting applications. Leiprecht et al. 
[33] conducted a comprehensive analysis of autoregressive 
forecasting methods and decision trees, including adaptive 
boosting, for thermal load prediction. They also explored deep 
learning techniques such as Long Short-Term Memory (LSTM) 
neural networks, demonstrating the versatility and effectiveness 
of deep learning models in thermal load prediction. Jihad and 
Tahiri [34] employed Artificial Neural Networks (ANN) to 
forecast the energy requirements of residential structures. Their 
results showed high accuracy rates, with 98.7% accuracy for 
training data and 97.6% for test data, highlighting the ANN's 
capability for precise energy load predictions. Machine learning 
prediction has emerged as a powerful and versatile approach, 
recognized across various domains for its ability to analyze data, 
identify patterns, and make predictive decisions without explicit 
programming. Machine learning models, including decision 
trees, support vector machines, and neural networks, can train 
on extensive datasets, enabling the identification of intricate data 
relationships. These models play a pivotal role in transforming 
data analysis and interpretation methodologies, providing 
predictive insights that support informed decision-making in 
business and organizational contexts [20, 21]. In civil 
engineering, two illustrative examples showcase the application 
of machine learning techniques. Moradzadeh and Mohammadi-
Ivatloo [22] developed an enhanced hybrid machine-learning 
model to predict cooling and heating loads in residential 
buildings. Their study involved a comprehensive analysis of 
diverse forecasting models, highlighting the effectiveness of 
hybrid models in load prediction. RC Zhao et al. [23] detailed an 
approach that decomposed temporal features and climatic 
attributes into multiple independent components. By 
diversifying the feature set available for model training, they 
provided a more nuanced depiction of pedestrian flow's impact 
on a building's cooling load, thereby enhancing prediction 
accuracy. 

C. Objective 

In addressing the challenges related to cooling load 
predictions, this study endeavors to develop a cooling load 
prediction model capable of application across different load 
modes throughout the entire cooling season. Utilizing a machine 
learning approach, this research exposes the potential bias in 
strategy guidance due to prediction inaccuracies, as evidenced 
by an evaluation index with practical significance, while 
concurrently constructing and validating the cooling load 
prediction model. This ongoing study draws insights from 
previous successful applications of KNN models in predicting 
cooling load for buildings, with a distinguishing feature being 
the incorporation of diverse datasets encompassing a broad 
spectrum of input variables about building geometry and glazing 
characteristics sourced from existing literature. The predictive 
capabilities of a single KNN model were rigorously assessed, 
and to enhance the training process, two distinct optimizers, the 
African Vultures Optimization (AVO) and the Sand Cat Swarm 
Optimization (SCSO), were introduced. Comprehensive 
performance evaluations of the three models, employing various 
metrics such as R2, RMSE, MSE, RAE, and PI were conducted 

to identify the most effective hybrid model for building cooling 
load prediction. This study makes several significant 
contributions to building energy management by developing a 
versatile cooling load prediction model applicable across 
different load modes throughout the cooling season. Utilizing a 
machine learning approach, it addresses potential biases in 
strategy guidance due to prediction inaccuracies and uniquely 
incorporates diverse datasets with a wide range of input 
variables related to building geometry and glazing 
characteristics. The introduction of advanced optimizers, AVO 
and SCSO, enhances the training process of the KNN models. 
These findings contribute to more energy-efficient and 
automated cooling system control strategies, advancing 
sustainability in building operations. 

II. MATERIALS AND METHODS 

A. Data Collection 

Ensuring data integrity is pivotal to the methodology of this 
study. The dataset employed for training, the intelligent models 
was derived from previous research [35, 36], offering critical 
information necessary for the implementation and assessment of 
the proposed techniques in predicting building cooling loads. 
This dataset consists of 768 samples, each encompassing eight 
key input parameters: relative compactness (RC), surface area 
(SA), wall area (WA), roof area (RA), overall height (OH), 
orientation (Or), glazing area (GA), and glazing area distribution 
(GAD). These parameters are vital for accurate model training 
and evaluation. Table I comprehensively summarizes the key 
criteria used for statistical analysis, including data averages, 
standard deviations, skew, median, minimum, and maximum 
values. The resulting output values span a considerable range, 
with the minimum recorded value being 10.9 and the maximum 
reaching 48.03. Notably, the average value for cooling stands at 
24.587. This value, representing the central tendency of the data, 
underscores the substantial nature of the cooling load 
measurements and emphasizes their significance within the 
scope of the research. 

