
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

Dynamic Gesture Recognition using a Transformer
and Mediapipe

Asma H.Althubiti, Haneen Algethami
Department of Computer Science

College of Computers and Information Technology
Taif University, Taif, 21944, Saudi Arabia

Abstract—There is a rising interest in dynamic gesture recog-
nition as a research area. This is the result of emerging global
pandemics as well as the need to avoid touching different surfaces.
Most of the previous research has focused on implementing deep
learning algorithms for the RGB modality. However, despite
its potential to enhance the algorithm’s performance, gesture
recognition has not widely utilised the concept of attention. Most
research also used three-dimensional convolutional networks
with long short-term memory networks for gesture recognition.
However, these networks can be computationally expensive. As
a result, this paper employs pre-trained models in conjunction
with the skeleton modality to address the challenges posed by
background noise. The goal is to present a comparative analysis
of various gesture recognition models, divided based on video
frames or skeletons. The performance of different models was
evaluated using a dataset taken from Kaggle with a size of 2
GB. Each video contains 30 frames (or images) to recognise
five gestures. The transformer model for skeleton-based gesture
recognition achieves 0.99 accuracy and can be used to capture
temporal dependencies in sequential data.

Keywords—Gesture recognition; self-attention; transformer en-
coder; skeleton; transfer learning

I. INTRODUCTION

In an increasingly interconnected world where human-
computer interaction plays a pivotal role, the ability to accu-
rately recognise and interpret gestures has emerged as a crit-
ical component of next-generation technology. Consequently,
the growing importance of gesture recognition has prompted
extensive research and development efforts to advance this
technology’s capabilities and applications. Gesture recognition
is an interesting field of computer vision and is linked to
solving many day-to-day problems and simplifying human
life [1]. In addition to everyday applications such as clinical
operation [2], sign language [3], robots [4], virtual environment
[5], home automation [6], personal computers and tablets [6],
and gaming, driver behaviour [7], [8], [9]. In recent years and
with the appearance of epidemics, there has been an urgent
need to develop this field, and gesture recognition is beginning
to be used in remote areas of the world [10], [11].

Dynamic gesture recognition allows users to perform natu-
ral and intuitive gestures to control devices, which can be more
engaging and easier to learn than traditional input methods like
keyboards and mouse. It provides an alternative input method
for individuals with physical disabilities who may find it
difficult to use conventional interfaces. Touchless systems can
be tailored to recognize a wide range of gestures, accommodat-
ing different abilities and preferences. In environments where

hygiene is crucial, such as hospitals, clean rooms, or public
kiosks, touchless interaction reduces the risk of contamination
and the spread of pathogens. Touchless systems are particularly
useful in scenarios where users need to interact with devices
while keeping their hands free, such as in kitchens, workshops,
or while driving.

Dynamic gesture recognition can be integrated into various
applications, from gaming and virtual reality to smart home
systems and industrial automation. This versatility makes it a
valuable component in a wide range of touchless interaction
systems. These systems can be designed to recognize context-
specific gestures, making interactions more efficient and reduc-
ing the cognitive load on users. For example, different gestures
can be used for different modes of an application or device.
Dynamic gestures can be used to perform complex commands
that would be cumbersome with traditional input methods. For
instance, gestures can control the playback of media, navigate
through interfaces, or manipulate virtual objects in 3D space.

Gesture recognition techniques can be categorised into
three main approaches: the glove-based hand approach [12],
the radar-based hand gesture approach [13], and computer
vision-based hand gesture recognition [6]. In the first ap-
proach, the precise coordinates of the palm and fingers can
be determined to facilitate accurate gesture recognition. Ac-
cording to the angle of bending, several sensors used the
same technique, including the curvature sensor, the angular
displacement sensor, the optical fibre transducer, the flex
sensor, and the accelerometer. Due to the high cost of these
sensors, it is difficult to detect hand gestures on gloves due
to their different physical principles [6]. The second approach
is that a radar transmitter transmits a radio wave towards a
target, and the radar receiver intercepts the reflected energy. In
this technology, radar waves bounce off your hand and back
to the receiver, allowing it to interpret changes in shape or
movement. This technology is still being investigated [14].
Computer vision-based hand gesture recognition involves using
algorithms and image analysis to interpret and understand
hand movements and gestures captured by cameras or sensors,
facilitating natural human-computer interaction.

The objective of motion recognition research is to delineate
human gestures and subsequently employ these gestures for
device control or information transmission [15]. Gestures can
be broadly categorised into two types: dynamic (temporal)
and static (spatial). In static gesture recognition, an image
of a hand captured at a specific moment is utilised, with
recognition outcomes relying on its position, contour, and
texture within the image. An image sequence captured over a

www.ijacsa.thesai.org 1424 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

continuous period can be used to recognise dynamic gestures.
The recognition result is not only affected by the appearance of
the hand but also by the temporal characteristics describing its
trajectory [16]. Dynamic gestures differ from static gestures in
that they are more varied, more expressive, and more practical
[17]. There are three goals for dealing with hand gestures:
detection, tracking, and recognition. Similarly to image classi-
fication, videos recorded in a real-life scenario may contain a
variety of interferences. Some examples of such interferences
include blurry gestures that occur when a camera shakes or
a performer moves suddenly during video recording [17].
Variable illumination intensities, intricate backgrounds, and
unique hand gestures made by various people are limitations
of dynamic hand gesture recognition [18].

In the context of video-based gesture recognition, the
fundamental challenge revolves around the identification of
specific actions being performed. Gesture recognition encom-
passes the broader scope of action recognition within a video,
while gesture recognition detection and segmentation entail
specialised methods for pinpointing and analysing individual
instances of gestures embedded within the video stream. Deep
learning models require access to large video datasets to
support the acquisition of precise action representations, which
is a challenging task given the challenging dimensionality and
vast amount of video data. In addition, these models must be
able to extract both spatial and temporal details from video
clips, which will make it easier to recognise complex gestures
[19].

In the world of computer vision research, there is a fast-
growing trend towards using transformer architectures. These
new approaches are making action recognition much more
accurate and efficient, marking a significant change in how
things are done in this field [19]. When it comes to transformer
learning, building deep convolutional neural networks from
the ground up, such as AlexNet, GoogleNet, and ResNet,
requires access to large, carefully annotated datasets. ImageNet
is one of the most important datasets used as a reference
[20]. Pre-trained deep CNN models can serve as fixed feature
extractors or fine-tuners with limited data [15]. Attention is the
sole concept driving this transformation, which is perhaps the
most powerful concept in deep learning today [18]. In gesture
recognition, attention focuses on specific data components,
improving the modelling of spatial and temporal interactions
by suppressing redundancy. In general, transformer models
typically demand large-scale datasets for effective training.
Nevertheless, the availability of such expansive datasets is
often limited.

The existing literature on gesture recognition has not fully
leveraged attention mechanisms, particularly in conjunction
with the Skeleton modality. There is a pressing need for
research that integrates attention mechanisms to dynamically
focus on relevant spatial and temporal aspects of gesture
sequences, especially utilizing the rich information provided
by skeleton data. Investigating advanced fusion strategies that
combine skeleton data with other modalities through atten-
tion mechanisms can potentially bridge this gap and lead to
significant improvements in gesture recognition accuracy and
robustness.

To the best of our knowledge, few research studies have
utilised the skeleton modality for gesture recognition. The

graph convolution network [21] might not be as useful when
working with transfer learning that uses new models that have
already been trained and transformers for gesture recognition
[22], [23]. So, the goal of this study is to look into self-
attention techniques with transfer learning using transformers
that have already been trained to recognise dynamic gestures.
The dataset used in this study is taken from Kaggle with a
size of 2 GB. Each video contains 30 frames (or images) to
recognise five gestures. Therefore, our contribution in pursuit
of this objective is to:

• Investigate the performance of different gesture recog-
nition models, such as MobileNet, VGG19 with atten-
tion, Densenet121 with attention, and Resenet50 with
attention, based on pixel intensity or key points.

• Assess the effectiveness of selected feature extraction
models in extracting relevant features from video
frames and classifying gestures accurately using the
video frame-based approach.

• Test how accurate and dependable skeleton-based
gesture recognition is by using GRU, LSTM, and
transformer models with skeleton data obtained from
MediaPipe.

• Explore the performance of selected gesture recogni-
tion models as they undergo training and fine-tuning
on relevant datasets while evaluating their ability to
adapt to real-world situations.

In the following section, a review of dynamic gesture
recognition literature is presented in Section II. After that, in
the methodology section, along with the transfer learning mod-
els, machine learning (ML) and deep learning (DL) models that
are commonly used in gesture recognition are also described
in Section III. Then, the proposed methodology is outlined
while providing insights into our experimental setup, dataset
exploration, and the tools and resources utilised to conduct our
research in Section IV. In Section V, the findings are presented,
and the results are analysed in Section VI. Finally, the work
is concluded in Section VII by summarizing key findings and
potential future directions.

II. LITERATURE REVIEW

The focus of this paper is dynamic gesture recognition.
Hence, static gesture recognition methods are not mentioned
in this section.

