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Abstract—In recent years, many natural disasters have oc-
curred, and rescue robots have been used to gather information
at disaster sites. Rescue robots, particularly crawler type rescue
robots are operated through remote control by their operators via
wireless communication or wired. However, certain robots have
been known to not return owing to tipping over or disconnection
of communication wires caused by missed operations. Therefore,
studies have focused on automatic control of rescue robots.
Adapting the rescue robot for uneven terrain or unexpected
obstacle shape to travel in autonomous control situation is
challenging. It requires complete autonomous control as well as
partial control of the rescue robot, which necessitates assistance
for teleoperation. This study proposed automatic flipper control
of rescue robots using reinforcement learning for stepping over
steps. The proposed method involved designing of the learning
environment, reward setting, and system configuration for rein-
forcement learning. The input data for the training data were
coarse-grained information using a distance sensor, gyro sensor,
and GPS coordinates information. Reinforcement learning was
performed through a physical simulation within an environment
wherein the shape of a step changed once every 100 episodes. The
robot’s compensation was designed to reduce the impact on the
robot’s body by changing the robot’s attitude angle. The learned
knowledge, which is contained action-value function, was reused
to verify that the flipper could be automatically controlled by the
operator when the rescue robot is operated as moving along a
direction remotely, and that the robot could step over steps.

Keywords—Rescue robot; sub-crawler control; reinforcement
learning; physics simulation

I. INTRODUCTION

In recent years, natural disasters as well as chemical, bio-
logical, radiological, nuclear, and explosive (CBRNE) disasters
have become more frequent. Consequently, rescue robots have
been used to gather information at disaster sites [1], [2], [3].
When an operator remotely operates a rescue robot, predicting
the environmental conditions in which the robot will be placed
is challenging. Thus, the operation is often performed in a
complex environment. This places a heavy burden on the
operator, and even a well-trained operator may mishandle the
robot owing to tension and stress, which may result robots
not returning to their original location. Therefore, research on
automatic control or an appropriate control support system of
rescue robots is currently underway to reduce the burden on
operators and to ensure mission success [4], [5].

The operator controls the rescue robot remotely from a
remote location via a control screen, relying on information
obtained from the camera and sensors mounted on the robot.

However, when running on stairs, there is considerable en-
vironmental information that even an experienced operator
must pay attention to and check, which renders teleoperation
difficult. In addition, training is required until the operator
becomes familiar with the operation, which can result in a
shortage of personnel in an emergency. The approach is not
aimed at making the rescue robot operation completely au-
tonomous, but to provide supplementary motion assistance to
reduce the operator’s workload and prevent mishandling, such
as tipping over. In particular, automatic control of flippers has
been studied for more than a decade [6], [7], [8], [9], [10], [11].
Conventional research has proposed active control methods,
such as use of sensors to measure obstacles and road surface
geometry and mechanically calculate flipper control, or the use
of motor torque or contact sensors mounted on crawler belts.
However, these approaches do not discuss the generalization
performance of the method for various environments and its
evaluation.

To address these issues, this study proposed an automatic
control flipper using reinforcement learning (RL). RL is an
algorithm wherein a robot learns the optimal decision making
by updating its action-value function through trial-and-error
behavior. By acquiring and automating flipper control through
RL, the operator can remotely control the rescue robot by
simply specifying the direction of movement. Thus, the robot
can be operated by a non-expert, reducing the workload on the
operator. Furthermore, by coarse-graining the data input during
RL, the training data can be reduced, thereby enabling learning
in a realistic amount of time. In this study, an automatic flipper
controlled by RL was developed, and experiments involving
physical simulations were conducted to confirm whether the
robot could step over steps and the stability of the robot.

The remainder of this paper is organized as follows. Section
II discusses previous and related research. Section III proposes
the method, which is the realization of adaptive behavior by
controlling flippers of the rescue robot obtained through RL.
Section IV presents computer simulation experiments using
physical simulations employing the proposed method, and
usefulness of the proposed method is indicated. Section V
concludes the paper.