B. Overview of Machine Learning Method and Optimizers 

1) K-Nearest Neighbor (KNN): The K-nearest neighbor 

(KNN) method is well-known for its simplicity, effectiveness, 

and ease of use [37]. KNN is versatile and can be employed for 

classification and regression tasks, sharing similarities with 

other methods such as artificial neural networks (ANN) and 

random forests (RF). The adoption of this technique comes with 

several benefits: 

a) It is simple and easily understandable, rendering it 

suitable for practical application. 

b) When applied in classification and regression tasks, it 

can learn non-linear decision boundaries, enhancing its 

versatility through the flexibility to adjust the K value for 

defining these boundaries. 

c) In contrast to certain other algorithms, KNN does not 

necessitate a dedicated training phase. 

d) The method relies on a single hyperparameter, denoted 

as 𝐾 , which streamlines the fine-tuning of other 

hyperparameters. 
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TABLE I.  THE STATISTICAL PROPERTIES OF THE VARIABLES 

Variables 
 Indicators 

Category Min Max Median Avg Skew. St. Dev. 

RC Input 0.62 0.98 0.75 0.764 0.496 0.106 

SA Input 514.5 808.5 673.75 671.70 -0.125 88.086 

WA Input 245 416.5 318.5 318.5 0.533 43.63 

RA Input 110.25 220.5 183.75 176.60 -0.163 45.165 

OH Input 3.5 7 5.25 5.25 -2.9E-19 1.751 

Or Input 2 5 3.5 3.5 1.45E-19 1.118 

GA Input 0 0.4 0.234 0.235 -0.060 0.133 

GAD Input 0 5 2.812 2.813 -0.089 1.55 

Cooling Output 10.9 48.03 24.588 24.587 0.396 9.51 
 

The core concept of KNN involves pinpointing a group of K 
samples, typically determined through a distance function, that 
displays closeness to unknown samples in the training dataset. 
This process entails the recognition of clusters of resembling 
samples. Following this, KNN computes the mean of response 
variables and contrasts the outcomes with those obtained from a 
set of K samples to establish the classes of unidentified samples 
[38]. Hence, the KNN algorithm's choice of the K value plays a 
vital role in determining its efficacy [39]. For this objective, 
three distance functions are employed in the context of 
regression tasks to calculate the distances between adjacent data 
points, as denoted by Eq. (1) to Eq. (3): 

𝐹(𝐸𝑢) = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑓

𝑖=0            (1) 

𝐹(𝑀𝑎) = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑓
𝑖=0           (2) 

𝐹(𝑀𝑖) = (∑ (|𝑥𝑖 − 𝑦𝑖|)
𝑑𝑓

𝑖=0 )
1

𝑑  (3) 

Within this framework, 𝐹(𝐸𝑢) corresponds to the Euclidean 
distance function, 𝐹(𝑀𝑎)  signifies the Manhattan distance 
function, and 𝐹(𝑀𝑖) stands as the Minkowski distance function. 
The variables 𝑥𝑖 and 𝑦𝑖  are specifically associated with the 𝑖𝑡ℎ 
dimension of data points x and y, while 𝑑 is utilized as an order 
parameter in the calculation of distances between these points. 

2) African Vultures Optimization (AVO): The African 

vulture optimization algorithm was introduced in a study by 

[40]. In the quest to identify the most proficient vultures in each 

category, the proposed solutions within the initial population 

undergo an initial assessment for suitability. The top-

performing solution is the optimal choice for the group, both in 

the initial and subsequent iterations. It's worth emphasizing that 

the fitness of all populations requires periodic reassessment in 

each iteration. Furthermore, the remaining solutions are 

determined using the following approach: 

𝐺(𝑖) = {
𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒𝑖  𝑖𝑓 ℎ𝑖 = 𝑎
𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒2 𝑖𝑓 ℎ𝑖 = 𝑏

              (4) 

Both 𝑎 and 𝑏 fall within the interval of (0, 1). 