Data acquisition is fundamental in gesture recognition
research, with access to comprehensive datasets being critical.
The Ego Gesture dataset, introduced in 2018, is a significant
resource comprising over 24,000 RGB-D video samples and
three million frames across 50 subjects. It includes 83 different
types of static and moving gestures, making it one of the
biggest egocentric gesture datasets made for interacting with
wearable tech [24]. The NV Gesture database, established in
2019, offers a unique resource with multiple sensors and view-
points in an indoor car simulator setting. It includes 25 gesture
classes primarily designed for human-computer interfaces,
totalling 1532 videos. These videos are weakly segmented,
meaning gestures are not explicitly labelled within them, and
are split into 1050 training videos and 482 test videos, each
featuring one gesture [25]. The REHAP dataset stands out with

www.ijacsa.thesai.org 1425 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

over a million hand posture samples, divided into REHAP-
1 and REHAP-2. REHAP-1 contains 600,000 images from
20 individuals, captured with a resolution of 160 × 120 in-
depth using Time-of-Flight (ToF) sensors. In contrast, REHAP-
2 has a higher resolution of 320 × 240 and includes RGB
images. This dataset offers multi-viewpoint images, enhancing
its versatility compared to others [26]. For dynamic hand
gestures, two publicly accessible databases provided skele-
ton information: the DHG-14/28 Dataset and the SHREC’17
Track Dataset. The DHG-14/28 Dataset encompassed 14 hand
gestures, captured five times by 20 volunteers, resulting in
2800 sequences [27]. In specific real-time scenarios, custom
databases tailored to the environmental context have been
utilised, as summarised in Table I.

A. Machine Learning Algorithms

Artificial neural network (ANN) is a computer model based
on the biological neural networks in the brain. It is more of a
framework than a fixed algorithm, and it can handle complex
data by learning from a set of training examples how to do
certain tasks.

Dynamic gesture recognition involves analyzing an image
sequence captured continuously, and its recognition outcome
relies not just on the hand’s appearance but also on temporal
features that characterize the hand’s trajectory within the
sequence, making dynamic gestures more diverse, expressive,
and applicable compared to static gestures [17]. Different
research studies have utilized various methods for dynamic
gesture recognition, including the Hidden Markov Model and
Dynamic Time Warping.

1) Hidden Markov model (HMM): In the dynamic gesture
recognition task, each gesture category corresponds to an
HMM. HMMs are traditional models used to solve problems
based on time series or state sequences. Training involves
dividing each gesture sample into categories and then using
forward and backward algorithms to train a matching HMM
model for each category. To produce the test sample, all HMM
models are traversed to calculate their probability values [17].

2) Dynamic Time Warping (DTW): DTW is a measure
of the similarity between two-time series of different lengths
and was originally used for speech recognition. Dynamic
time-based regularization measures the similarity between two
videos. Even if two videos are similar, they may not be aligned
in time, so alignment must be completed before comparing
them. A dynamic time regularization algorithm was developed
by Corradino to recognize dynamic movements [17].

B. Deep Learning Algorithm

Deep learning employs multilayer architectures to learn
from data, providing accurate predictions. Research utilizing
deep learning often extracts features directly, with common
methods in gesture recognition including Convolutional neu-
ral networks (CNNs), Long short-term Memory networks
(LSTMs), and Graph Convolutional neural networks (GCNs).
Models and features such as modularity type used and the
number of gestures of deep learning algorithms used in this
domain are stated in Table II.

1) Convolutional Neural Networks: CNN, a neural network
with specialised layers [41], plays a vital role in image (2D)
and video (3D) analysis. Several studies [27] [14], [42], [30]
leverage 3DCNN for recognition and classification. In [27], a
novel approach combines geometry algorithms and deep learn-
ing for accurate hand gesture recognition (97.12% accuracy)
compared to 2DCNN (64.28%). The study in [30] presents
real-time fingertip detection and gesture recognition using
RGB-D cameras and 3DCNN, achieving 92.6%. The study in
[30], propose a framework that enhances unimodal networks
with multi-modality knowledge for improved accuracy. The
research in [31] adopt Faster-RCNN for tiny object detection,
with a designed bi-stream attention module. The study in
[34] introduce SEMN, focusing on skeleton edge movement
for human action recognition through deep spatial-temporal
blocks.

2) Long-short Term Memory Networks: LSTM, known for
its cell state concept (alongside the hidden RNN state), excels
in handling sequential data [41]. This architecture, featuring
a forget gate, is widely employed in sequence analysis [22],
[25]. [35], explore two CNN networks to model spatial and
temporal information using RGB and optical flow images,
leveraging LSTM’s ability to tackle gradient disappearance.
The research in [17] highlight LSTM’s advantage in processing
longer sequences compared to standard RNNs. The study in
[18] introduced STSNN, comprising four modules: short-term
sampling, feature extraction with ConvNet, long-range tempo-
ral feature learning with LSTM, and hand gesture classification
(achieving 95.73% on the jester dataset).

3) Graph Convolution Neural Network: Graph CNNs, or
Convolutional Graph Neural Networks, extend classical CNNs
to analyze graph data like molecules, point sets, and social
networks. They were applied to extract skeleton modality
from RGB data in research papers [21], [37]. The study in
[21], FGCN employs a multi-stage progressive approach via
Feedback Graph Convolutional Networks for spatial-temporal
feature extraction.The research in [37] introduces RS-GCN
models, featuring a multi-stream graph convolutional network
(GCN) to reduce noise and enhance discriminative features
across skeleton joints for improved action model robustness.

C. Transfer Learning for Gesture Recognition

In recent years, transfer learning has gained significant
traction in various research papers, addressing classification
challenges by leveraging pre-trained models. Transfer learning
involves training an agent on a source task and then using its
learned features to improve performance on a target task [30].
The process often entails transferring parameters and models
from a convolutional neural network trained on a large dataset
to a smaller gesture dataset. Numerous research papers [38],
[39], [9], [22], [23], [40] have explored different transformers
for recognition. A transfer learning-based method for recognis-
ing gestures in study [27] that uses the AlexNet network model
and convolution layer weight parameters from large datasets
got very good results. In [38], a lightweight VGG16 feature
extractor and Random Forest ensemble classifier were used to
focus on VGG16 layers. Transfer learning is used to avoid
underfitting, and a 99.89% accuracy rate is reached. The study
in [38] presents a fine-tuned VGG19 model for static gesture
recognition, combining multiple training stages. In study [9],

www.ijacsa.thesai.org 1426 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

TABLE I. GESTURE RECOGNITION DATASETS

Database Samples Labels Subject Scenes Modalities Task Ref.
Ego Gesture 24,161 83 50 6 RGB-D Classification detection [28]
NV Gesture 1,352 25 —- Multi RGB-D Classification+detection [29], [26], [30]
DHG-H128 175 14 —- —— SKELETON Classification [31]

REHAP 600,000 —– —— ——- RGB-D Classification [7]

TABLE II. DEEP LEARNING ALGORITHM FOR GESTURE RECOGNITION

Model Modality Data No. gestures Stream Fusion Stage Technique ACU Ref Year
3DCNN RGB-D Manually 7 1 Decision 1 Geometric 92.60% [27] 2020
3DCNN RGB-D Manually 7 1 Decision 1 Geometric 97.12 [14] 2020
3DCNN RGB-D Manually 7 1 Decision 1 Geometric 92.60 [32] 2020
3D-CNNs RGB-D+OPTICAL FLOW Ego-Gesture 50 1 Data-level+decision level 1 MTUT 92.48 [30] 2022
3D-CNNs RGB-D Fine Gym 99 1 Decision level 2 Heatmap 94.3% [33] 2021
CNN Skelton Penn action 15 3 Feature level 1 Heatmap 98.19% [34] 2021
Faster CNN-bi RGB+estimate poes DHG-H128 10 2 Feature-decision 2 —— 92.4 [31] 2022
Lstm (GL-Lstm) Human Skelton NTU 60 1 Feature-level 2 gematric 98.6% [35] 2020
Lstm (STSNN) RGB+Optical flow 20N-gesture 27 3 Data level Feature level 2 ——– 95.73% [18] 2021
LSTM Media Pipe RGB ASL 30 1 ——– 1 ———- 99% [27] 20
3DCNN-LSTM RGB 22 participates 27 3 Feature level 2 ——– 93.95 [36] 2020
GCNN (FGCN) Skelton NTU-RGB+D 60 2 Decision 1 Zooming 96.25% [21] 2020
GCNN (RC-GCN) Skelton NTU-RGB+D 60 3 Data level-Feature level 1 ——– 80% [37] 2020

Alex Net RGB
Static Manually 5 1 SoftMax 1 ——- 99% [27] 2019

VGG16+RF RGB
Static NUS hand 10 1 Decision 2 ——– 99.89% [38] 2022

VGG19 RGB
+RGB-D ASL 2 Feature-Level 1 ——— 94.8% [39] 2019

ALEX-NET RGB Manually 2 1 SoftMax 1 GMM 91% [9] 2019
VGG19 RGB Static LIS 26 1 SoftMax 1 Cross-Entropy 99% [22] 2020
Dense Net RGB Manually 12 1 SoftMax 1 HOS/SVM 95.70% [23] 2021
VGG19+ logistic regression YouTube YouTube 11 1 Feature level 2 10-fold 98.49% [40] 2021

used a deep CNN model and a transfer learning approach for
driving-related activity recognition. The model segments raw
RGB images using a GMM algorithm to improve identification
accuracy. The study in [23] observes higher test accuracy on
single-user datasets but recommends caution when interpreting
these results. In study [27], MediaPipe hand landmarks were
applied in addition to LSTMs for effective gesture recognition,
achieving a high accuracy rate of 0.99.

