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Abstract—In this paper, we propose the FEC-IGE framework
includes data preprocessing, data augmentation, transfer learn-
ing, and fine-tuning of the pre-trained model of convolutional
neural network (CNN) architecture for the problem of bone frac-
ture classification. Bone fractures are a widespread medical issue
globally, with a significant prevalence and imposing substantial
burdens on individuals and healthcare systems. The impact of
bone fractures extends beyond physical injury, often leading to
pain, reduced mobility, and decreased quality of life for affected
individuals. Moreover, fractures can incur substantial economic
costs due to medical expenses, rehabilitation, and lost productiv-
ity. In recent years, progress in machine learning methodologies
has exhibited potential in tackling issues pertaining to fracture
diagnosis and classification. By harnessing the capabilities of
deep learning frameworks, scholars aspire to design precise and
effective mechanisms for automatically detecting and classifying
bone fractures from medical imaging data. In this study, FEC-
IGE framework has demonstrated its potential and strength
when applied models pre-trained of CNN architecture in the
task of classifying X-ray bone fracture images with accuracies
of 98.48%, 96.92%, and 97.24% in three experimental scenarios.
These outcomes are the consequence of the model’s fine-tuning
and transfer learning procedures applied to an enhanced dataset
including 1129 X-ray pictures classified into ten different kinds of
fractures: avulsion fracture, comminuted fracture, fracture dislo-
cation, greenstick fracture, hairline fracture, impacted fracture,
longitudinal fracture, oblique fracture, pathological fracture, and
spiral fracture. To increase transparency and understanding of
the model, Integrated Gradients explanation was also applied
in this study. Finally, metrics including precision, recall, F1
score, precision, and confusion matrix were applied to evaluate
performance and other in-depth analysis.
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I. INTRODUCTION

The musculoskeletal system, consisting of bones, muscles,
and connective tissue, plays an important role in supporting the
structure of the body and facilitating movement [1]. The human
skeleton is a complex framework, providing protection for vital
organs and serving as a fulcrum for muscles and ligaments
[2]. Despite its resilience, the skeletal system is susceptible to
various disorders and injuries, with fractures being one of the
most common musculoskeletal injuries worldwide. Fractures
occur when bones are subjected to excessive force or pressure,
causing them to break or crack. Fractures can be classified
based on severity, location, and whether the bone breaks

through the skin (open fracture) or remains in tissue (closed
fracture). Common types of fractures include stress fractures
[3], hairline fractures, and compound fractures. Each type has
distinct symptoms and treatments. Symptoms of a fracture
may include localized pain, swelling, bruising, deformity, and
impaired mobility, depending on the location and extent of
the injury. Early detection and appropriate management of
fractures is essential to promote optimal wound healing and
prevent long-term complications, highlighting the importance
emphasized by medical professionals [4].

A considerable percentage of health impacts are linked to
bone fractures, as evidenced by the study [5], which examined
2,625,743 death certificates and found that 2.2% of them had
a reference of a bone fracture. The statistics provided are
based on data from the Global Burden of Disease Study 2019
(GBD 2019 Fracture Collaborators, 2021) [6]. The prevalence
of bone fractures is a significant global health concern, with
data indicating a steady increase in incidence over the years.
According to the Global Burden of Disease Study 2019,
there were approximately 178 million new cases of bone
fractures worldwide in 2019, representing a significant increase
of 33.4% since 1990. Moreover, an estimated 455 million
individuals experienced acute or chronic symptoms associated
with bone fractures, reflecting a substantial rise of 70.1% over
the same period. The study also revealed that the burden
of bone fractures varied across different age groups, with
older adults being disproportionately affected. Specifically,
individuals aged 95 years and older had the highest age-
specific incidence rate of bone fractures, with 15,381.5 cases
per 100,000 population. Furthermore, the consequences of
bone fractures extend beyond physical discomfort, contributing
to years lived with disability (YLD). In 2019, bone fractures
resulted in approximately 25.8 million YLD globally, reflecting
a 65.3% increase since 1990. These findings underscore the
urgent need for comprehensive preventive measures and access
to timely screening and treatment interventions to mitigate the
overall burden of bone fractures on public health.

Radiography, another name for X-ray imaging [7], is essen-
tial for the diagnosis of bone fractures, which are a prevalent
musculoskeletal ailment that afflicts people of all ages all over
the world. By releasing electromagnetic radiation that enters
the body and produces pictures dependent on the density of the
tissues it encounters, X-ray scans offer precise representations
of bone formations. Because bones absorb more X-rays than
soft tissues, they show up in X-ray pictures as white regions,
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whereas the latter show various degrees of gray. The fact that
X-ray imaging is used in clinical settings so often highlights
how crucial it is for identifying fractures, determining how
serious they are, and directing medical interventions.

Despite its effectiveness, conventional X-ray interpretation
relies heavily on the expertise of radiologists and may be
prone to errors or delays in diagnosis. As a result, there is a
growing interest in leveraging advancements in machine learn-
ing techniques, such as transfer learning [8] and fine-tuning
[9], to enhance fracture detection and classification accuracy.
Transfer learning permits models pre-trained on expansive
datasets to be adjusted to unused errands with restricted labeled
information, making it well-suited for therapeutic imaging
applications where clarified datasets may be rare. Fine-tuning
pre-trained models by altering their parameters to superior
adjust with the particular characteristics of the target errand,
in this manner progressing execution. In their study, Huong
Hoang Luong et al. [10] applied transfer learning with fine-
tuning in the tasks of classifying abnormal and normal bones
in the wrist, humerus, and elbow. By incorporating these
machine learning approaches into the interpretation of X-
ray images, clinicians can benefit from improved diagnostic
accuracy, reduced interpretation time, and enhanced patient
care in the diagnosis and management of bone fractures.

Convolutional Neural Networks (CNN) [11] have revo-
lutionized the field of computer vision by enabling high-
performance image recognition tasks. These networks are
composed of multiple layers, including convolutional layers,
pooling layers, and fully connected layers. Some popular
CNN architectures that are powerful in the field of medical
image analysis, allowing accurate and efficient diagnosis of
various types of bone fractures, include AlexNet [12], VGG
[13], MobileNet [14], ResNet [15], and EfficientNet [16].
These architectures vary in terms of depth, width, and com-
plexity, with each designed to address specific challenges in
image classification, object detection, or segmentation tasks.
In particular, EfficientNet stands out as an efficient and high-
performance CNN architecture with a relatively smaller model
size compared to traditional networks. It introduces a novel
compound scaling method that uniformly scales network depth,
width, and resolution with a set of fixed scaling coefficients.
This approach allows EfficientNet to achieve state-of-the-art
performance with significantly fewer parameters compared to
other architectures, making it a compelling choice for various
computer vision applications.