Applying a roulette wheel approach is a method utilized to 
select a potential optimal solution. This technique provides a 

systematic means to pinpoint the most appropriate solution, and 
the process is elucidated as follows:  

ℎ𝑖 =
𝑘𝑖

∑ 𝑘𝑖
𝑛
𝑖=1

             (5) 

In cases where 𝑏 is smaller than a, implementing the AVOA 
may lead to a potential increase in degradation. Conversely, 
even when a is less than b, the AVOA could yield varying 
results. To transition from the exploration stage to the 
exploitation stage, Eq. (6) is utilized: 

𝐾 = (2 × 𝑟𝑎𝑛𝑑1 + 1) × 𝑦 × (1 −
𝐼𝑡𝑒𝑟𝑖

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)     (6) 

𝐵 stands for the hunger level. 

𝐼𝑡𝑒𝑟 signifies the presence of multiple iterations. 

𝑟𝑎𝑛𝑑1 and 𝑦 denote random numbers generated in [0 − 1]. 

𝑀𝑎𝑥𝐼𝑡𝑒𝑟  represents an integer value that indicates the 
maximum number of iterations. 

When K falls within the range of values greater than 1 but 
less than 1, the African vulture optimization algorithm 
commences the search phase. In contrast, if K is less than 1, the 
AVOA algorithm transitions to the exploitation phase, 
resembling the behavior of a vulture scavenging for nearby food. 

During the exploration phase in AVOA, the vulture employs 
two techniques to explore distinct regions. If the random number 
generated by randh1  is greater than or equal to the ℎ1 

parameter, it opts for Eq. (7) (a). Conversely, if the random 
number produced by 𝑟𝑎𝑛𝑑ℎ1  is less than the ℎ1  parameter, it 

selects Eq. (8). The vulture's movement during this phase can be 
elucidated as follows: 

𝑉(𝑖 + 1) =

{
 
 

 
 𝐺(𝑖) − 𝑄(𝑖) × K  

 𝑖𝑓 ℎ1 ≥ 𝑟𝑎𝑛𝑑ℎ1 ,   (𝑎)

𝐺(𝑖) − 𝐾 + 𝑟𝑎𝑛𝑑2((𝑢𝑐 − 𝑙𝑐) × 𝑟𝑎𝑛𝑑3 + 𝑙𝑐)

 𝑖𝑓 ℎ1 < 𝑟𝑎𝑛𝑑ℎ1 ,   (𝑏)

 (7) 

𝑄(𝑖) = |𝑋 × 𝐺(𝑖) − 𝑉(𝑖)|       (8) 

𝑉(𝑖) indicates the current vector denoting the vulture's 
position. 

𝑉(𝑖 + 1)  represents the vector signifying the vulture's 
position in the subsequent iteration. 
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K stands for the level of satisfaction or contentment among 
the vultures. 

𝑢𝑐 𝑎𝑛𝑑 𝑙𝑐 refer to the upper and lower boundaries or limits 
of the variable, respectively. 

𝑟𝑎𝑛𝑑 represents a random number falling within the range 
of 0 to 1. 

𝑋  symbolizes the unpredictable or random movement 
executed by the leading vulture. 

Introducing more randomness is achieved through the 
utilization of 𝑟𝑎𝑛𝑑2 . This results in an elevated degree of 
unpredictability at the environmental level, fostering diversity 
and safeguarding distinctive attributes across various domains. 

When K falls below 1 in the AVOA algorithm, it transitions 
into an exploitation phase comprising two segments, each 
featuring two unique procedures. The choice of which procedure 
to employ within each segment is made in a deterministic 
manner, depending on the parameters ℎ2 and ℎ3. Two distinct 
rotation flight procedures are executed in the initial segment to 
avoid conflicts. Furthermore, ℎ2  determines the selection rate 

for each strategy; if  𝑟𝑎𝑛𝑑ℎ2  is greater than or equal to ℎ2, it 

carries out the stall and outbound strategy, whereas if the 
random number is less than the ℎ2  parameter, it opts for the 
rotational flight process. 