II. PREVIOUS RESEARCH

In the rough terrain environment, rescue robots are
equipped with a crawler belt to facilitate their own move-
ment and a crawler belt for overcoming bumps and obstacles
called a flipper or sub-crawler. Including the crawlers and
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flippers required for movement, the rescue robot has 6 DOF,
which is not intuitive for the operator. Therefore, research on
teleoperation assistance in rescue robots, particularly partial
automation of the crawler belt as a moving mechanism, has
been conducted for more than a decade. Ohno et al. and Okada
et al. are proposed active flippers of the rescue robot [6],
[7]. These studies have tested multiple types of steps and
have produced useful results. However, when assuming an
unknown environment such as a disaster site, it is necessary
to verify the effectiveness under various environmental shapes
and conditions. Moreover, there are limits to the evaluation
possible using only real robots.

As a successor to the above research, Rohmer et al. realized
semi-autonomous control method over steps in a crawler type
rescue robot [8], [9]. Similar to the above, an autonomous
control system for the flipper was constructed and its ability
to climb over steps was evaluated. However, this is simply a
function of a part of the entire robot system and has not been
discussed in depth.

Chen et al. and Kamezaki et al. developed arm mounted
crawler type rescue robots [10], [11]. The robot had four
arms and the flipper was highly maneuverable. In study [10],
locomotion control method called compound motion pattern
(CMP) for multi-limb robots was proposed. The actual robot
could realize climbing of steps with semi-autonomous control.
In study [11], instead of the two operators required to remotely
control a robot, Kamezaki et al. developed a system that sup-
ported remote control with one operator and one autonomous
system. These studies have achieved partial automation of
functions for climbing over steps and have achieved various
results. However, the verification of performance on stairs,
uneven terrain, and random obstacle placement remains insuffi-
cient. Moreover, the actual environment is often unpredictable.
Therefore, verification that takes randomness into account is
necessary in the experimental environment, and there are limits
to building a variety of environments in the laboratory, so a
system that has been verified extensively through computer
simulations needs to be applied in the real environment.

On the other hand, a flipper control method using machine
learning has also been proposed, and the results learned using a
physical calculation simulator have been applied to an actual
robot, and very good results have been obtained [12], [13].
However, recent reinforcement learning using deep learning
is high computational cost. Additionally, as sensors such as
LiDAR have become cheaper in recent years, it is now possible
to reflect higher-definition environmental shapes in physical
calculation simulators.

III. PROPOSED METHOD

A. Proposed Method Overview

Previous research has primarily focused on evaluations
such as operations on low stairs, and has not evaluated
operations in environments with various shapes or those that
simulate the actual environment. Furthermore, there is a lack of
comprehensive discussion regarding environmental adaptation
performance.

The overview of the proposed system is presented in Fig.
1. First, the robot model learns the flipper motion in advance

Fig. 1. Overview of proposed method.

through simulation. The learned results are transferred to the
robot model in the practical phase and used when navigating
through obstacles and stairs. Herein, the flipper is not operated
by an operator; rather, it is controlled autonomously according
to the environmental information observed from the sensor.
Therefore, the rescue robot operator only needs to instruct
the robot in the direction of movement, and the rescue robot
can move over obstacles and stairs autonomously by operating
its flippers. Thus, the operator no longer needs to control all
6DOF of the rescue robot, and only the controller is used to
control at most the 2DOF motors that determine the direction
of movement. Consequently, the burden on the operator in
terms of remote operations is reduced.

The novelty of proposed method is that it provides random-
ness to the learning environment during the training stage. In
addition, the actual environmental shape observed by LiDAR is
used for evaluation. On the other hand, reinforcement learning
is an algorithm that can discover solutions to behavioral rules
through trial and error. By combining high-speed repetitive cal-
culations by a computer, physical calculation simulations that
take randomness into account, and reinforcement learning that
can discover solutions, it is possible to give rescue robots un-
precedented environmental adaptation performance. As shown
in Fig. 1, wherein the training environment is a staircase and
the height and depth of the steps of the stairs vary randomly
within a certain range, the reinforcement learned action-value
function exhibits good generalization performance. The robot
model learns how to move the flipper in the training envi-
ronment, and the acquired control is transferred to the robot
model in the practical phase. Consequently, the flipper operates
autonomously, and the rescue robot operator can overcome
obstacles and run stairs simply by instructing the direction
of movement. In this study, the robot model in the practical
phase operates in a simulation to verify the method; however,
in actual operation, the flipper control law learnt through RL
is transferred to an actual rescue robot.