In this investigation, the Integrated Gradients explanation
will be utilized. Proposed by Sundararajan et al. [17], In-
tegrated Gradients are employed to elucidate the predictions
generated by our machine learning algorithm. In the context
of medical diagnosis, such as classifying bone fracture im-
ages from X-ray images, transparency and interpretability are
crucial to ensuring the reliability and accuracy of the model’s
decisions. By integrating Integrated Gradients into bone frac-
ture classification applications, we enhance the interpretability
of the model’s predictions, thereby facilitating better decision-
making and fostering user confidence. As demonstrated by
previous studies [18] [19], the use of Integrated Gradients
has proven effective in enhancing the transparency and in-
terpretability of machine learning models in various medical
imaging tasks.

In this study, we propose the FEC-IGE framework which
is a combination of the words Fracture problem, Efficient
method, Classification and Integrated Gradients Explana-
tion for the fracture prediction problem. Additionally, we
also implemented five popular CNN models (EfficientNetB3,
ResNet50, VGG16, MobileNet và InceptionV3) into the FEC-
IGE framework to evaluate the effectiveness of our proposed
framework. We introduce three scenarios to assess the efficacy
of the 10-class categorization of the dataset. The categorization
involving avulsion fracture, comminuted fracture, fracture dis-
location, greenstick fracture, and hairline fracture was executed
under the initial scenario. The subsequent scenario involves
the classification of impacted fracture, longitudinal fracture,
oblique fracture, pathological fracture, and spiral fracture. The
ultimate scenario entails the classification of all aforemen-
tioned 10 classes. The rationale behind the implementation
of these three scenarios is to ascertain the effectiveness of
the proposed model in classifying varying numbers of classes
simultaneously.

The contributions of the research are:

• We propose the FEC-IGE framework including steps
of data pre-processing, data augmentation, transfer
learning, fine-tuning the pre-trained model CNN archi-
tecture, and visual explanation to classify 10 classes
of fracture. Based on the augmented dataset, the
results obtained are promising compared to other CNN
architectures with up to 94.19% accuracy. By applying
the techniques in the proposed that framework, we
achieve promising results, outperforming other pre-
trained models with an accuracy of up to 98.48%
- 96.92% - 97.24% in three scenarios. This demon-
strated the effectiveness of our proposed FEC-IGE
framework in the image classification task.

• Proving that the proposed model (EfficientNetB3)
is more effective than the ResNet50, VGG16, Mo-
bileNet, and InceptionV3 models in the bone classi-
fication problem by deploying all five models in the
same situation.

• The empirical findings demonstrate the utility of Inte-
grated Gradients explanation in enhancing comprehen-
sion of a machine learning model’s decision-making
process through the assessment of individual feature
impact on model predictions. Integrated Gradients ex-
pound on the model at a local level, facilitating insight
into the influence of each feature on the model’s
predictive outcomes.

• Research results will benefit users in early clinical
work based on X-ray images. Physicians can benefit
from improved diagnostic accuracy, reduced interpre-
tation time, and enhanced patient care in the diagnosis
and management of fractures.

Our research report comprises five primary components.
Within this section, there is a provision of general information
regarding the study and an outline of the methodology devised
to address the specific challenge at hand. The references
to the relevant research can be found in Section II, with
the methodology aligning with the corresponding research
segment. Section III delineates all the methodologies utilized
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in this study. The forthcoming Section IV will delve into
the experiments, detailing the procedures followed and the
evaluation of the accuracy of the deep learning model. Section
V offers a discussion that synthesizes the data and information
gathered in support of the objectives of this paper. Lastly,
Section VI encapsulates our findings and scrutinizes the key
elements pertinent to the research.

II. RELATED WORKS

Previously, the classification and diagnosis of bone frac-
tures from X-ray images were mainly performed manually by
medical professionals. However, with the rapid advancement
of technology, artificial intelligence (AI) has emerged as a
valuable tool in supporting crack detection, data collection,
and classification. Recent studies, such as that of M. Jarke et
al. [20], highlighted the key role of AI paradigms in growing
capabilities across many domains. Furthermore, Muhammet
Emin Sahin et al. [21] conducted various machine learning
techniques using a dataset containing various bone types and
finally proposed a computer-aided diagnosis (CAD) system to
reduce the burden for doctors by identifying bone fractures
with high accuracy.

Fırat Hardalaç et al. [22] investigated the effectiveness of
deep learning models in detecting wrist fractures from X-ray
images, with a focus on enhancing diagnostic accuracy in
emergency care scenarios. Utilizing a comprehensive dataset
from Gazi University Hospital, the research evaluates twenty
fracture detection approaches employing various deep learning
algorithms, including Libra R-CNN, FSAF, Faster R-CNN,
Dynamic R-CNN, PAA, RegNet, RetinaNet, and DCN. Addi-
tionally, the study develops five ensemble models to fine-tune
detection performance, leading to the creation of the innovative
’wrist fracture detection-combo (WFD-C)’ model. The WFD-
C model achieves the highest detection accuracy, with an
average accuracy (AP50) of 86.39%, admitting its potential
to significantly improve fracture diagnosis in clinical settings.
Overall, this study has provided a lot of information from
different methods for bone fracture detection, as well as their
reputable data set. Although not as accurate as other studies, it
has created a premise for future research. Research by Saurabh
Verma et al. discussed in [23] focuses on the application of
deep learning, specifically transfer learning, in the detection of
open fractures using a limited medical imaging dataset. One of
the main challenges addressed in the study is the unavailability
of large datasets. To overcome this limitation, the authors used
augmented datasets to increase the orientation and number
of images. Deep learning-based CNN were used to overcome
the limitations of limited training data availability. The study
aimed to address the problem of open fracture detection using a
limited number of images by applying the Speeded Up Robust
Features (SURF) extraction tool to preprocessed radiographic
images. The results of the SURF extractor are then fed into
pre-trained models using transfer learning techniques. The pro-
posed system achieves a high accuracy of 98.8% in detecting
cracks from a given X-ray image. Comparative analysis shows
that transfer learning provides comparable or even superior
results compared to training models from scratch. However, the
study also acknowledges the potential limitations of transfer
learning, such as the vulnerability of overfitting with less
training data, and the impact of poor preprocessing, which
might lead to poor classification of data.