𝑉(𝑖 + 1) = {

𝑄(𝑖) × (𝐾 + 𝑟𝑎𝑛𝑑4) − 𝑐(𝑡)

 𝑖𝑓 ℎ3 ≥ 𝑟𝑎𝑛𝑑h2   (𝑎)

𝐺(𝑖) − 𝑉(𝑖)
   𝑖𝑓  ℎ3 < 𝑟𝑎𝑛𝑑ℎ2   (𝑏)

       (9) 

𝑐(𝑡) = 𝐺(𝑖) − 𝑉(𝑖)            (10) 

𝐺(𝑖) represents the vector's position. 

𝑟𝑎𝑛𝑑4 is a random number in [0 −  1]. 

To apply this method, the process starts with calculating the 
distance between the vulture and one of two vests using Eq. (8). 
Subsequently, a spiral equation is derived among the vultures, 
with their movement being directed by the parameter B, as 
outlined in Eq. (11): 

𝐾 = 𝑉(𝑖) × (
𝑟𝑎𝑛𝑑5×𝐺(𝑖)

2𝜋
) × cos(ℎ(𝑖))   (11) 

𝑟𝑎𝑛𝑑5  represents a randomly generated number. 

When K drops below 0.5, the AVOA proceeds into its 
second exploitation phase. If the random value generated by 
randh3  matches or exceeds the h3  the vultures engage in 

collection strategies, including training on various food sources. 
In case the random number produced by randh3  is less than the 

h3 parameter, alternative strategies are activated as defined in 
Eq. (12) and Eq. (13): 

𝑈1 = 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖) −
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖)×𝑉(𝑖)

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖)×𝑉(𝑖)
2 × 𝐾 (12) 

𝑈2 = 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖) −
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖)×𝑉(𝑖)

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖)×𝑉(𝑖)
2 × 𝐾 (13) 

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖)  and 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖)  signify the top-
performing vultures in the first and second groups, respectively. 

In the ultimate phase of the African vulture optimization 
algorithm, all vultures congregate as per the steps in Eq. (14) 
(a). In this stage, vultures may experience conflicts and 
disputes as they encircle one another, as illustrated in Eq. (14) 
(b). 

𝑉(𝑖 + 1) =

{

(𝑈1+𝑈2)

2
                                         𝑖𝑓 ℎ𝑎 ≥ 𝑟𝑎𝑛𝑑ℎ3    (𝑎)

𝐺(𝑖) − |𝑐(𝑡)| × 𝐾 × 𝐿(𝑐)            𝑖𝑓 ℎ𝑎 < 𝑟𝑎𝑛𝑑ℎ3    (𝑏)
  (14) 

Levy Flight (L) is introduced to bolster the efficiency of the 
African vulture optimization algorithm, as detailed in Eq. (15). 
It is coupled with Eq. (14) (b) to replicate the conflicts and 
clashes that can take place among the vultures in the algorithm's 
concluding stage. 

𝐿(𝑑) = 0.01 ×
𝑦×𝛿

|𝑤|1/𝑎
                   (15) 

𝛿 = (
𝜏(1+𝑏)×sin(

𝜋𝑏

2
)

𝜏(1+2𝑏)×𝑏×2×
(𝑏−1)

2

)

1/𝑏

    (16) 

d represents the dimensionality of the issue, signifying the 
count of variables or dimensions in question. 

𝑏 is a constant set at a fixed value of 1.5. 

𝑦 represents random numbers in the range of 0 to 1. 

The essential stages of the African vulture optimization 
algorithm are expounded through pseudo-code in Algorithm 1. 