Additionally, [43], utilised the Pilled dataset to train object
detection methods like RetinaNet, SSD, and YOLO v3, with
YOLO v3 demonstrating faster convergence and training time.
MediaPipe, an open-source framework developed by Google,
illustrated in Fig. 1, offers versatile machine-learning solutions
for real-time pose, hand movement, and facial landmark de-
tection [44]. MediaPipe’s holistic pipeline is used to identify
landmarks from the face, hands, and body pose, particularly for
hand- and finger-tracking solutions [44]. MediaPipe Holistic
Hands detects approximately 21 3D hand landmarks in real-
time, combining a palm detection model with hand keypoint
localization [44]. The framework is designed for processing
perceptual data, including images, videos, and audio, using
machine learning to achieve real-time hand tracking and ges-
ture recognition.

D. Discussion

Deep learning has taken a prominent role in gesture recog-
nition, particularly outperforming traditional machine learning
methods. Skeleton-based models, favored for their robustness
in dynamic and complex environments, have seen substantial
adoption in computer vision, especially when coupled with
deep learning techniques [21], [37]. Graph Convolutional Net-
works (GCNs) play a pivotal role in this context. Transformer-

Fig. 1. Framework for MediaPipe.

based models have shown their effectiveness, especially in
large-scale databases [27]. While many studies employ trans-
formers on RGB data with limited attention mechanisms, some
explore the potential of attention transformers in skeleton data,
as seen in by [23] where they extract skeleton data from RGB
using MediaPipe. A noteworthy observation is that decision
fusion at the last layer consistently outperforms data-level and
feature-level fusion methods, achieving an accuracy of 96%, as
illustrated in Fig. 2. Additionally, descent transfer learning has
proven superior to models, as illustrated in Fig. 4. Hence, this
result highlight its potential in enhancing gesture recognition
performance

III. METHODOLOGY

A. Problem Formulation and General Framework

The overall framework consists of two key experiments. In
the first experiment, we perform video frame-based analysis

www.ijacsa.thesai.org 1427 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

Fig. 2. Gesture recognition performance depends on the type of fusion.

Fig. 3. Overarching framework for our proposed gesture recognition
performance.

utilizing various feature extraction models, such as MobileNet,
VGG19 (with attention), Densenet121 (with attention), and Re-
senet50 (with attention). The second experiment centers around
skeleton-based gesture recognition, employing the MediaPipe
library to process video frames. Within this experiment, three
data modules—GRU, LSTM, and transformer—are utilized.
These models undergo training and fine-tuning with suitable
datasets, and their performance is evaluated based on accuracy
metrics.

These models are pre-trained and utilize the MediaPipe
library for the detection of hand landmarks (see Fig. 6) and
poses, facilitating the process of gesture recognition. The
architectural layout of these proposed models is illustrated in
Fig. 2. The model workflow typically involves a sequence of
raw images, usually consisting of around 30 frames.

Fig. 3 illustrates the overarching framework for our pro-
posed gesture recognition approach. The process begins with
initial preprocessing steps, where frames from the database are
resized. Subsequently, these resized frames are passed through
the MediaPipe library, which extracts landmarks from RGB
models. The database is then split into training and testing
subsets. The general framework includes three different model
experiments, each of which includes an evaluation stage.

In the first experiment, the initial model is trained using
transfer learning with VGG19, which does not incorporate
attention mechanisms. The architecture of the transfer learning
VGG19 is outlined above, and Fig. 11 provides a visual

Fig. 4. Gesture recognition performance depends on the transfer learning
used.

representation of the model pipeline. Accuracy is evaluated
following this experiment.

The second experiment involves training the database
with the DenseNet121 architecture, which incorporates atten-
tion mechanisms. The DenseNet121 architecture is described
above, and it consists of dense blocks, transition layers, ReLU
activation functions, 3D-Averagepooling layers, and fully con-
nected layers. Fig. 12 illustrates the layer pipeline for this
model. Testing is carried out, and accuracy is measured.

The final experiment trains Model 3, which is passed
through DenseNet121 with an added self-attention block. The
self-attention architecture is detailed in this paper, and a step-
by-step implementation is presented.

1) Insert feature map
2) Initialize weight
3) Derive key, query, and value
4) Calculate attention scores
5) Calculate SoftMax
6) Multiply scores with values
7) Sum weighted values to get output.
8) Fully connected and SoftMax test and compare these

Models.

B. Proposed Transformer based on Pixel Intensity and Skele-
ton

1) Feature Extractor Layers: The feature extractor in our
study is initialised with pre-trained weights obtained from
the ImageNet dataset [45]. We have removed the top layer
of the network for our specific task. Our input images are
standardized to a fixed size, with a height of 224 pixels and
a width of 224 pixels, and they are represented in the RGB
color space (3 channels).

For feature extraction, we employed three distinct tech-
niques utilizing well-established convolutional neural network
architectures: VGG19, DenseNet121, and ResNet50. These
architectures have demonstrated strong performance in various
computer vision tasks and were chosen to capture diverse
image features relevant to our research.

2) Feature Extraction by VGG19:

• Convolutional layer with 64 filters of size 3*3, stride
of 1, and padding of 1.

www.ijacsa.thesai.org 1428 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

• Convolutional layer with 64 filters of size 3*3 stride
of 1, and padding of 1.

• A max pooling layer with assize 2*2 and stride of 2
is applied to reduce the spatial dimensions by half.

• A convolutional layer with 128 filters of the size of
3*3, a stride of 1, and padding of 1.

• Convolutional layer with 128 filters of size 3*3, a
stride of 1, and padding of 1.

• Max pooling layer with a pool size of 2*2 and stride
of 2 is applied to reduce the spatial dimensions by
half.

• Convolutional layer with 256 filters of size 3*3, stride
of 1, and padding of 1.

• Convolutional layer with 256 with filters of size 3*3,
stride of 1, and padding of 1.

• Convolutional layer with 256 filters of size, stride of
1, and padding of 1. A

• Convolutional layer with 256 filter size 3*3, stride of
1, and padding of 1.

• Max pooling layer: Another max pooling layer with a
pool size of 2*2 and stride of 2 is applied to reduce
the spatial dimensions by half.

• Convolutional layer with 512 filters of size 3*3, stride
of 1, and padding of 1.

• Convolutional layer with 512 filters of size 3*3, stride
of 1, and padding of 1.

• Convolutional layer with 512 filters of size 3*3, stride
of 1, and padding of 1.

• Convolutional layer with 512 filters of size 3*3, stride
of 1, padding of 1.

• Max pooling layer with a pool size of 3*3 and stride
of 2 is applied to reduce the spatial dimensions by
half.

3) Feature Extractor by DenseNet121: The second-stage
feature extractor utilized in our study employs DenseNet121,
a convolutional neural network architecture introduced by [46].
This architecture, comprising a total of 6.9 million param-
eters, has consistently demonstrated state-of-the-art perfor-
mance on several image classification benchmarks, including
the renowned ImageNet dataset.

DenseNet121 is characterized by a unique structure con-
sisting of multiple convolutional layers organized into three
dense blocks. Within each dense block, the convolutional
layers are intricately connected through dense connections,
promoting rich feature reuse and gradient flow throughout
the network. Following each dense block, the feature maps
undergo processing through a transition layer. These transition
layers serve a dual purpose: they reduce the spatial dimensions
of the feature maps while also compressing their depth

• The first layer is a convolutional layer with 64 filters
of the size of 7*7 and a stride of 2. This layer applies
filters to the input image to extract low-level features.

• Bach normalization layer: A batch normalization layer
is added after the convolutional layer to normalize the
output and improve training stability.

• Activation layer: An activation function (ReLU) is
added after the batch normalization layer to introduce
nonlinearity into the model.

• Max pooling layer: A max pooling layer with a pool
size of 3*3 and stride of 2 is added after the activation
function to reduce the spatial dimensions of the feature
maps.

• Dense block 1: The first dense block consists of
multiple layers that are densely connected to each
other. Each dense block contains serval bottleneck
layers, which are composed of batch normalization,
ReLU, and convolutional layers with smaller filters
(1*1 and 3*3). The output from each bottleneck layer
is concatenated with all previous outputs in the dense
block.

• Transition block 1: A transition block is added after
each dense block to reduce the number of feature
maps and spatial dimensions before passing them on to
the next dense block. The transition block consists of
batch normalization, ReLU, and convolutional layers
with filter size 1*1 for compression, followed by an
average pooling operation with pool size 2*2.

• Dense block 2-4: Three more dense blocks are added
after transition block 1, each consisting of multiple
bottleneck layers that are densely connected.

• transition block 2: Another transition block is added
after the last dense block to further reduce the number
of feature maps and spatial dimensions.

• Global average pooling layer: A global average pool-
ing layer is added after the final transition block to
reduce the spatial dimensions of the feature maps to
a single value per feature map.

4) Features an Extractor by Resenet50: In our third step,
we harness the power of ResNet50 as our chosen feature
extractor. ResNet50 is a distinguished member of the ResNet
family, celebrated for its profound depth and consistent excel-
lence in the realm of computer vision.

With a network architecture comprising 50 layers,
ResNet50 stands as a testament to the innovation brought about
by the ResNet family. Its design incorporates skip connections,
or residual connections, which fundamentally address the issue
of vanishing gradients in exceptionally deep neural networks.
These residual connections empower the training of remark-
ably deep networks, while still preserving their accuracy and
effectiveness The ResNet50 architecture consists of:

• A Convolutional layer with 64 filters and a kernel size
of 7*7.

• A max pooling layer with a pool size of 3*3 and stride
of 2.