In 2023, research [24] by Mohamed A. Kassem et al.
introduces an accurate computer-aided diagnosis system based
on deep learning for pelvic fracture detection. In this study,
they built an XAI (Explainable AI) framework for pelvic
fracture classification. They used a dataset containing 876
X-ray images (472 pelvic fracture images and 404 normal
images) to train the model. In this study, feature extraction was
performed using GoogleNet, ResNet50, and AlexNet networks
and Grad-CAM to validate that appropriate input pelvic seg-
ments are being activated during classification according to the
relevant label. The results obtained were 98.5% for accuracy,
sensitivity, specificity, and precision. Although the research
achieved high accuracy and efficiency, the results were gen-
erated based on a rather modest data set, easily leading to
overfitting and only classifying fracture images and normal
images. Jichong Ying et al. [25] have trained several deep
learning architectures, notably Adapted ResNet50 with SENet
capabilities, to detect ankle fractures in a curated radiological
picture dataset. Furthermore, Grad-CAM visuals are utilized to
interpret model decisions. ResNet50 was tweaked with a higher
SENet capacity than previous models, attaining 93% accuracy.
Grad-CAM representations give extensive information about
the radiograph regions that are critical to the model’s decision-
making. Their study observed that the Adapted ResNet50
model upgraded with SENet capabilities performed pretty well
in identifying ankle fractures; nevertheless, we discovered that
accuracy might still be improved because this is just a matter
of defining a kind of ankle fracture.

A novel transfer learning strategy is presented by Zaenab
Alammar et al. [26] in an effort to get beyond the restric-
tions of transfer learning that are present in the ImageNet
dataset, which is located in a different domain. They sug-
gested a transfer learning technique that entails fine-tuning a
limited collection of annotated medical pictures to take use
of previously learned training information, after which deep
learning models are trained on many medical radiology images
pertaining to the wrist and humerus from the musculoskeletal
radiology (MURA) dataset. Their transfer learning approach
produced impressive outcomes for models that were trained.
The accuracy was 87.85%, the F1 score was 87.63%, and
the Cohen’s Kappa coefficient was 75.69% for the humerus
classification. Similarly, the accuracy was 85.58%, the F1 score
was 82.70%, and the Cohen’s Kappa coefficient was 70.46%
for wrist categorization. Visualization techniques, including
gradient-based layer activation heat maps (Grad-CAM) and
locally interpretable model-independent interpretation (LIME),
have provided additional evidence supporting the superior ac-
curacy of models trained with their Transfer Learning method
compared to ImageNet Transfer Learning. Bhan et al. [27]
employed feature fusion of deep learning techniques in a
related work to determine if the MURA dataset had fractures
or not; the five pre-trained models were MobileNetV2, ResNet-
50, ResNeXt-50, DenseNet-169, and VGG16, which were then
fused in this work. The feature-fusion strategy yielded 87.85%
accuracy and a Cohen’s Kappa of 75.72% for the humerus,
while the shoulder attained 83.13% accuracy and a Cohen’s
Kappa of 66.25%. Although the accuracy is not high, the
research has shown the performance of five separate model
types.

In the field of diagnosis using machine learning, research
by Huong Hoang Luong et al. contributed two important
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studies. In the study [28] Huong Hoang Luong et al. pro-
posed a method using k-means clustering algorithm to classify
MRI images of the brain into three different types of views
(horizontal, facial, and cupping) and combine a The Residual
Network (ResNet) was modified to diagnose three types of
brain tumors: glioma and meningioma, pituitary adenoma, and
identify tumor-free MRI images. The method was evaluated
on datasets from Nanfang Hospital and Tianjin University of
Medicine and Pharmacy Hospital, China, with MRI images.
Their results achieved a brain tumor classification accuracy
of 96%, the highest among the previously considered net-
works. In addition, they presented a model for classifying
and detecting benign, malignant, and normal breast cancer
that makes use of transfer learning and fine-tuning [29]. To
detect breast cancer and improve prediction accuracy, they
used transfer learning from a pre-trained MobileNet model
to train the suggested model. 780 ultrasound pictures make
up the dataset, which is divided into three categories: normal
breast (133 photos), malignant breast cancer (210 images), and
benign breast cancer (437 images). Applying the MobileNet
model’s transfer learning and fine-tuning procedures yields
good results, according to experimental data, with accuracy
values of 96.51%, 94.12%, and 90.60% for each of the three
situations. Besides, we also found a lot of their research on
classification and diagnosis problems with different models,
including UNET [30], MobileNet [31], and ViT [17]. These
studies contribute greatly to strengthening the direction of our
research.

In the realm of bone fracture diagnosis through machine
learning, a recent investigation conducted by Hoai Phuong
Nguyen et al. introduced a novel approach rooted in deep
learning for the identification of fractures within X-ray im-
ages of the humerus [32]. The study entailed the utilization
of a composite algorithm comprising YOLACT++ for im-
age segmentation and Contrast Limited Adaptive Histogram
Equalization for enhancing image contrast during X-ray image
preprocessing. Subsequently, the YOLOv4 model underwent
training on a limited dataset employing four distinct data
augmentation methods to detect and pinpoint fractures in X-
ray images, culminating in an optimal performance of 81.91%
with their devised technique. Furthermore, empirical findings
validate the superiority of their approach over the Faster-
RCNN solution when applied to constrained datasets. The re-
search also underscores the necessity for further enhancements
in the model to attain superior accuracy levels compared to
commonly used models.

The present literature review is centered on the significant
challenge presented by the dearth of annotated data within the
medical sector, impeding the realization of the full potential
and efficacy of machine learning. Previous research efforts
primarily focused on the identification of singular or a small
number of fracture categories, posing a challenge in disease
diagnosis given the extensive array of fracture types requiring
identification. It is this particular challenge that served as
the impetus behind the primary aim of this study: to ex-
plore methodologies for enhancing performance levels under
constrained data conditions in the realm of medical machine
learning, while achieving precise identification of an expanding
range of fracture variations.