Algorithm 1: Pseudo-Code of AVOA Algorithm 

Inputs: The population size N and maximum number of iterations 

T 

Outputs: The vulture's position and its associated fitness value 

Initialize the random population ℎ𝑖 (𝑖 =  1,2, . . . , 𝑁) 
while (stopping condition is not met) do 

Calculate the fitness values of the vulture 

Set hBestVulture1 as the location of Vulture (First best location 

Best Vulture Category 1) 

Set hBestVulture2 as the location of Vulture (Second best location 

Best Vulture Category 2) 

for (each vulture (ℎ𝑖)) do 

Select 𝐺(𝑖) 
Update the K  

if (|𝐾|  ≥  1) then 

if (ℎ1  ≥  𝑟𝑎𝑛𝑑ℎ1) then 

Update the location of the vulture  

else 

Update the location of Vulture  

if (|𝐾|  <  1) then 

if (|𝐾|  ≥  0.5) then 

if (ℎ2  ≥  𝑟𝑎𝑛𝑑ℎ2) then 

Update the location of the vulture  

else 

Update the location of the vulture  

else 

if (ℎ3 ≥ 𝑟𝑎𝑛𝑑ℎ3)  then 

Update the location of the vulture  

else 

Update the location of the vulture  

Return hBestVulture1 
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3) Sand Cat Swarm Optimization (SCSO): The SCSO 

algorithm, whole in study [41], takes cues from the foraging 

actions of desert-dwelling sand cats. These exceptional felines 

have a distinctive skill for identifying low-frequency sounds, 

allowing them to pinpoint prey regardless of whether it is 

positioned above or below the surface. The algorithm's core 

concept focuses on identifying the best point within an 

exploration area, much like prey in the natural hunting 

environment of a sand cat. To achieve this objective, the 

algorithm utilizes a search agent that consistently explores the 

search area by periodically updating its position, gradually 

moving toward the estimated location of the best value. The 

SCSO algorithm is intricately organized, consisting of two core 

components: a prey-locating mechanism and a prey-capturing 

mechanism. The prey-locating method imitates how sand cats 

hunt for prey in their natural habitat, guided by a mathematical 

equation defining the population's search patterns. This formula 

reflects the combined behaviors of sand cats as they explore 

their surroundings in search of potential objectives, serving as 

the algorithm's fundamental approach to optimization and 

identifying the sought-after solution within the exploration 

area. 

�⃗�(𝑡 + 1) = 𝑟. �⃗�𝑏(𝑡) − 𝑟𝑎𝑛𝑑(0,1). �⃗�𝑐(𝑡)       (17) 

�⃗�  depicts the search agent's positional vector. 

𝑡  indicates the iteration number for the present cycle. 

�⃗�𝑏(𝑡) denotes the location of the top contender during 
iteration 𝑡 

�⃗�𝑐(𝑡)  represent the recent place of the hunt agent at 
repetition 𝑡. 

𝑟  signifies the scope of sand cats' receptiveness to low-
pitched sounds, and this receptiveness may be elucidated as 
follows: 

𝑟 =  𝑟𝐺 × 𝑟𝑎𝑛𝑑(0,1)    (18) 

𝑟𝐺  indicates the overall responsiveness span, which 
diminishes linearly from 2 to 0. Eq. (19) may be expounded 
upon as follows: 

𝑟𝐺 = 𝑠𝑀 − (
𝑠𝑀×𝑖𝑡𝑒𝑟𝑐

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)                (19) 

𝑖𝑡𝑒𝑟𝑐  symbolizes the present rendition, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  embodies 
the ultimate count of iterations. Furthermore, considering that 
sand cats detect low frequencies of 2 𝑘𝐻𝑧, the magnitude of 𝑠𝑀 
is adjusted to 2. 

The SCSO procedure commences the predator assault stage 
upon the culmination of the prey exploration, and the sand cats' 
populace predator attack mechanism can be elucidated as below: 

�⃗�𝑚𝑑 = |𝑟𝑎𝑛𝑑(0,1). �⃗�𝑏(𝑡) − �⃗�𝑐(𝑡)|              (20) 

�⃗�(𝑡 + 1) = �⃗�𝑏(𝑡) − 𝑟. �⃗�𝑏(𝑡). 𝑐𝑜𝑠(𝜃) (21) 

𝜃  symbolizes an arbitrary angle spanning from 0  to 360 
degrees. Consequently, the trigonometric function  𝑐𝑜𝑠(𝜃) 
produces values within the interval of −1 to 1. 