• A series of residual blocks (16 in total), each contain-
ing multiple convolutional layers with different filter

www.ijacsa.thesai.org 1429 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

sizes and numbers, as well as skip connections that
bypass some of the convolutional layers.

• A global average pooling layer that averages the
feature maps across spatial dimensions.

5) Features Extractor by MidiPipe: In the fourth step of
our feature extraction process, we employ the use of Medipipe
to extract key points. Developed by Google, MediPipe presents
a versatile pipeline for real-time computer vision and machine
learning applications.

MediPipe operates with a modular approach, where differ-
ent graphs are utilized for specific tasks, each equipped with
its own set of parameters, methods, and output configurations
tailored to the task’s requirements. The functionality and utility
of Medipipe depend on the particular graph chosen for the
task at hand. Detailed information about available graphs, their
usage, and the associated input/output streams for each task
can be found in the comprehensive MediPipe documentation.

6) The Mechanism of Transformer Encoder: By employing
a Transformer Encoder, our model architecture adeptly cap-
tures extensive dependencies within sequential tensors. This
Transformer Encoder is structured with a combination of self-
attention mechanisms and feed-forward layers.

1) Positional Embedding layers: The inclusion of
positional information within the layers enhances
the model’s performance, particularly in sequence-
related tasks such as time series analysis. Position
embeddings serve the crucial role of enabling the
model to differentiate the order and placement of
elements within the sequence. This additional context
empowers subsequent layers to more effectively
capture patterns and dependencies. To calculate the
position encoding for a sequence of frames, we
employ the following formula:

PE(pos, 2i) = sin

(
pos

10000
2i
d

)
PE(pos, 2i+ 1) = cos

(
pos

10000
2i+1

d

)
(1)

Where:
• pos is the position of the frame in the se-

quence (0-indexed).
• i is the index of the dimensionality of the

embedding vector.
• d represents the total dimensionality of the

embedding vector.
2) Multi-head attention layers: The input embedding,

enriched with positional encoding, undergoes a series
of layers featuring self-attention mechanisms. During
the generation of the output representation, the model
assesses the significance of various elements through
self-attention. The multi-head attention mechanism
empowers the model to simultaneously focus on
distinct segments of the tensor sequence. Given a
sequence of tensor frames with a specific length
and dimensional embedding, the multi-head attention
mechanism computes a weighted sum of values based

on the similarity between keys and queries. This
output is subsequently processed through a feed-
forward neural network. Mathematically, the multi-
head attention mechanism can be expressed as fol-
lows:

Q = X ·Wq

K = X ·Wk

V = X ·Wv

(2)

Following this, the positional encodings are propa-
gated through a series of stacked layers, each housing
self-attention mechanism. During the generation of
the output representation, the model meticulously as-
sesses the significance of individual elements through
its self-attention mechanism. What sets it apart is the
multi-head attention mechanism, a pivotal component
that enables the model to simultaneously focus on
various segments within the tensor sequence.
For a given sequence of tensor frames, characterized
by a specific length and dimensional embedding,
the multi-head attention mechanism performs a crit-
ical operation—it computes a weighted sum of the
values, leveraging the similarity between keys and
queries to do so. This calculated output is then
channeled through a feed-forward neural network,
further enhancing the model’s capacity to capture
intricate patterns and dependencies within the data.
Mathematically, the multi-head attention mechanism
can be expressed as follows:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO,

where headi = Attention(QWQ
i ,KWK

i , V WV
i ).

(3)

The multi-head attention is a hyperparameter. Each
attention head will compute self-attention scores for
each position in the input sequence using different
learned weights as follows.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (4)

The results from each attention head are merged
and then processed through a linear layer, yielding
the ultimate output of the multi-head attention layer.
Throughout the training process, the model refines
its understanding by iteratively adjusting the weights
for each attention head and the linear layer using
backpropagation. These dynamically learned weights
empower the model to simultaneously focus on var-
ious aspects of the input sequence, fostering the
computation of intricate relationships across different
positions within the sequence.

3) Feed-Forward Neural Network: Following the self-
attention layers, each position within a sequence
undergoes individual processing via a feed-forward
network, consisting of fully connected layers with
non-linear activation functions. The class encapsu-
lates the essential operations required to encode an

www.ijacsa.thesai.org 1430 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

input sequence using self-attention and feed-forward
mechanisms within the transformer model.
Subsequently, the encoder’s output is subjected to a
global max-pooling layer, followed by the application
of a dropout rate of 0.5. Finally, a dense layer with
softmax activation is employed, generating probabil-
ities for class recognition. The model is compiled
using the Adam optimizer with a learning rate set
to 0.0001, and it employs a categorical cross-entropy
loss function for training.

IV. EXPERIMENTAL SETUP

A. Dataset

The dynamic gesture database is an open-source dataset
of a size 2GB. The file contains a ‘train’ and a ‘test’ folder
with two CSV files for the two folders. These folders are in
turn divided into subfolders where each subfolder represents a
video of a particular gesture. Each subfolder, a video, contains
30 frames (or images). Note that all images in a particular
video subfolder have the same dimensions, but different videos
may have different dimensions. Specifically, videos have two
types of dimensions - either 360x360 or 120x160 (depending
on the webcam used to record the videos). Hence, you will
need to do some pre-processing to standardize the videos.

• Thumbs Up: Increase the volume.

• Thumbs down: Decrease the volume.

• Left swipe: ‘Jump’ backwards 10 seconds

• Right swipe: ‘Jump’ forward 10 seconds

• Stop: Pause the movie

Fig. 5. Body landmarks extracted from media pipe library.

B. Baseline

The two models will be used to be compared next term.
Conv3D and 3DCNN+LSTM have the accuracy of Conv3D
and 3DCNN with LISTM. For the research paper model, the
first model is Conv3D applied to RGB-D and achieved 81%
accuracy. The second model, 3DCNN+LSTM also applied to
RGB-D and achieved 70% accuracy; it was applied to the same
Database as the research paper.

Fig. 6. Hand landmarks extract from mediapipe library.

C. Resources, Materials and Tools

In this research, we employ a range of valuable resources.
Our experimental platform of choice is Google Colab, where
we utilize Python 3.10. The hardware configuration features
an Intel Core i10 processor complemented by 24GB of RAM.
Our deep learning endeavors are powered by the TensorFlow
library, Version 3.9, enabling us to construct and train models
effectively. TensorFlow offers a versatile suite of components,
including layers, optimizers, evaluation metrics, and essential
elements like transformer encoders and MLP layers. Among its
many components, we harness MultiHeadAttention, Dropout,
LayerNormalization, Conv1D, Dense, and others to tailor our
models precisely to our needs. Furthermore, we incorporate
the Medipipe library, an essential tool for extracting human
poses from frames, enhancing the depth and richness of our
research.

D. Evaluation

In our assessment of the proposed dynamic gesture recog-
nition system, we employ a comprehensive range of evaluation
measures based on the four primary outcomes used to evaluate
classifiers: true positives, false positives, true negatives, and
false negatives. These measures allow us to gauge the system’s
effectiveness thoroughly.

One of the key metrics used in evaluating the system’s
performance is accuracy, also known as the recognition rate.
To determine accuracy, we divide the number of correctly
classified instances of a particular gesture by the total number
of instances of that specific gesture. This fundamental measure
provides insights into the system’s ability to correctly identify
and classify gestures within the given dataset as show in Eq.
(5).

Accuracy =
Correctly Recognized Samples

Total Samples
× 100 (5)

Another key evaluation metric is the F1-score, derived from
the harmonic mean of precision and recall, which assigns
equal importance to both metrics in its calculation. It falls
within the range of 0 to 1, with 1 representing an ideal
score, signifying flawless precision and recall. A higher F-
score signifies superior performance, reflecting excellence in
both precision and recall. The formula for F1-Score is shown in
Eq. (6). Note that the Recognition Rate is the total number of
correctly identified probe images divided by the total number
of probe images.

www.ijacsa.thesai.org 1431 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

TABLE III. RIGHT ARM & HAND POSE LANDMARKS USED IN GRU, LSTM, TRANSFORMER

MediaPipe Skeltone Landmarks Area Landmarks Dimensions Attributes

Body Pose Right arm, wrist, 3 fingers 12, 14, 16, 18, 20, 22 x, y, z 18
Body Pose Right shoulder & elbow (12, 14, 24), (14, 12, 16) radians* 2
Hand Pose Full Hand 1 to 21 x, y, z 63

83

TABLE IV. RIGHT ARM & HAND POSE LANDMARKS USED IN TRANSFORMER (MID BODY)

Media Pipe Skeltone Landmarks Area Landmarks Dimensions Attributes

Body Pose Left & right arm and mid-body 11 to 24 X,Y, Z 56
Body Pose Right/left shoulders & elbows (12,14,24)(14,12,16) (12,11,15),(11,13,23) radians* 4

60

F1− score = 2× precision · recall
precision + recall

(6)

V. EXPERIMENTS AND RESULTS

The feature extractor is initialized with pre-trained weights
obtained from the ImageNet dataset, with the top layer re-
moved. The input shape is defined as (image height = 224,
width = 224, channels = 3). Hyperparameters are predefined
parameters configured prior to the learning process, influencing
how the model transfers knowledge from one task to another.
In this study, we partitioned our dataset into distinct training
and testing subsets, encompassing 85% (663 instances) and
15% (100 instances) of the video data, respectively. Table V
shows the hyperparameters used for the experiment.