III. METHODOLOGY

A. The Methodology for Research Implementation

Overall, the framework FEC-IGE, which comprises 11
processes, was employed in this study to create the results;
the primary processes are depicted in Fig. 1. The steps are
described in more detail below:

Fig. 1. The proposed FEC-IGE architectural framework.

1) Data collection: The selection of a suitable dataset
is critical in the field of machine learning since
it has a direct influence on model performance
and generalization. In the context of bone fracture
detection, selecting the appropriate dataset allows
researchers to create models that can accurately
identify fractures, allowing for faster diagnosis and
treatment planning.

2) Pre-processing Data: Uses preprocessing methods,
such as scaling input to 224x224 and changing
brightness and contrast, to improve the quality and
visibility of fracture images, making them more
acceptable for future classification tasks.

3) Divide the dataset into three categories: Training,
validation, and testing: TA test set of 10% of the data
is used to evaluate the final model’s performance on
previously unknown data. Meanwhile, the validation
set uses 10% of the data to evaluate training
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progress and fine-tune the model to avoid overfitting.
The remaining 80% constitutes the training set,
encompassing all data utilized in training the model.
Stratified splitting ensures that each subset maintains
a balanced representation of classes, facilitating
effective model training, validation, and evaluation.

4) Data Augmentation: To enhance the dataset,
introduce diversity, establish reliability, and avoid
overfitting, a range of data augmentation techniques
are employed. Among the augmentation methods
employed are RandomFlip, RandomContrast, and
RandomRotation from the Keras library’s Image
augmentation layers. These approaches effectively
expand the dataset without requiring additional data
collection efforts.

5) Building the model: To conduct experiments, we
adapted the EfficientNetB3 model architecture,
leveraging its efficient and powerful convolutional
neural network (CNN) architecture. We retained the
core processing layers of the EfficientNetB3 model
while making the necessary adjustments to optimize
its performance for our specific task. This tailored
approach allowed us to achieve exceptional results
during training and testing using Keras’s model
library.

6) Applying Transfer Learning: Transfer learning
enables the application of previously learned
models for comparable tasks, such general picture
categorization. These models have learnt fundamental
characteristics from massive data, so we will save
time and effort over training a model from scratch.
Using a pre-trained model decreases the amount of
technical time and resources required to deploy the
model across several health systems.

7) Retrain the model using Fine-Tuning: Fine-tuning is
the process of adjusting the weights of a previously
trained model to suit your specific task. However,
to actually apply these changes and improve model
performance, model re-training is necessary. After
fine-tuning, the model was adjusted to optimize for
the specific task. Re-training the model allows it
to learn more from new data, helping to improve
generalization and prediction performance on new
data.

8) Validate and collect metrics to evaluate the model:
By measuring metrics like accuracy, precision,
recall, and F1-score, we can evaluate how our model
performs on new data that was not used during
training. This process helps identify the model’s
loss on the test data set, while also providing
an overview of how the model performs across
different scenarios. The assessment results may be
utilized to alter model hyperparameters such as
batch size, neural network design, learning rate, and
epochs. Based on the evaluation results, we can
propose improvements or adjustments to the model
to improve its performance and ensure its generality

with new data.

9) Visual explanation by Integrated Gradients:
Integrated Gradients provide clear explanations for
the predictions generated by machine learning models
by evaluating the influence of each individual input
feature on the final prediction result. By clarifying
the role of every input feature in the ultimate
prediction, Integrated Gradients help improve the
interpretability of the machine learning model,
which is particularly advantageous in industries like
healthcare, finance, and law where understanding
how the model works is crucial.

10) Compare to other sophisticated methods: Comparison
with other modern methods helps in analyzing the
model’s effectiveness and identifying the efficacy and
uniqueness of the proposed strategy when compared
to previously examined and acknowledged ways.
This helps you to determine which components of
your plan are more effective than others and which
need to be modified.

11) Showing the result: The results and figures after
comparison will be displayed in the form of confusion
matrices, line graphs, and tables. The results demon-
strate how the model performs in practice and how
effective it is in diagnosing bone fractures.

B. Pre-processing Image

Pre-processing is an important step in preparing image data
for machine learning tasks since it improves picture quality,
consistency, and informativeness, ultimately enhancing model
performance. In our study, we used a number of data pre-
processing processes, as shown in Fig. 2.

Fig. 2. Detailed proposed framework for image preprocessing.

1) Resize image: Achieving consistent input size is an
important feature of picture preprocessing. To do this,
we scaled all photos to a uniform size of 224 pixels
(width) and 224 pixels (height), as specified by Eq.
(1).

IReSize(newwidth, newheight) = IReSize(224, 224)
(1)
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2) Contrast Stretching: Contrast stretching is a method
employed to enhance the contrast of an image by
broadening the range of intensity values. This process
involves the redistribution of pixel values to make use
of the entire spectrum of intensities. This transforma-
tion is illustrated in Eq. (2), where the pixel values are
redistributed to utilize the full range of intensities. Iin
denotes the input intensity value of a pixel, while Iout
signifies the corresponding output intensity value.
The mathematical expression for contrast stretching
can be formulated as:

Iout =
Iin − Imin

Imax − Imin
∗ 255 (2)

where, Iin are the minimum and maximum intensity
values in the input image, respectively.

3) Data Augmentation: Upon completing the
initial image preprocessing procedures for data
normalization, data augmentation techniques are
implemented to enlarge both the training and
validation datasets. This approach guarantees model
interpretability by preserving the consistency of the
test set data, thus preventing overfitting. First, we
extract 903 images from the training sets and 113
images from validation sets to increase the number
of images. The popular augmentation methods of
the RandAugmentation Class in the Keras library
were used. Those geometric transformations include
rotation, flipping, and contrast adjustment. Finally,
we found that the number of training and validation
photos grew from 903 to 8128 images. Expanding
the data set exposes the model to additional variables
and scenarios, resulting in improved generalization
and performance in real-world applications. In
summary, data augmentation is a key strategy
that increases the performance and generalization
capacity of machine learning models, especially
when vast and varied datasets are not available.