�⃗�𝑚𝑑   alludes to the position that is created through a 
combination of the optimal position and the present position. 

By employing this strategy, each individual within the 
populace can travel along unique circular paths. Every sand 
feline picks a haphazard azimuth, allowing them to navigate 
away from localized optimal snares as they draw near the 
quarry's position. The stochastic angle delineated in Eq. (21) is 
pivotal in shaping the agent's pursuit and exploration trajectory. 

The SCSO algorithm balances the discovery and 
exploitation stages using a flexible parameter called vector 𝑟. 
This parameter can be expounded upon as follows: 

𝑅 = 2 × 𝑟𝐺 × 𝑟𝑎𝑛𝑑(0,1) − 𝑟𝐺          (22) 

𝑟𝐺   decreases gradually from 2 to 0 in a linear manner as 
iterations advance. The modified description of the sand cat's 
locations during both the investigative and exploitation stages 
can be articulated below: 

�⃗�(𝑡 + 1) = {
𝑟. (�⃗�𝑏(𝑡) − 𝑟𝑎𝑛𝑑(0,1). �⃗�𝑐(𝑡))               |𝑅| > 1

�⃗�𝑏(𝑡) − 𝑟. �⃗�𝑏(𝑡). 𝑐𝑜𝑠(𝜃)                         |𝑅| ≤ 1
 (23) 

Within the SCSO algorithm, the exploration operative 
commences an assault on the target quarry once the absolute 
magnitude of 𝑅  falls beneath or equals 1 . In these cases, 
where |𝑅| > 1,  

the exploration operative transitions into a worldwide 
exploration mode, scrutinizing for conceivable resolutions 
across an extended spectrum. Notably, every unique sand cat 
individual holds a different exploration scope in the 
investigative stage, thus averting the algorithm from becoming 
entangled in localized optimal solutions. 

Pseudo-code illustrates Algorithm 2 [42]. 

Algorithm 2: Pseudo-code of SCSO Algorithm 

Commence the population setup. 

Compute the fitness metric. 

Commence the 𝑟; 𝑟𝐺; R 

while (𝑡 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥) do  

for each agent do 

Obtain an arbitrary angle (0 ◦ ≤  𝜃 ≤  360 ◦)  

if (|𝑅| ≤ 1) then 

Update the search operative's location  

else 

Update the search operative's location 

end if  

end for 

𝑡 = 𝑡 + 1 

end while 

C. Research Methodology 

This research aims to develop an accurate and reliable model 

for predicting building cooling load consumption using 

advanced machine learning techniques. The process involves 

several systematic steps, from data preparation and model 

development to performance evaluation and optimization. To 
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make it easier for readers to understand the methodology and 

replicate the results, the steps are outlined clearly and concisely 

as follows: 

1) Data collection and preparation: Source the Dataset: 

Collect a dataset from previous research containing 768 

samples with eight input variables related to building geometry 

and glazing characteristics. 

Split the Dataset: Divide the dataset into training (70%), 
validation (15%), and testing (15%) sets. 

2) Model development 

Base KNN Model: Develop a basic K-nearest neighbors 
(KNN) model using the training dataset. 

Optimize the KNN Model: 

African Vultures Optimization (AVO): Apply AVO to the 
KNN model to create the KNAV model. 

Sand Cat Swarm Optimization (SCSO): Apply SCSO to the 
KNN model to create the KNSC model. 

3) Model training 

Train the Base Model: Train the KNN model using the 
training dataset. 

Train the Optimized Models: Train the KNAV and KNSC 
models using the optimized parameters derived from AVO and 
SCSO, respectively. 

4) Model validation 

Validate Performance: Use the validation dataset to evaluate 
the performance of the KNN, KNAV, and KNSC models. 

Adjust Parameters: Fine-tune model parameters based on 
validation results to enhance performance. 

5) Model testing and evaluation 

Test the Models: Assess the performance of the KNN, 
KNAV, and KNSC models using the testing dataset. 

Evaluate Using Metrics: Utilize various metrics such as R², 
RMSE, MSE, RAE, and PI to compare the performance of the 
three models. 

Analyze Results: Identify the most effective model based on 
the evaluation metrics. 