B. Reinforcement Learning

RL is a machine learning method [14] that is modelled as
the agent and the environment. The agent can interact with
environment and the agent can perform an action a (∈ A)
in the environment, which is described in state s (∈ S). By
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executing an action, the state transition from current st to st+1.
The agent can observe the state s and be rewarded r from the
environment. Then RL agent determines the optimal solution
via trial-and-error and make its own policy to maximize the
obtained rewards.

Many types of RL algorithms have been studied in decades.
Q-learning, which is the most popular method, was adopted in
this study [15]. Q-learning is defined as,

Q(s, a)← Q(s, a) + α{r + γmax
a′∈A

Q(s′, a′)−Q(s, a)}, (1)

where, s and s′ ∈ S are the states, a ∈ A is the action,
α is the learning rate (0 < α ≤ 1), γ is the discount rate
(0 < γ ≤ 1), and r denotes reward. Further, Q(s, a) is the
Q-function, and it is contains look-up tables called Q-table
including all states and each action value pair.

When the agent selects an action based on Q(s, a), the ac-
tion selection function is used. In this research, the Boltzmann
distribution type selection, a type of SoftMax method, was
adopted. Action selection and selection probability calculation
are described by

P (a|s) = exp{Q(s, a)/T}∑
b∈A exp{Q(s, b)/T}

, (2)

where, T is a parameter that determines the randomness of
the action selection.

C. Environmental Setting

The learning process of RL requires several trials, and real-
time RL with real robots is not practical owing to the learning
time and number of trials. Therefore, in this study, as a learning
environment, a simulation that repeated learning at high speed
on a computer and was free from the possibility of a hardware
failure of the robot was employed. As a computer simula-
tion environment, a physical simulation system Webots was
adopted [16]. This simulator can utilize the Open Dynamics
Engine for physical calculations. Real time execution is also
available and fast simulation mode can be selected based on
computer performance. Python is used for programming of
learning algorism, environmental definition, and robot model
definition.

Fig. 2 presents an example simulation. Arbitrary objects
can be generated for the environment in the simulation, and
the objects can be configured based on sensor information
acquired from the real environment. The robot’s chassis, joints
corresponding to motors for driving, crawler belts, and other
components can also be configured in the simulation. Further,
programmed and manual operations can be configured using a
keyboard.

D. Robot Configuration

This study was based on actual rescue robot for the system
configuration, as shown in Fig. 3. Robot model (Fig. 3 (b)) was
designed based on scale of actual rescue robot (Fig. 3 (a)).
The robot in Fig. 3 (b) was equipped with various devices and

Fig. 2. Example of webots’ simulation. The scene in this figure shows a
rescue robot descending from a step while controlling flippers.

(a) Actual robot (b) Robot model

Fig. 3. Assumed actual crawler type rescue robot, and the robot model in the
physics simulation. Body length, belt width, flipper’s length, and width is set

to actual size.

sensors; however, the robot model used in the simulation was
not equipped with these sensors; only the sensors necessary
for RL were used.

The robot model comprised the InertialUnit, GPS, and
distance sensor to detect the object materials. Six distance
sensors were installed at the front of the robot, and three on
each side. The measurement direction of the distance sensor
is shown in Fig. 4. InertialUnit was set such that the roll and
pitch angles could be obtained in the range of 90° to −90°
with a resolution of nine. GPS was used to determine whether
the robot moved forward or backward. The horizontal distance
sensor acquired values d [m] with four resolutions: d < 0.3,
0.3 ≤ d < 0.6, 0.6 ≤ d < 1.0, and 1.0 ≤ d. The upper and
lower distance sensors acquired values with two resolutions
with d < 1 or 1 ≤ d. The flipper could be controlled at 40,
20, 0, −20, −40° with the horizontal direction as 0°. The above
settings reduced the state-action space S ×A in the RL.