C. Transfer Learning and Fine-Tuning of EfficientNetB3

Transfer learning is a method in machine learning and deep
learning in which we train a model on a large data set before
reusing (transferring) it to solve a similar or related problem.
Instead of starting from scratch on a small dataset, transfer
learning allows us to use the knowledge and experience
learned from previous training on large datasets to improve the
model’s performance on the new dataset [33]. During training,
we reuse previously trained model parameters. As a result,
transfer learning will use the model’s current layers instead
of retraining from scratch, thereby improving the model’s
accuracy.

Fine-tuning is the next step after applying transfer learning,
the results will improve if we continue to perform fine-tuning.
Fine-tuning changes and updates some parts of the pre-trained
model (like the final layers) to fit the new dataset. By using
information from pre-training and fine-tuning the model’s
representations to better match the target domain, fine-tuning
allows the model to further tune its parameters to match the
target, specifically fracture identification. Through the process
of unlocking and purposefully training these layers, the model

can improve its performance on the given task and the learned
features. The final model is capable of learning unique patterns
and sensitivities for the specific task, thereby improving the
model’s accuracy and elasticity in detecting bone fractures.

To maintain their capacity to extract low-level characteris-
tics acquired during pre-training, the model’s first layers are
usually frozen during this procedure. This freezing method
concentrates adaptation on the latter layers that are in charge
of task-specific learning, which maximises training efficiency.
In order to maximise model performance and avoid overfitting,
fine-tuning also entails modifying hyperparameters, include
the number of training epochs, hidden layer configurations,
learning rate, and batch size. 50-100 epochs, 8–32 batch sizes,
and hidden layer configurations like [256, 256, 128] or [512,
128] are examples of common hyperparameter search ranges.
It is common practice to investigate the learning rate between
1e-3, 1e-4, and 1e-5.

Fig. 3. Detailed proposed framework for transfer learning and fine tuning
processes.

We fine-tuned the model using a hyperparameter search
to achieve the best results while avoiding overfitting. This
search looked at various combinations of training epochs, batch
sizes, hidden layer configurations, and learning rates. Based
on the findings, the following hyperparameters were chosen
to strike a reasonable compromise between training efficiency
and performance.

Furthermore, we added BatchNormalization and Dropout
layers to the suggested design in order to enhance the model’s
capacity for generalization and lessen overfitting. Our proposed
architecture is presented in Fig. 3.
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D. Visual Explanation Using Integrated Gradients

The use of explanations is critical for gaining a better
understanding of how a model makes decisions and forecast
outcomes. This helps to improve the model’s transparency and
trustworthiness, particularly in industries such as healthcare,
where a detailed description of the decision-making process is
extremely useful for diagnosing and treating disorders.

Integrated Gradients is a way for clarifying the predictions
of machine learning models, which helps comprehend how the
model makes decisions depending on inputs. This approach as-
sesses the relevance of each input characteristic by integrating
along the path from a reference point to the individual data
point under consideration. During this process, each feature
progressively transitions from its reference value to its current
value, allowing us to quantify the influence of each feature on
the model’s final prediction.

Suppose IG(x) represents the Integrated Gradients for
input (x), f(z) is the model’s output as a function of input (z),
and (∂f(z)∂z ) is the gradient of the model’s output concerning
the input. The integral is computed from 0 to x, where x
signifies the input to the model. The Integrated Gradients
method is defined by Eq. (3).

IG(x) =

∫ x

0

∂f(z)

∂z
dz (3)

Integrated Gradients provide several advantages over other
interpretation methods. Firstly, it offers computational effi-
ciency and simplicity, allowing for accurate evaluation of
individual feature importance. Second, because this technique
does not need extensive understanding of the model’s structure
or properties, it is adaptable and suitable to a wide range of
machine learning models. Finally, Integrated Gradients allow
both quantitative and qualitative interpretation, providing a
thorough knowledge of the model’s decision-making process.

The usage of Integrated Gradients has been prevalent
in different machine learning models, including deep neural
networks, to increase transparency and interpretability. This
approach is applicable for both classification and regression
models. In scenarios involving non-scalar outputs, such as
classification models or multi-target regression, gradients are
produced for a single aspect of the output, which is often
related with the model’s actual or anticipated classes.

In conclusion, the use of Integrated Gradients for visually
explanation is a viable technique for improving the trans-
parency, accountability, and dependability of machine learning
models, thereby increasing their value and credibility in real-
world applications. In future projects, experts and medical
practitioners can get significant insights by studying the in-
fluence of each feature map on the final choice, as shown in
Fig. 4.

IV. EXPERIMENTS

A. Dataset and Performance Metrics

This dataset was initially generated by Jason Zhang and
Caden Li as part of Intel’s RF100 program to develop a
new object identification benchmark for model generalization
[34]. The data set contains 1129 photos separated into ten

Fig. 4. The demo makes use of the keras library’s integrated gradients.

classes; therefore, it is vital to provide various representations
while lowering the danger of overfitting and improving the
model’s generalizability. After enhancing the training dataset
and validation dataset, we obtain a new dataset with 8128
images, as shown in Fig. 5. Evaluating a machine learning

Fig. 5. Dataset characteristics after augmentation.

model’s performance is a critical step in both the research and
deployment processes. In machine learning, various measures
are used to evaluate a model’s performance, including preci-
sion, recall, accuracy, and the F1-score.

Accuracy is the ratio between the number of correct
predictions and the total number of data samples in the test
set. The mathematical formula for accuracy is given in Eq. (4):

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision measures the ratio between the number of correct
positive predictions (True Positive) and the total number of
positive predictions (True Positive + False Positive). Precision
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provides information about the accuracy of positive predic-
tions. Precision’s mathematical formula is given in Eq. (5):

Precision =
TP

TP + FP
(5)

Recall (also known as Sensitivity) measures the ratio
between the number of true positive predictions and the total
number of truly positive samples in the data set. Recall
provides information about the model’s ability to find all
positive cases. The mathematical formula of Recall is given
in Eq. (6):

Recall =
TP

TP + FN
(6)

F1-score is a combined measure of Precision and Recall,
often used when both values need to be considered. F1-score is
the harmonic average of Precision and Recall and is calculated
by the Eq. (7):

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(7)

These metrics provide a comprehensive view of the per-
formance of a machine learning model, allowing users to
accurately evaluate its predictive ability and find important
cases.