Fig. 1 illustrates the schematic presentation of the research 
methodology. 

D. Performance Evaluation Metrics 

The dataset was partitioned into three subsets: training, 
validation, and testing. The models' performance was rigorously 
evaluated through a thorough analysis of various metrics, 
encompassing R2  (coefficient of determination), RMSE (Root 
Mean Square Error), MSE (Mean Square Error), RAE (Relative 
Absolute Error), and PI (Prediction Interval). The criteria for 
evaluating model performance are defined by the following 
parameters, as summarized below: 

R2 = (
∑ (Ai− A̅)(Bi−B̅)
n
i=1

√[∑ (Ai−B̅)
2n

i=1 ][∑ (Bi−B̅)
2n

i=1 ]
)

2

           (24) 

RMSE = √
∑ (Bi−Ai)

2n
i=1

n
               (25) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝐵𝑖 − 𝐴𝑖)

2𝑛
𝑖=1                  (26) 

𝑅𝐴𝐸 = ∑
|𝐴𝑖−𝐵𝑖|

|𝐴𝑖−�̅�|

𝑛
𝑗=1             (27) 

𝑃𝐼 = �̅�2 ± 𝑡(𝛼/2,   𝑁−2) ∗ 𝑘
2                (28) 

 
Fig. 1. Schematic presentation of the research methodology. 
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𝑛: The total number of data points. 

Ai: The test results for individual data points. 

Bi: The predicted results for individual data points. 

A̅: The average of the test result values. 

B̅: The average of the prediction result values. 

𝑘2: The standardized error value pooled across both groups. 

x̅₁ and x̅₂: These are the sample means for the two groups 
under comparison. 

t(α/2,   N−2): The t-value for the desired level of confidence 

(𝛼) and the degrees of freedom (N-2). 

III. RESULTS AND DISCUSSION 

Table II provides a comprehensive evaluation of model 
accuracy based on performance metrics, encompassing R2 , 
RMSE, MSE, RAE, and PI for all prediction models applied to 
cool load estimation across the training, validation, testing, and 
all datasets: The KNSC hybrid model demonstrates impressive 
performance, with maximum R2 values of 0.985 for training and 
0.983 for all data. Although R2 values in the testing phase are 
slightly lower, approximately 1%, compared to training, the 
models still maintain strong alignment with the dataset, 
indicating robust predictive capabilities. The KNSC model also 
stands out with a minimal PI value of 0.023, reflecting reduced 
prediction uncertainty. In contrast, the KNN model has the 
highest PI value of 0.045 in the validation phase. Analysis of 
error values reveals the KNSC model's superior performance, 
with the lowest RMSE = 1.142, MSE = 1.304, values observed 
during training, and RAE = 28.03 value observed during the 
validation phase. This evidence underscores the KNSC hybrid 
model's high accuracy. 

After a thorough comparison between the KNSC as the 
optimal model, the single KNN model, and the KNAV as 
another hybrid model, the observations from Fig. 2 and Fig. 3 
lead to the following discernment: The KNSC model showcases 
superior performance by concentrating predicted cooling load 
values more closely around the central line. In contrast, the 
single KNN model displays a broader dispersion of data beyond 
the acceptable range of a ±15%  underestimation and 
overestimation. Additionally, the KNSC model demonstrates a 
stronger alignment between observed and predicted cooling load 
values. The KNSC model, demonstrating slightly superior 
performance to KNAV, exhibits minimal disparity between the 
observed and forecasted data points. As previously discussed, 
this model also achieved a superior R2  compared to other 
models, affirming its excellence in comparison to the other 
models. 

In Fig. 4 and Fig. 5, two distinct visualization formats 
illustrate the error values of three models (KNSC, KNAV, and 
KNN). The histogram plot featured in Fig. 4 delineates the 
frequency distribution of error values across the developed 
models. The KNN model exhibits a notably higher 
concentration of errors near zero per cent, with approximately 
135 values falling within this range. In contrast, the KNSC 
model registers 70 such values, while the KNAV model records 
45. Based on the proximity of the error values to zero, it becomes 
evident that the KNSC model outperforms other models. In Fig. 
5, each model has a unique Y graph, which is specified 
according to the color of the train part. Upon initial inspection, 
it is discernible that the single KNN model exhibits the highest 
error range, spanning from -20% to +30%, indicating the 
model's weak performance. Moreover, it is worth highlighting 
that the KNSC model exhibits the most minimal error values, as 
evidenced by metrics such as RMSETrain =1.142, 
MSETrain=1.304 and RAEValidation=28.03, as presented in Table 
II. 