TABLE V. HYPERPARAMETERS AND VALUES

Hyperparameter Value
Optimizer Adam
Activation functions RELU
Last Activation functions Softmax
Training data 85%
Test data 15%
Data Augmentation Rotation
Learning rate 0.001
Number of Epochs 100

A. Gesture Recognition by Frame-based (pixel intensity)

1) Transfer Learning VGG19 With Transformer Encoder:
Our approach commenced with the integration of a pre-
trained VGG19 model from the Keras deep learning library
is illistrated in Fig. 7. To tailor this model for video se-
quence analysis, we meticulously adjusted the input layer to
accommodate sequences of 30 frames, each characterized by
dimensions of 224× 2224 pixels. To streamline computation,
we strategically froze all layers of the VGG19 architecture
except for the final layers, which processed the 512 feature
maps extracted from each of the 30 frames.

Subsequently, a transformer encoder is incorporated as
block sourced from TensorFlow. This encoder block consists
of multiple layers, integrating self-attention mechanisms and

(a) Transfer learning with transformer encoder

(b) Skeleton-based gesture recognition with transformer encoder.

Fig. 7. General framework for dynamic gesture recognition.

feedforward neural networks. The preprocessing entailed the
incorporation of positional embeddings, followed by multi-
head attention mechanisms with a dropout rate of 0.3. Our
experimentation involved varying the number of heads across
settings, including 1, 2, 4, 6, and 8. The sequence length was
consistently set to 512, and we adjusted the dense dimension
accordingly to enhance model performance.

Normalization techniques are applied after the multi-head
attention layers to ensure stability during training. Following
this, we channeled the encoder’s output through a global max-
pooling layer, introducing a dropout rate of 0.5 for regu-
larization purposes. This was concluded with a dense layer
employing softmax activation to yield probabilities for class
recognition. To compile the model, the Adam optimizer is used
with a learning rate of 0.0001. The categorical cross-entropy
loss function is harnessed. This meticulously engineered ar-
chitecture and training process aim to optimize our model’s

www.ijacsa.thesai.org 1432 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

performance for the task at hand.

2) Transfer Learning DensNet121 With Transformer En-
coder: We applied a similar technique to DenseNet121. The
feature extractor was constructed using Keras’ DenseNet im-
plementation, which had been pre-trained on the ImageNet
dataset. We removed the final classification layer to fine-tune
the model and utilized global max pooling as the feature
extractor’s output by setting the pooling parameter to ‘max.’
Input size was set again to 224× 2224 pixels.

We then processed this data, which had dimensions of (663,
30, 1024), by passing it through a custom position embedding
layer in TensorFlow. This layer accepts sequences of frames
and applies positional embeddings. The positional embeddings
were learned through embedding layers with an input di-
mension of 1024. Next, the data was processed through a
custom ‘Transformer Encoder’ layer in TensorFlow. This layer
incorporated a multi-head attention mechanism with varying
numbers of heads (1, 2, 4, 6, and 8) and key dimensions set
to 4. Afterward, residual connections were introduced using
‘LayerNormalization.’

Following the ‘Transformer Encoder,’ the output underwent
further processing. It passed through a feedforward neural
network with two ‘Dense’ layers, with another round of
residual connections using ‘LayerNormalization.’ The output
of the ‘Transformer Encoder’ was further refined through a
1D global max-pooling layer, a dropout layer with a rate of
0.6, and a dense output layer with softmax activation.

To complete the model, we compiled it using the Adam
optimizer and utilized a sparse categorical cross-entropy loss
function. The model’s performance was evaluated using met-
rics such as F1 score, accuracy, and others.

3) Transfer Learning Resenet50 With Transformer En-
coder: To process sequential frames through ResNet-50, a
deep convolutional neural network implemented using the
TensorFlow deep learning framework, we followed a similar
systematic approach. The ResNet-50 model, pre-trained on the
ImageNet dataset and with its top classification layer removed,
was employed. We specified ‘average’ pooling and set the input
shape as (224, 224, 3). Each frame resulted in 2048 features
after ResNet feature extractor.

Subsequently, the data underwent position embedding
through custom layers, a critical step in distinguishing posi-
tions within the sequence and capturing temporal dependen-
cies. Following this, the data was directed to a transformer
encoder, implemented as a custom Keras layer. This encoder
featured multi-head attention with variable numbers of heads
(1, 2, 4, 6, 8) and key dimensions set at 4, along with the
incorporation of residual connections through ‘LayerNormal-
ization.’

The primary objective of the transformer encoder was
to encode input sequences by concurrently attending to all
positions, thereby learning representations that encompass both
local and global dependencies. The multi-head attention mech-
anism facilitated the capture of diverse relationships across
different positions within the sequence. The dense projection
introduced non-linear transformations before undergoing fur-
ther normalization.

The output from the ‘TransformerEncoder’ layer was sub-
sequently subjected to a 1D global max-pooling layer, followed
by a dropout layer (rate = 0.6), and ultimately a dense output
layer with softmax activation. For model compilation, we
employed the Adam optimizer and utilized a sparse categorical
cross-entropy loss function. The model was rigorously evalu-
ated using F1 score, and accuracy.

B. Gesture Recognition by GRU, LSTM, and Transformer
based on the Skeleton

1) Media Pipe with GRU: Leveraging Mediapipe library,
we utilize pre-trained models designed for the estimation of
human body pose based on video frames. Each frame of the
video undergoes processing, resulting in the creation of a set
of key points that collectively represent the skeleton. These
key points effectively capture the spatial configuration of the
body joints.

Our model architecture consists of multiple GRU (Gated
Recurrent Unit) layers, which are followed by dense layers.
The first GRU layer encompasses 64 units and returns se-
quences. We employ the Rectified Linear Unit (ReLU) activa-
tion function in this layer. The second GRU layer, consisting
of 128 units, similarly returns sequences. The third GRU layer
comprises 64 units.

After the GRU layers, we introduce three dense layers,
each with varying numbers of units: 64, 32, and the final layer
with five units dedicated to gesture recognition. The ultimate
dense layer utilizes the softmax activation function, producing
the output layer responsible for gesture classification.

2) Mediapipe with LSTM: The model receives as input a
sequence of video frames and employs a structured architecture
comprising five LSTM units. Each LSTM unit is designed with
two LSTM layers: one dedicated to processing upper features
and the other for lower features. These LSTM units effectively
capture the spatial configuration of the body joints.

Within this model, multiple LSTM layers are employed,
with each LSTM unit contributing to the overall sequence
processing. The outputs from these LSTM units are concate-
nated and subsequently passed through a fully connected layer,
culminating in the recognition of the final five gestures. The
ultimate dense layer employs the softmax activation function to
generate the output layer, responsible for gesture classification.

3) MediaPipe with a Transformer: This experiment is
designed to assess the performance of a transformer-encoder
model, leveraging skeleton key point coordinates extracted
from video frames. The model architecture has a transformer-
encoder that works with frames in a sequence and then a
multi-layer perceptron (MLP) that is connected to it through
a feed-forward layer. Key point features, derived from joints,
are extracted using the Medipipe library, as illistrated in Fig. 5
and 6. Details regarding the landmark features are illustrated
in Table III and IV.

Then, the data goes through a position embedding layer
and is put through multi-head attention mechanisms that have
certain hyperparameters, such as a head size of 2 and a
range of heads (1, 2, 4, 6, 8) for each attention block.
Layer normalization is applied to enhance model stability and
convergence.

www.ijacsa.thesai.org 1433 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

Following the attention blocks, feed-forward layers with
two dense layers employing ReLU activation functions are
applied. Global Average Pooling is employed to reduce data
dimensionality while retaining critical information by aggre-
gating output representations across time steps. Subsequently,
a series of fully connected layers follow the pooling layer.

Finally, the model’s output tensor, featuring a shape corre-
sponding to five distinct classes, is generated through a dense
layer utilizing softmax activation. Training is accomplished
using the Adam optimizer with a learning rate set to 0.001, and
the model employs sparse cross-entropy loss as its objective
function.

VI. RESULTS AND DISCUSSION

The experiment results reveal diverse levels of performance
across the tested models. Accuracy, F1 score (indicating recog-
nition rates for each class), and model parameters are key
aspects to consider when evaluating these models. Parameter
is a transformer model that refers to that model learns from the
training data. these parameters are adjusted during the training.
process to minimize the error loss function and improve the
model’s performance. Increasing the number of parameters
increases the risk of overfitting where the model becomes too
specialized to the training data performance poorly on unseen
data.

A. Comparative between Attention based on (pixel-intensity)
based Video and Key Point based Skeleton

According to the Table VI in our comparative analysis,
it’s evident that model performance varies significantly based
on data type and architecture. Models that rely on pixel
intensity, such as DenseNet121 with attention, VGG19 with
attention, and Resenet50 with attention, excel at capturing
intricate spatial details from video frames. However, they tend
to require a higher number of parameters and achieve relatively
lower accuracy when compared to skeleton-based models,
which include LSTM, GRU, and the transformer. Interest-
ingly, the skeleton-based models achieve comparable accuracy
with significantly fewer parameters. Among the skeleton-based
models, the transformer with attention stands out due to its
remarkable ability to capture long-range dependencies and
concentrate on relevant skeleton data. Consequently, it exhibits
high accuracy, making it a promising choice for tasks requiring
precise recognition and classification

B. Comparative between Densnet-121 and Resenet50 and
VGG19 for Extract Features

In Table VII, the experiment results vividly illustrate
the varying performance of the evaluated models. MobileNet
stands out with an accuracy of 0.8312 and an F1 score of 0.831.
On the other hand, VGG19 with attention exhibits an accuracy
of 0.73 and an F1 score of 0.7254. Notably, VGG19 lacks
an explicit attention mechanism, which hinders its capability
to focus on pertinent information while suppressing noise or
irrelevant features within the input data.