B. Scenario 1: X-ray image classification results of the first
5 classes: Avulsion fracture, Comminuted fracture, Fracture
Dislocation, Greenstick fracture, Hairline Fracture

In this situation, we use transfer learning and fine-tuning
with and without data augmentation to categorize five fracture
classifications using five distinct machine learning models. The
transfer learning results in Table I demonstrate the model’s
efficacy on the augmented data set. The suggested model’s
accuracy has increased from 63.63% to 95.45%. In addition
to the suggested model, the ResNet50 model achieves 96.63%
accuracy, indicating great efficiency. Table II shows the fine-
tuning results before and after increasing the data set as
62.12%-98.48%.

TABLE I. THE RESULTS OF CATEGORIZING X-RAY IMAGES INTO FIVE
FIRST CLASSES IN TRANSFER LEARNING

Transfer learning Without Augmentation
Model Accuracy Precision Recall F1

ResNet50 63,63% 66,85% 63,63% 63,56%
VGG16 51,51% 51,41% 51,51% 50,92%
MobileNet 33,33% 35,43% 33,33% 32,57%
InceptionV3 42,42% 43,98% 42,42% 42,96%
Our Proposed 63,63% 65,53% 63,63% 63,72%

Transfer learning With Augmentation
Model Accuracy Precision Recall F1

ResNet50 96,63% 96,63% 96,63% 96,63%
VGG16 89,22% 89,47% 89,22% 89,21%
MobileNet 69,86% 69,99% 69,86% 69,66%
InceptionV3 60,60% 60,82% 60,60% 60,58%
Our Proposed 95,45% 95,64% 95,45% 95,46%

Fig. 6 and Fig. 7 provide a graph of the training process’s
accuracy and loss. During the training process, the two curves

TABLE II. THE RESULTS OF CATEGORIZING X-RAY IMAGES INTO FIVE
FIRST CLASSES IN FINE-TUNING

Fine-Tuning Without Augmentation
Model Accuracy Precision Recall F1

ResNet50 60,60% 62,17% 60,60% 60,30%
VGG16 39,39% 39,75% 39,39% 39,22%
MobileNet 19,69% 14,77% 19,69% 8,41%
InceptionV3 33,33% 35,94% 33,33% 33,66%
Our Proposed 62,12% 63,54% 62,12% 62,22%

Fine-Tuning With Augmentation
Model Accuracy Precision Recall F1

ResNet50 98,48% 98,51% 98,48% 98,48%
VGG16 58,41% 66,57% 58,41% 56,38%
MobileNet 38,55% 64,89% 38,55% 30,04%
InceptionV3 64,14% 64,51% 64,14% 64,13%
Our Proposed 98,48% 98,49% 98,48% 98,48%

gradually grow and eventually stabilize. This demonstrates that
the model strikes a balance between learning from training data
and generalizing to new data. Overall, the curves for training
and loss accuracy curves are smooth, with no significant vari-
ation between them, indicating that the model is appropriate
and has strong generalization ability.

Fig. 6. Accuracy of training and validation while fine-tuning our model (5
First Classes).

The confusion matrix pictures of five different kinds of
fractures—avulsion, comminuted, fracture dislocation, green-
stick, and hairline—are shown in Fig. 8. The outcome of the
Integrated Gradients explanation is Fig. 9, which illustrates
how each feature helps to push the model output from the
baseline value—the average model output across the training
dataset we passed—to the model output. The training process
is transparent, as seen by the two images above, and overfitting
is not an issue.

C. Scenario 2: X-ray image classification results of the last
5 classes: Impacted fracture, Longitudinal fracture, Oblique
fracture, Pathological fracture, Spiral fracture

In this scenario, we classify the next five types of fractures
out of a total of 10 types, including spiral fracture, impacted
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Fig. 7. Accuracy of validation and training loss throughout our model’s
fine-tuning (5 First Classes).

Fig. 8. Confusion matrix during our model’s fine tuning (5 First Classes).

Fig. 9. Our model’s output in scenario 1 with integrated gradients
explanation.

fracture, pathological fracture, oblique fracture, and longitu-
dinal fracture. Transfer learning and fine-tuning are carried
out by the scenario both with and without data augmentation.
96.21% accuracy was achieved in the transfer learning portion
of the suggested model, which is better than 40% when
compared to training on the original data set (Table III).
Additionally, Table IV illustrates the efficacy of fine-tuning
when the achieved accuracy is greater than transfer learning,
at 96.92%.

The accuracy and loss of the training process in the second
scenario experiment are displayed in Fig. 10 and 11. The
two curves grow steadily and don’t differ much from one
another during the training period. The training and loss
accuracy curves are generally smooth and show little variance,
suggesting that the model is suitable and capable of high
generalization.

TABLE III. THE RESULTS OF CATEGORIZING X-RAY IMAGES INTO FIVE
LAST CLASSES IN TRANSFER LEARNING

Transfer learning Without Augmentation
Model Accuracy Precision Recall F1

ResNet50 55,31% 52,38% 55,31% 51,54%
VGG16 27,65% 7,65% 27,65% 11,98%
MobileNet 34,04% 31,42% 34,04% 32,26%
InceptionV3 25,53% 24,48% 25,53% 23,97%
Our Proposed 53,19% 57,40% 53,19% 52,93%

Transfer learning with Augmentation
Model Accuracy Precision Recall F1

ResNet50 93,38% 93,45% 93,38% 93,38%
VGG16 88,41% 88,40% 88,41% 88,35%
MobileNet 71,63% 71,64% 71,63% 71,51%
InceptionV3 62,64% 62,75% 62,64% 62,59%
Our Proposed 96,21% 96,27% 96,21% 96,21%

TABLE IV. THE RESULTS OF CATEGORIZING X-RAY IMAGES INTO FIVE
LAST CLASSES IN FINE-TUNING

Fine-Tuning Without Augmentation
Model Accuracy Precision Recall F1

ResNet50 51,06% 50,10% 51,06% 48,34%
VGG16 19,14% 3,66% 19,14% 6,15%
MobileNet 25,53% 19,55% 25,53% 16,02%
InceptionV3 40,42% 42,47% 40,42% 40,03%
Our Proposed 42,55% 36,34% 42,55% 38,00%

Fine-Tuning With Augmentation
Model Accuracy Precision Recall F1

ResNet50 96,69% 96,71% 96,69% 96,69%
VGG16 74,94% 77,04% 74,94% 75,04%
MobileNet 38,55% 43,02% 43,02% 42,78%
InceptionV3 62,17% 62,17% 62,17% 62,09%
Our Proposed 96,92% 96,97% 96,92% 96,93%

Fig. 12 presents the confusion matrix images of 5 types of
fractures, including spiral fracture, impacted fracture, patho-
logical fracture, oblique fracture, and longitudinal fracture. The
matrix shows that, with an accuracy rate of 100%, the model
performs best when diagnosing oblique fractures. In addition,
compared to the other classes, the longitudinal fracture class
has a larger mistake rate. The outcome of the Integrated
Gradients explanation for this case is shown in Fig. 13.
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Fig. 10. Accuracy of training and validation in optimizing our model (5 Last
Classes).