TABLE II.  THE RESULT OF DEVELOPED MODELS FOR KNN 

Model Index values 
Phase 

Train Validation Test All 

KNN 

RMSE 1.700 2.174 1.989 1.824 

R2 0.967 0.953 0.956 0.963 

MSE 2.891 4.727 3.957 3.326 

RAE 326.03 39.66 45.36 439.65 

PI 0.035 0.045 0.041 0.037 

KNSC 

RMSE 1.142 1.509 1.494 1.261 

R2 0.985 0.978 0.977 0.983 

MSE 1.304 2.278 2.231 1.589 

RAE 161.12 28.03 36.01 233.49 

PI 0.023 0.031 0.030 0.026 

KNAV 

RMSE 1.456 1.842 1.828 1.579 

R2 0.977 0.967 0.965 0.973 

MSE 2.120 3.393 3.343 2.494 

RAE 294.97 35.84 34.61 394.87 

PI 0.030 0.038 0.037 0.032 
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Fig. 2. Scatter plot for developed models. 
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Fig. 3. Comparison of measured and predicted values. 

  

 
Fig. 4. Error percentage for the models based on the Histogram Distribution plot. 
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Fig. 5. Line symbol plot for errors in the developed models. 

 Comparison between the results of present study and 
previous publications. 

Several studies have investigated cooling load prediction. 
Afzal et al. [43] utilized the MLP model, while Gong et al. [44] 
applied the GPR technique. According to Table III, Gong et al. 
[44] demonstrated superior performance with the GBM model, 
achieving an R² value of 98.82% and an RMSE of 0.1929. In 
this study, the foundational framework of the KNN model was 
adopted and enhanced by hybridizing it with SCSO and AVO 
algorithms. Upon evaluation, the integration of SCSO into the 
KNN model proved exceptionally effective, achieving an R² 
value of 98.5% and an RMSE of 1.142, outperforming the other 
models in this study. 

TABLE III.  COMPARISON BETWEEN THE RESULTS OF THIS STUDY WITH 

PREVIOUS ARTICLES 

Author(s) Reference Model 
Results 

R2 RMSE 

Gong et al. [43] GBM 98.82% 0.1929 

Afzal et al. [44] MLP 98.06% 1.4122 

Present study KNN+SCSO 98.5% 1.142 

IV. CONCLUSION 

In summary, this research substantially contributed 
substantially to energy efficiency and sustainable building 
practices. It introduced innovative machine learning techniques, 
specifically incorporating K-nearest neighbors (KNN) models, 
which included a conventional model, an optimized version 
utilizing African Vultures Optimization (KNAV), and another 
optimized through Sand Cat Swarm Optimization (KNSC). 
These methodological strategies collectively addressed the 
crucial challenge of accurately predicting cooling load in 
building applications. Through a comprehensive analysis of 
input variables and a meticulous evaluation of model 
performance, the study emphasized the reliability and 
superiority of the KNSC hybrid model. The KNSC model 

achieved the highest coefficient of determination (R2) at 0.985, 
surpassing the KNN and KNAV models by 1.86% and 0.81%, 
respectively. Additionally, it exhibited a significantly reduced 
root mean square error (RMSE) of 1.143, representing a 32.8% 
improvement compared to KNN and a 21.5% improvement 
compared to KNAV. These results underscored the KNSC 
hybrid model's capacity to revolutionize energy planning, 
enabling optimized energy production, distribution, and 
consumption within building systems. Consequently, this study 
propelled the field of predictive modeling for energy 
consumption at the time, offering a promising pathway toward 
more sustainable building practices and a greener future where 
the principles of energy efficiency and environmental 
preservation took precedence. 
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