DenseNet121 with attention emerges as a top performer,
achieving an impressive accuracy of 0.91 and an F1 score of
0.9094. This excellence can be attributed to the combination

of DenseNet’s robust feature extraction capabilities with atten-
tion mechanisms that emphasize relevant information through
dense connections. This approach allows the model to leverage
information from earlier layers to compute subsequent layer
features, facilitating the capture of both low-level and high-
level features and enriching information throughout the model.

Similarly, ReseNet50 with transformer encoder achieves
remarkable accuracy (0.88) by leveraging the advantages of
residual connections and attention mechanisms to capture
intricate frame details effectively. This combination enhances
the model’s ability to understand and interpret complex visual
data.

In summary, the experiment results underscore the signif-
icant impact of attention mechanisms on model performance,
with DenseNet121 and ReseNet50 demonstrating the potential
of combining robust feature extraction and attention to achieve
superior accuracy.

C. Comparative between Attention by Sequence (LSTM and
GRU) and Parallel Attention by (Transformer Encoder)

The GRU model attained an accuracy of 0.7778 and an
F1 score of 0.7718, with a parameter count of 0.140 million.
In contrast, the LSTM model demonstrated superior perfor-
mance, achieving an accuracy of 0.968 and an F1 score of
0.966, while having a parameter count of 0.00945 million.
Notably, the GRU model exhibited the lowest accuracy among
the three models, which can be attributed to its relatively
simpler architecture and fewer parameters. This simplicity may
hinder its ability to capture complex patterns and long-range
dependencies present in video skeleton data.

Conversely, the transformer model outperformed both the
GRU and LSTM models with an accuracy of 0.993 and an im-
pressive F1 score of 0.992. The transformer’s strength lies in its
ability to weigh the importance of different tensor sequences,
enabling it to focus on relevant features and effectively capture
long-range dependencies. Understanding the temporal relation-
ships between various joint points is particularly helpful in
the context of skeleton data from videos (see Table VIII)
using the transformers’ attention mechanism. Unlike recurrent
models such as GRU and LSTM, transformers can process
tensor sequences in parallel, facilitating faster computation and
leveraging this advantage for enhanced performance.

D. Comparative between Skeleton-based Transformer-Encoder

Table IX illustrates the impact of various body poses and
hand poses on attention mechanisms. When using a long tensor
sequence that includes the middle body and arms, the model
encountered challenges in accurately predicting hand poses,
leading to lower accuracy. In contrast, focusing the attention
on the right arm and full hand resulted in a more precise and
effective recognition rate. Additionally, the first two models
employed a single long tensor (frames*frames) for each video,
while the third model processed 30 frames with feature-length,
leading to enhanced accuracy in the attention model.

Fig. 8 shows the accuracy of different models over
100 epochs, categorized by architecture and data type. The
plot showcases how model accuracy evolves with increasing

www.ijacsa.thesai.org 1434 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

TABLE VI. COMPARATIVE BETWEEN ATTENTION BASED ON (PIXEL-INTENSITY) BASED VIDEO AND KEY POINT BASED SKELETON

Model Data Type Pretrained Checkpoint Parameters (M) Input Size Learning Rate (LR) Accuracy

MobileNet Video Frames mobilenet 4.103 224x224 0.001 0.825
VGG19 + Transformer Video Frames Vgg19 1.075 224x224 0.001 0.730
DenseNet + Transformer Video Frames Densenet121 4.247 224x224 0.001 0.910
ResNet + Transformer Video Frames Resenet50 16.883 224x224 0.001 0.880
GRU Skeleton from Video None (GRU layers) 0.140 83 sk. plt 0.001 0.772
LSTM Skeleton from Video None (LSTM layers) 0.009 83 sk. plt 0.001 0.966
Transformer Enconder Skeleton from Video None (Attention Layers) 0.024 83 sk. plt 0.001 0.982

TABLE VII. COMPARATIVE ANALYSIS OF VIDEO FRAMES-BASED MODELS FOR GESTURE RECOGNITION

Model Data Type Pretrained-Checkpoint Parameters (M) Input Size LR Accuracy F1

MobileNet Video Frame Mobilenet 4.103 224x224 0.001 0.8312 0.831
VGG with attention Video Frame Vgg19 1.075 224x224 0.001 0.73 0.7254
DenseNet with attention Video Frame Densenet121 4.247 224x224 0.001 0.91 0.9094
ResNet with attention Video Frame Resenet50 16.883 224x224 0.001 0.88 0.8782

TABLE VIII. COMPARATIVE PERFORMANCE OF MODELS TRAINED ON SKELETON DATA FROM VIDEOS

Model Data Type Pretrained-Checkpoint Parameters (M) Input Size LR Accuracy F1

GRU Skeleton from Video None (GRU layers) 0.140 83 sk. plt 0.001 0.7778 0.7718
LSTM Skeleton from Video None (LSTM layers) 0.00945 83 sk. plt 0.001 0.968 0.966
Transformer Skeleton Video None (Attention Layers) 0.02440 83 sk. plt 0.001 0.9815 0.981

TABLE IX. COMPARATIVE RESULTS FOR DIFFERENT MODELS ON BODY-POSE AND HAND-POSE ATTRIBUTES

Model Attributes Hand-Pose Attribute Accuracy F1

Transformer with Atta (middle body n arms)-Long tensor input to attention layer 60* 0 0.779 0.7767
Transformer with Attan (right-arm+full hand)-long tensor input to attn layer 20* 63 0.981 0.981
Transformer with attn (right arm-full hand)-frame-wise input to tensor layer 20* 63 0.993 0.992

epochs. In the video-based gesture recognition category, Mo-
bileNet achieves 0.825 accuracy, while VGG19 with a trans-
former encoder achieves 0.73. DenseNet121 with a transform
encoder stands out with an impressive 0.91 accuracy, and
ResNet with a transformer encoder follows closely at 0.88.
In the skeleton data category, including GRU, LSTM, and
transformer encoder models, which do not use pre-trained
weights, we observe varying performances. GRU achieves
0.732 accuracy with 83 skeleton plots (sk. plt), LSTM achieves
0.8738 accuracy, and the transformer encoder shines with an
impressive 0.99 accuracy.

Fig. 9 centered on the analysis of skeleton-based video
data. The relative effectiveness of the GRU and LSTM models
becomes apparent when compared to the transformer encoder,
as evident from the distinctive green line on the graph.
These models do not rely on pre-trained weights and exhibit
variability in terms of the number of layers and parameters.
Specifically, with 83 skeleton plots (sk. plt) as input data, the
GRU model achieves an accuracy of 0.732, while the LSTM
model attains a higher accuracy of 0.8738. The transformer
encoder surpasses them all with a remarkable accuracy of 0.99

Fig. 10 depicts the accuracy attained by three distinct
models in the recognition of body-pose attributes across 100

training epochs. Notably, among the three models, the trans-
former encoder configured with frame-wise input for ‘right
arm and full hand’ consistently achieves the highest level of
accuracy. The graph visually highlights an initial surge in
accuracy followed by a sustained upward trend

E. Comparative Results for Different Models of Action Recog-
nition

Table X provides accuracy scores for four distinct models
(VGG19, DenseNet121 with transformer encoder, ResNet with
transformer encoder, and MobileNet with transformer encoder)
across various gesture categories.

1) Stop Gesture: Both the DenseNet121 and ResNet mod-
els with attention achieved a perfect accuracy rate of 1.000
in recognizing the “Stop Gesture.” This indicates that these
models accurately identified the stop gesture in all instances,
showcasing the effectiveness of the attention mechanism in
capturing relevant features and patterns.

2) Thumbs Down:: The VGG19 model exhibited the lowest
accuracy at 0.4375 when recognizing the “Thumbs Down”
gesture. This suggests that the model faced challenges in
capturing the distinctive features or patterns associated with
thumbs-down gestures. It implies that VGG19’s architecture

www.ijacsa.thesai.org 1435 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

TABLE X. COMPARATIVE RESULTS FOR TRANSFER LEARNING MODELS WITH TRANSFORMER ENCODER ON GESTURE RECOGNITION

Action VGG19 Densenet121 with Attention ResNet with Attention MobileNet

Left-swipe 0.7222 0.7778 0.7222 0.7879
Right-swipe 0.7826 0.913 0.8261 0.8235
Stop-Gesture 0.8122 1 1 0.7742
Thumbs-Up 0.8095 0.9524 0.9048 0.9697
Thumbs-Down 0.4375 0.875 0.9375 0.7931

Fig. 8. Performance over 100 epochs using transfer learning with attention
mechanisms.

Fig. 9. Performance over 100 epochs using attention-based joint extraction
from frames in the skeleton.

might not be sufficiently intricate to capture the nuances of
this specific gesture.

For the skeleton-based models (GRU, LSTM, and Trans-
former), the highest accuracy was achieved by both LSTM and

Fig. 10. Performance over 100 epochs, focusing on changes in joint training
for the skeleton.