Fig. 11. Accuracy of validation and training loss throughout our model’s
fine-tuning (5 Last Classes).

Fig. 12. Confusion matrix during our model’s fine tuning (5 Last Classes).

Fig. 13. Our model’s output in scenario 2 with integrated gradients
explanation.

D. Scenario 3: X-ray image classification results of the 10
classes: avulsion fracture, comminuted fracture, fracture dislo-
cation, greenstick fracture, hairline fracture, impacted fracture,
longitudinal fracture, oblique fracture, pathological fracture,
and spiral fracture

This crucial case demonstrates the suggested model’s ex-
cellent performance in handling a classification issue with up
to ten classes. Table V illustrates that the suggested model
attained 94% accuracy following the transfer learning proce-
dure, which is greater than ResNet50’s 92.82%. Following the
phase of fine-tuning the suggested model using the expanded
data set, Table VI presents the final accuracy result, which is
96.85%.

TABLE V. THE RESULTS OF CATEGORIZING X-RAY IMAGES INTO TEN
CLASSES IN TRANSFER LEARNING

Transfer learning Without Augmentation
Model Accuracy Precision Recall F1

ResNet50 43,36% 42,69% 43,36% 42,85%
VGG16 19,46% 5,25% 19,46% 8,23%
MobileNet 30,97% 33,34% 30,97% 30,66%
InceptionV3 38,05% 39,12% 38,05% 37,85%
Our Proposed 51,32% 52,41% 51,32% 51,10%

Transfer learning with Augmentation
Model Accuracy Precision Recall F1

ResNet50 92,82% 92,92% 92,82% 92,81%
VGG16 84,75% 84,91% 84,75% 84,71%
MobileNet 56,93% 57,10% 56,93% 56,88%
InceptionV3 53,29% 53,64% 53,29% 53,26%
Our Proposed 94,00% 94,05% 94,00% 93,99%

Fig. 14 and Fig. 15 illustrate the accuracy and loss of
the training process in the experiment of scenario 3. During
the training process, the two curves steadily increase and
do not deviate significantly from each other, indicating the
transparency and reliability of the proposed model.

Fig. 17 presents the confusion matrix images of 10 types
of fractures, including avulsion fracture, comminuted fracture,
fracture dislocation, greenstick fracture, hairline fracture, im-
pacted fracture, longitudinal fracture, Oblique fracture, patho-
logical fracture, and spiral fracture. The matrix shows that,
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TABLE VI. THE RESULTS OF CATEGORIZING X-RAY IMAGES INTO TEN
CLASSES IN FINE-TUNING

Fine-Tuning Without Augmentation
Model Accuracy Precision Recall F1

ResNet50 49,55% 48,03% 49,55% 48,42%
VGG16 1,54% 12,38% 2,75% 2,75%
MobileNet 30,08% 50,86% 30,08% 24,59%
InceptionV3 37,16% 38,05% 37,16% 36,75%
Our Proposed 51,32% 50,36% 51,32% 50,09%

Fine-Tuning With Augmentation
Model Accuracy Precision Recall F1

ResNet50 94,19% 94,27% 94,19% 94,15%
VGG16 56,93% 59,22% 56,93% 56,53%
MobileNet 39,23% 64,31% 39,23% 34,47%
InceptionV3 51,72% 51,66% 51,72% 51,51%
Our Proposed 97,24% 96,92% 97,24% 96,86%

Fig. 14. Accuracy of training and validation in optimizing our model (Full
10 Classes).

Fig. 15. Accuracy of validation and training loss throughout our model’s
fine-tuning (Full 10 Classes).

with a 98% accuracy rate, the model performs best when it
comes to diagnosing fracture dislocation. Spiral fault layers,
at around 10%, have the highest failure rate at the same
time. The outcome of the Integrated Gradients explanation for

Fig. 16. Our model’s output in scenario 3 with integrated gradients
explanation.

Fig. 17. Confusion matrix during our model’s fine tuning (Full 10 Classes).

categorizing ten different types of fractures is shown in Fig.
16.

E. Comparison with others State-of-the-art Methods

This section totally compares our proposed method to
several existing state-of-the-art categorization methodologies.
Table VII compares categorization methods, their respective
accuracy rates, and our proposed strategy.

The models studied include a wide range of approaches
and architectures for different machine learning problems.
MobileNet, ResNet50, EfficientNetV2, GoogleNet, and YOLO
are all convolutional neural network (CNN) models notable for
their performance and efficiency in image categorization and
feature extraction. Additionally, Vision Transformer (ViT) is a
recently suggested architecture that employs a self-attention
mechanism to capture long-range relationships in pictures,
making it appropriate for tasks like image categorization and
object identification. The essential point is that the model we
present outperforms similar and recent studies on the topic of
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TABLE VII. COMPARISON WITH OTHERS STATE-OF-THE-ART METHODS

Ref. Architecture ACC
Huong Hoang Luong et al. [10] MobileNet 84%
Hadeer El-Saadawy et al. [14] MobileNet 73,42%
Lee-Ren Yeh et al. [15] ResNet 92%
Fırat Hardalac et al. [22] WFD-C 86,39%
Saurabh Verma et al. [23] CNN 98,8%
Mohamed A. Kassem et al. [24] GoogleNet 98,5%
Hoai Phuong Nguyen et al. [32] YOLOv4 81,91%
Bhan et al. [31] CNN 87,85%
Jichong Ying et al. [25] ResNet50 93%
Xuebin Xu et al. [35] EfficientNetV2 78,12%
Hang Min et al. [36] YOLOv5 81%
Leonardo Tanzi et al. [37] ViT 97%
Our Proposed Model 97,24%

bone fracture classification.

V. DISCUSSION

Upon the application of the FEC-IGE framework, not only
is the power of deep learning harnessed, but also advanced
techniques such as data preprocessing, augmentation, transfer
learning, and fine-tuning of the EfficientNetB3 pre-trained
model [16] are integrated. A comprehensive series of exper-
iments has been carried out to assess the efficacy of this
proposed methodology.

Aside from the exceptional performance demonstrated by
the FEC-IGE framework, surpassing previous studies on pre-
trained models in skin disease classification, several aspects
deserve consideration. Initially, although data augmentation
methods have played a crucial role in addressing data im-
balance and enhancing model performance, the most straight-
forward approach to enhancing model efficacy remains the
enlargement of the original dataset. This is particularly per-
tinent given the current constraints in obtaining high-quality,
annotated datasets for skin diseases. Secondly, the incorpora-
tion of pre-trained model weights into the revamped model
has notably enhanced both the training efficiency and model
performance. This strategy has been investigated in recent
research, showcasing its effectiveness in boosting model per-
formance. Nevertheless, the issue of how pre-trained models
effectively bridge the gap between medical and natural images
remains a subject requiring further exploration.

The restricted availability of training data presents a hurdle
in fully exploiting the discriminative capabilities of the FEC-
IGE framework. Consequently, while the proposed Efficient-
NetB3 model yielded satisfactory outcomes in five models
utilizing the FEC-IGE framework, instances persist where its
performance falls short (MobileNet [14], InceptionV3 [38]).
Despite the enhancement in performance across all models
post-framework implementation, there are certain models that
do not attain high accuracy levels. This underscores specific
challenges that have not been adequately tackled within the
existing framework.

In conclusion, the FEC-IGE framework makes notable
contributions to skin disease classification through its superior
performance, versatility, and the incorporation of Integrated
Gradients for visual explication. Nonetheless, there is room
for improvement, particularly in elevating model accuracy and

deploying the model on mobile or web-based platforms for
fracture classification. This area represents a promising avenue
for future investigation, aimed at rendering fracture classifica-
tion more accessible and precise for healthcare practitioners
and patients alike.

VI. CONCLUSION

In the realm of fracture classification, our proposed FEC-
IGE framework stands out for its innovative approach and su-
perior performance compared to other state-of-the-art methods.
The FEC-IGE framework, which encompasses data prepro-
cessing, data augmentation, transfer learning, and fine-tuning
of the EfficientNetB3 pre-trained model, has demonstrated
remarkable effectiveness in classifying ten distinct classes of
fracture.

Our framework’s performance is particularly noteworthy
when applied to other pre-trained models such as ResNet50,
VGG16, MobileNet, InceptionV3, and EfficientNetB3. In three
different cases, our FEC-IGE framework achieved an accuracy
of 98.48% - 96.92% - 97.24%, respectively, significantly
outperforming these models. This superior performance is
attributed to the meticulous steps of data preprocessing and
augmentation, which enhance the model’s ability to generalize
from the training data to unseen fracture images. Additionally,
the fine-tuning of the EfficientNetB3 pre-trained model tailored
to our specific task has allowed our framework to adapt and
optimize its performance for fracture classification.

Furthermore, the trying to apply the FEC-IGE framework
to five well-known CNN architectures (ResNet50, VGG16,
MobileNet, InceptionV3, and EfficientNetB3) resulted in a
substantial performance improvement across all models. This
demonstrates the versatility and robustness of our framework,
capable of enhancing the performance of a wide range of CNN
architectures in the classification of fractures.

The high accuracy rate of the FEC-IGE framework after
applying it to the EfficientB3 model of 97.24% in fracture
classification is a testament to its effectiveness. This level
of accuracy not only enables precise recognition of distinct
skin conditions but also supports the development of precise
treatment strategies. The validation process has further high-
lighted the importance of data augmentation and fine-tuning
in improving the system’s efficacy.

Another significant contribution of our work is the inte-
gration of Integrated Gradients for visual explanation. This
method has proven to be beneficial in enhancing the under-
standing of the decision-making process of the model. By
providing lucid and comprehensible explanations, Integrated
Gradients contribute to the reliability and credibility of the
model’s predictions. This approach is particularly valuable in
domains such as medicine and security, where transparency
and understanding of the model’s decision-making process are
paramount.

In conclusion, the FEC-IGE framework’s contributions to
fracture classification through superior performance, versa-
tility, and the integration of Integrated Gradients for visual
explanation, set it apart from other state-of-the-art methods.
These advancements not only demonstrate the effectiveness
of our proposed framework but also pave the way for future
research in the application of machine learning in healthcare.

www.ijacsa.thesai.org 1421 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

AVAILABILITY OF DATA, CODE, AND MATERIAL

Data for this study are published on repository link at 1

and code is at 2

ACKNOWLEDGMENT

We would like to express my sincere gratitude to Huong
Hoang Luong, Duy Khanh Nguyen, and Bang Huu Do Dang
for their invaluable support and assistance throughout the
course of this research. Their expertise, guidance, and encour-
agement have been instrumental in the successful completion
of this study. We are truly grateful for their dedication and
commitment, which have greatly contributed to the quality and
depth of this research endeavor.

REFERENCES

[1] M. Nordin and V. H. Frankel, Basic biomechanics of the musculoskeletal
system. Lippincott Williams & Wilkins, 2001.

[2] R. B. Martin, D. B. Burr, N. A. Sharkey, D. P. Fyhrie et al., Skeletal
tissue mechanics. Springer, 1998, vol. 190.

[3] A. D. Perron, W. J. Brady, and T. A. Keats, “Principles of stress fracture
management: the whys and hows of an increasingly common injury,”
Postgraduate medicine, vol. 110, no. 3, pp. 115–124, 2001.

[4] S. D. Kingma and A. I. Jonckheere, “Mps i: Early diagnosis, bone
disease and treatment, where are we now?” Journal of Inherited
Metabolic Disease, vol. 44, no. 6, pp. 1289–1310, 2021.
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