Transformer models in recognizing the “Stop Gesture,” with a
perfect accuracy score of 1.000 as shown by Table XI. Sim-
ilarly, both LSTM and the Transformer demonstrated perfect
accuracies of 1.000 in identifying the “Thumbs Up” gesture.
However, the GRU model exhibited the lowest accuracy at
0.5517 when recognizing the “Thumbs Down” gesture. This
variance in performance suggests that while LSTM and Trans-
former models excel at capturing long-term dependencies,
the GRU model may struggle to capture complex temporal
patterns, despite its recurrent neural network nature similar to
LSTM.

Table XII demonstrates variations in model performance
driven by specific attributes related to body and hands. Overall,
the model with attention focusing on the right arm and full
hand with frame-wise input to the tensor layer outperformed
both the model with attention on the middle body and arms
and the model with attention on the right arm with full-hand
long tensor input to attention.

Fig. 11 shows the model performance based on pixel inten-
sity for four different models: DenseNet121 with transformer
encoder, ResNet50 with transformer encoder, VGG19 with
transformer encoder, and MobileNet with GRU. The graph
highlights the consistently strong performance of DenseNet121
with attention across various gestures, consistently achieving
high accuracy levels. ResNet with attention also demonstrated

www.ijacsa.thesai.org 1436 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

TABLE XI. COMPARATIVE RESULTS FOR TRANSFORMER ENCODER BASED ON SKELETON ON GESTURE RECOGNITION

Action GRU LSTM Transformer
Left swipe 0.8889 0.9222 0.9944
Right swipe 0.9677 0.9513 0.9957
Stop Gesture 0.7576 1 1
Thumbs Up 0.7273 0.9467 1
Thumbs Down 0.5517 0.9818 0.9688

TABLE XII. ACCURACY PERFORMANCE FOR EACH CLASS DEPENDING ON KEY-POINT

Action Transformer with Attn (mid-
dle body n arms)

Transformer with Atta (right-
arm+full hand)

Transformer with Attention (right-
arm+full hand) frame-wise input to ten-
sor layer

Left-Swipe 0.7833 0.9667 0.9667
Right-Swipe 0.9913 0.9739 1
Stop-Gesture 0.7182 1 1
Thumbs-Down 0.7667 0.9857 0.9952
Thumbs-Up 0.5688 0.9751 1

Fig. 11. Performance based on pixel intensity.

competitive results across most gestures. MobileNet’s perfor-
mance varied depending on the gesture, while VGG19 showed
moderate performance.

Fig. 12, presents the performance of GRU, LSTM, and
Transformer Encoder models for recognizing five different
gestures based on skeleton (key points). The graph reveals
that the Transformer Encoder achieved the highest accuracy of
0.99 for the ‘Left swipe’ gesture, closely followed by LSTM
at 0.9222, and GRU at 0.88. For the ‘Right swipe’ gesture,
the Transformer model demonstrated a remarkable accuracy
of 0.9957, surpassing LSTM with 0.9513 and GRU with
0.9677. Both LSTM and Transformer Encoder achieved perfect
accuracy scores of 1, while GRU achieved a slightly lower
accuracy of 0.7576. Additionally, in recognizing the ‘Thumbs-
Up’ gesture, the Transformer model achieved an accuracy of
1, outperforming GRU with 0.7273 and LSTM with 0.9467.

Fig. 13 presents a comprehensive view of gesture recog-
nition by different models, showcasing varying levels of ac-
curacy across different gestures. In the first set of models
(VGG19, DenseNet121, ResNet, and MobileNet with GRU),
we notice fluctuations in accuracy among various gestures. For

Fig. 12. Performance of models on recognizing the five different gestures
based on the skeleton (key points).

instance, DenseNet121 with attention excels in recognizing
“Stop Gesture” and “Thumbs Up,” while MobileNet performs
exceptionally well in identifying “Left Swipe.”

The second set of models (GRU, LSTM, and Transformer)
also demonstrates variation in accuracy across gestures. No-
tably, the Transformer model consistently exhibits high ac-
curacy, highlighting its effectiveness in gesture recognition.
However, it’s worth noting that GRU and LSTM models
achieve relatively high accuracy for specific gestures like
“Right Swipe” and “Stop Gesture.” Therefore, the choice of
the model should align with the specific gesture recognition
task at hand.

F. Comparative Num-head-att on Pixel Intensity and Key
Point of Coordinate Joint

The Tables (XIII, XIV, XV, XVI ) demonstrate that the
selection of multi-head attention configurations can substan-
tially influence model performance. The choice between using
pixel intensity or joint key points depends on the specific
architecture and data type. For instance, when achieving high
performance, using eight heads is essential for pixel intensity,
whereas only two heads are needed for joint key points.

www.ijacsa.thesai.org 1437 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

Fig. 13. Comparative analysis of model performance for five different
gestures based on both pixel intensity and skeleton (key point) data across

various models.

TABLE XIII. COMPARATIVE WHEN DIFFERENT MULTI-HEAD ATTENTION
IS USED ON TRANSFORMER-ENCODER BY DENSENET121 TRANSFER

LEARNING

Multi-head Attention Par Parameter Acc(%)
1 4,247,561 82
2 8,444,937 88
4 16,859,689 84
6 33,629,193 90
8 33,629,193 96

VII. CONCLUSION

Dynamic gesture recognition is a key enabler for touchless
interaction systems, offering numerous benefits such as natural
and intuitive user experiences, enhanced hygiene and safety,
and improved accessibility. By leveraging this technology, de-
velopers can create more engaging, efficient, and user-friendly
systems across various domains, from consumer electronics
and smart homes to healthcare and industrial applications.

This paper conducts a comprehensive review of prior
research in gesture recognition within the domains of machine
learning and deep learning. It scrutinizes these studies based
on modalities, the number of streams, stages employed, and
algorithms utilized. The primary focus of this paper is to
compare the impact of attention mechanisms on performance,
particularly concerning skeleton modality. Evaluation metrics
include accuracy, recall, and precision. Our study aspires to
achieve superior performance compared to existing research
in this area.

In our investigation, we demonstrate the potential of em-
ploying pre-trained models and transformer-based architectures
for both video frame and skeleton-based gesture recognition.
Notably, attention mechanisms applied to keypoint coordinates
yield enhanced performance. While our current study focuses
on sequence data in the spatial domain, future research may
delve into the frequency domain. The objective of this paper is
to provide a comparative analysis of gesture recognition using
video frames and skeletons within a transformer framework.
Our findings enable researchers to make informed decisions
tailored to their specific needs, considering the strengths and

TABLE XIV. COMPARATIVE WHEN DIFFERENT MULTI-HEAD ATTENTION
IS USED ON TRANSFORMER-ENCODER BY DENSENET121 TRANSFER

LEARNING RESNET50

Multi-head Attention Par Parameter Acc(%)
1 16,883,721 60
2 33,667,081 89
4 67,233,801 94
6 100,800,621 90
8 134,367,241 92

TABLE XV. COMPARATIVE WHEN DIFFERENT MULTI-HEAD ATTENTION
IS USED ON TRANSFORMER-ENCODER BY TRANSFER LEARNING VGG19

Multi-head Attention Num Parameters Acc(%)
1 1,075,209 69
2 2,125,321 59
4 4,225,545 78
6 6,325,759 76
8 8,425,993 82

weaknesses of each model.

This study contributes to the field of action recognition by
highlighting the effectiveness of different models and eluci-
dating their architectural distinctions. Future research avenues
could explore hybrid models that combine video frames (pixel
intensity) and skeleton information (key point coordinates).
Additionally, investigating approaches within the frequency
domain, as an alternative to the spatial domain, holds promise
for advancing gesture recognition technology. Another future
direction is to recognize gestures under various conditions,
by using data augmentation techniques to simulate different
lighting conditions, backgrounds, and noise levels. This helps
the model. Also, integrate data from multiple modalities (e.g.,
RGB, depth, infrared, and skeleton data) to provide a more
comprehensive understanding of the gesture. This helps the
model to be more robust to variations in any single modality.

REFERENCES

[1] B. Van Amsterdam, I. Funke, E. Edwards, S. Speidel, J. Collins, A. Srid-
har, J. Kelly, M. J. Clarkson, and D. Stoyanov, “Gesture recognition
in robotic surgery with multimodal attention,” IEEE Transactions on
Medical Imaging, vol. 41, no. 7, pp. 1677–1687, 2022.

[2] R. A. Salvador and P. Naval, “Towards a feasible hand gesture recogni-
tion system as sterile non-contact interface in the operating room with
3d convolutional neural network,” Informatica, vol. 46, no. 1, 2022.

[3] M. Al-Hammadi, G. Muhammad, W. Abdul, M. Alsulaiman, M. A.
Bencherif, T. S. Alrayes, H. Mathkour, and M. A. Mekhtiche, “Deep
learning-based approach for sign language gesture recognition with
efficient hand gesture representation,” IEEE Access, vol. 8, pp. 192 527–
192 542, 2020.

[4] B. Hu and J. Wang, “Deep learning based hand gesture recognition
and uav flight controls,” International Journal of Automation and
Computing, vol. 17, no. 1, pp. 17–29, 2020.

[5] S. Shriram, B. Nagaraj, J. Jaya, S. Shankar, and P. Ajay, “Deep
Learning-Based Real-Time AI Virtual Mouse System Using Computer
Vision to Avoid COVID-19 Spread,” 2021. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560261/

[6] M. Oudah, A. Al-Naji, and J. Chahl, “Hand gesture recognition based
on computer vision: a review of techniques,” journal of Imaging, vol. 6,
no. 8, p. 73, 2020.

[7] K. K. Verma, B. M. Singh, and A. Dixit, “A review of supervised
and unsupervised machine learning techniques for suspicious behavior
recognition in intelligent surveillance system,” International Journal of
Information Technology, vol. 14, pp. 1–14, 2019.

www.ijacsa.thesai.org 1438 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

TABLE XVI. COMPARATIVE WHEN DIFFERENT MULTI-HEAD ATTENTION
IS USED ON TRANSFORMER-ENCODER ON THE SKELETON (RIGHT ARM

WITH FULL HANDS) FRAME-WISE INPUT TO TENSOR LAYER

Multi-head Attention Num Parameters Acc(%)
1 31,881 0.993
2 59,686 0.993
4 115,296 0.991
6 170,906 0.993
8 226,516 0.980

[8] O. Sangjun, R. Mallipeddi, and M. Lee, “Real time hand gesture
recognition using random forest and linear discriminant analysis.” in
HAI, 2015, pp. 279–282.

[9] Y. Xing, C. Lv, H. Wang, D. Cao, E. Velenis, and F.-Y. Wang, “Driver
activity recognition for intelligent vehicles: A deep learning approach,”
IEEE transactions on Vehicular Technology, vol. 68, no. 6, pp. 5379–
5390, 2019.

[10] A. R. Elshenaway and S. K. Guirguis, “On-air hand-drawn doodles for
iot devices authentication during covid-19,” IEEE Access, vol. 9, pp.
161 723–161 744, 2021.

[11] N. Mohammadzadeh, M. Gholamzadeh, S. Saeedi, and S. Rezayi, “The
application of wearable smart sensors for monitoring the vital signs of
patients in epidemics: a systematic literature review,” Journal of ambient
intelligence and humanized computing, vol. 14, pp. 1–15, 2020.

[12] S. N. R. Kantareddy, Y. Sun, R. Bhattacharyya, and S. E. Sarma,
“Learning gestures using a passive data-glove with rfid tags,” in 2019
IEEE international conference on RFID technology and applications
(RFID-TA). IEEE, 2019, pp. 327–332.

[13] S. Ahmed, K. D. Kallu, S. Ahmed, and S. H. Cho, “Hand gestures
recognition using radar sensors for human-computer-interaction: A
review,” Remote Sensing, vol. 13, no. 3, p. 527, 2021.

[14] B. Hu and J. Wang, “Deep learning based hand gesture recognition
and uav flight controls,” in 2018 24th International Conference on
Automation and Computing (ICAC), 2018, pp. 1–6.

[15] O. Güler and İ. Yücedağ, “Hand gesture recognition from 2d images
by using convolutional capsule neural networks,” Arabian Journal for
Science and Engineering, vol. 47, no. 2, pp. 1211–1225, 2022.

[16] W. Zhang and J. Wang, “Dynamic hand gesture recognition based on 3d
convolutional neural network models,” in 2019 IEEE 16th International
Conference on Networking, Sensing and Control (ICNSC). IEEE, 2019,
pp. 224–229.

[17] S. Yuanyuan, L. Yunan, F. Xiaolong, M. Kaibin, and M. Qiguang,
“Review of dynamic gesture recognition,” Virtual Reality & Intelligent
Hardware, vol. 3, no. 3, pp. 183–206, 2021.

[18] W. Zhang, J. Wang, and F. Lan, “Dynamic hand gesture recognition
based on short-term sampling neural networks,” IEEE/CAA Journal of
Automatica Sinica, vol. 8, no. 1, pp. 110–120, 2020.

[19] A. Ulhaq, N. Akhtar, G. Pogrebna, and A. Mian, “Vision transformers
for action recognition: A survey,” 2022.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[21] H. Yang, D. Yan, L. Zhang, Y. Sun, D. Li, and S. J. Maybank, “Feedback
graph convolutional network for skeleton-based action recognition,”
IEEE Transactions on Image Processing, vol. 31, pp. 164–175, 2021.

[22] V. J. Schmalz, “Real-time italian sign language recognition with deep
learning,” in CEUR Workshop Proceedings, vol. 3078. CEUR Work-
shop Proceedings, 2022, pp. 45–57.

[23] J. de Lope and M. Graña, “Deep transfer learning-based gaze tracking
for behavioral activity recognition,” Neurocomputing, vol. 500, pp. 518–
527, 2022.

[24] Y. Zhang, C. Cao, J. Cheng, and H. Lu, “Egogesture: A new dataset and
benchmark for egocentric hand gesture recognition,” IEEE Transactions
on Multimedia, vol. 20, no. 5, pp. 1038–1050, 2018.

[25] O. Köpüklü, A. Gunduz, N. Kose, and G. Rigoll, “Real-time hand ges-
ture detection and classification using convolutional neural networks,” in
2019 14th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2019), 2019, pp. 1–8.

[26] Z. Cao, Y. Li, and B.-S. Shin, “Content-adaptive and attention-based
network for hand gesture recognition,” Applied Sciences, vol. 12, no. 4,
2022. [Online]. Available: https://www.mdpi.com/2076-3417/12/4/2041

[27] X. Wu, X.-r. Song, S. Gao, and C.-b. Chen, “Gesture recognition based
on transfer learning,” in 2019 Chinese Automation Congress (CAC).
IEEE, 2019, pp. 199–202.

[28] Y. Zhang, C. Cao, J. Cheng, and H. Lu, “Egogesture: A new dataset and
benchmark for egocentric hand gesture recognition,” IEEE Transactions
on Multimedia, vol. 20, no. 5, pp. 1038–1050, 2018.

[29] O. Köpüklü, A. Gunduz, N. Kose, and G. Rigoll, “Real-time hand ges-
ture detection and classification using convolutional neural networks,”
2019.

[30] M. Abavisani, H. R. V. Joze, and V. M. Patel, “Improving the perfor-
mance of unimodal dynamic hand-gesture recognition with multimodal
training,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 1165–1174.

[31] Q. Gao, Y. Chen, Z. Ju, and Y. Liang, “Dynamic hand gesture recog-
nition based on 3d hand pose estimation for human–robot interaction,”
IEEE Sensors Journal, vol. 22, no. 18, pp. 17 421–17 430, 2021.

[32] D.-S. Tran, N.-H. Ho, H.-J. Yang, E.-T. Baek, S.-H. Kim, and G. Lee,
“Real-time hand gesture spotting and recognition using rgb-d camera
and 3d convolutional neural network,” Applied Sciences, vol. 10, no. 2,
p. 722, 2020.

[33] H. Duan, Y. Zhao, K. Chen, D. Lin, and B. Dai, “Revisiting skeleton-
based action recognition,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 2969–2978.

[34] H. Wang, B. Yu, K. Xia, J. Li, and X. Zuo, “Skeleton edge motion
networks for human action recognition,” Neurocomputing, vol. 423, pp.
1–12, 2021.

[35] Y. Han, S.-L. Chung, Q. Xiao, W. Y. Lin, and S.-F. Su, “Global spatio-
temporal attention for action recognition based on 3d human skeleton
data,” IEEE Access, vol. 8, pp. 88 604–88 616, 2020.

[36] L. Gionfrida, W. M. Rusli, A. E. Kedgley, and A. A. Bharath, “A 3dcnn-
lstm multi-class temporal segmentation for hand gesture recognition,”
Electronics, vol. 11, no. 15, p. 2427, 2022.

[37] Y.-F. Song, Z. Zhang, C. Shan, and L. Wang, “Richly activated graph
convolutional network for robust skeleton-based action recognition,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 31, no. 5, pp. 1915–1925, 2020.

[38] E. L. R. Ewe, C. P. Lee, L. C. Kwek, and K. M. Lim, “Hand gesture
recognition via lightweight vgg16 and ensemble classifier,” Applied
Sciences, vol. 12, no. 15, p. 7643, 2022.

[39] R. G. Crespo, E. Verdú, M. Khari, and A. K. Garg, “Gesture recognition
of rgb and rgb-d static images using convolutional neural networks,”
IJIMAI, vol. 5, no. 7, pp. 22–27, 2019.

[40] T. Ahmad, J. Wu, I. Khan, A. Rahim, and A. Khan, “Human action
recognition in video sequence using logistic regression by features
fusion approach based on cnn features,” International Journal of Ad-
vanced Computer Science and Applications, vol. 12, no. 11, 2021.

[41] I. Vasilev, D. Slater, G. Spacagna, P. Roelants, and V. Zocca, Python
Deep Learning: Exploring deep learning techniques and neural network
architectures with Pytorch, Keras, and TensorFlow. Packt Publishing
Ltd, 2019.

[42] A. Mujahid, M. J. Awan, A. Yasin, M. A. Mohammed, R. Damaševičius,
R. Maskeliūnas, and K. H. Abdulkareem, “Real-time hand gesture
recognition based on deep learning yolov3 model,” Applied Sciences,
vol. 11, no. 9, p. 4164, 2021.

[43] L. Tan, T. Huangfu, L. Wu, and W. Chen, “Comparison of retinanet, ssd,
and yolo v3 for real-time pill identification,” BMC medical informatics
and decision making, vol. 21, pp. 1–11, 2021.

[44] B. Subramanian, B. Olimov, S. M. Naik, S. Kim, K.-H. Park, and
J. Kim, “An integrated mediapipe-optimized gru model for indian sign
language recognition,” Scientific Reports, vol. 12, no. 1, p. 11964, 2022.

[45] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.

[46] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

www.ijacsa.thesai.org 1439 | P a g e