E. Reward Design and Hyper Parameters

To realize flipper-based climbing of steps and stairs, the
following reward functions were designed.

r(dm) =

{
0.05 (dm > 0.0)
−10 (dm ≤ 0.0)

, (3)
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Fig. 4. Direction of distance sensor in side view. The robot is equipped with
a distance sensor to measure the horizontal direction, sensor to measure the

upper 15° to detect insurmountable obstacles, and sensor to measure the
lower 30° to detect concavities.

r(ϕ, θ, ψ) =



−10 (|ϕ| > 45 deg)
−10 (|θ| > 68 deg)
−0.05 (|∆ψ| > 0)
0.05 (∆ψ = 0)
−1 (10 deg ≤ ∆θf < 20 deg)
−5 (20 deg ≤ ∆θf < 30 deg)
−10 (30 deg ≤ ∆θf)
−1 (10 deg ≤ ∆θadv < 20 deg)
−5 (20 deg ≤ ∆θadv < 30 deg)
−10 (30 deg ≤ ∆θadv)

, (4)

where, dm is the distance the robot moves after selecting
an action, ϕ, θ, andψ are the posture angles of the robot, and
is a parameter generally expressed as a posture vector, which
corresponds to roll, pitch, and yaw, respectively. Further, ∆ψ
indicates the amount of change in the yaw angle over minute
time. Both ∆θf and ∆θadv are the amount of change in the
pitch angle, and they indicate the amount of change in pitch
angle when the flipper is controlled and when the robot moves
forward, respectively. Reward r of (1) is calculated using
r(dm) and r(ϕ, θ, ψ) as follows:

r = r(dm) + r(ϕ, θ, ψ), (5)

This method is reward shaping like implementation [17].
Learning parameters for RL were set as: learning rate α of 0.1,
discount rate γ of 0.9, and temperature value for Boltzmann
distribution T of 0.2 to select action.

F. Reusing of Action-value Function

When the rescue robot was used obtained action-value
function in training environment to new environment, tech-
niques were leveraged based on transfer learning in RL (here-
inafter transfer RL) [18], [19]. The transfer learning proposed
by Taylor et al. learning is a framework wherein an RL agent
reuses the policies and action-value functions learned and
acquired in a source task in another task called a target task. In
the RL of this research, as an action-value function is acquired,

a value function transfer type transfer reinforcement learning
is used, and it is defined as the following equation.

Qt(st, at)← Qt(st, at) +Qs(χ(st), χ(at)). (6)

where, Qt(·) is action-value function in target task, and
Qs(·) is obtained action-value function in source task. Further,
the function χ is called inter-task mapping, it has the function
of mapping a and s of the source task to a and s of the target
task. Inter-task mapping is considered transferring action-value
function among heterogeneous agents, it is defined as χ : St 7→
Ss|st∈St,ss∈Ss and χ : At 7→ As|at∈At,as∈As . Further, St and
Ss are the sets of the state s in the target and source tasks,
respectively. In addition, At and As are the sets of the action a
in the target and source tasks, respectively. When the agents are
homogeneous between tasks, inter-task mapping is not required
for the transfer. In this case (6) is modified as follows:

Qt(s, a)← Qt(s, a) + τQs(s, a), (7)

where, the parameter τ(0 ≤ τ ≤ 1) is called the transfer
rate, and is used to avoid negative transfer such as phenomenon
like an over learning [20], [21]. Eq. (7) implies that the action-
value function of the target task agent was initialized by the
sum of the initial value of the action-value function of that
agent and the action-value function of the source task to be
reused. In this study, τ was set as 0.5.

IV. EXPERIMENT USING PHYSICS SIMULATION

A. Conditions

We conducted a comparative experiment to confirm the
usefulness of automatic flipper control of a rescue robot using
RL. The comparison target was a rescue robot whose flipper
control angle was fixed at 45°. This is because when comparing
the proposed method with human remote control, humans
cannot always perform the same operation every time, thereby
rendering it difficult to perform quantitative evaluation with
reproducibility in mind.

Three environments were prepared to compare the running
performance of the proposed method and the fixed flipper, and
are described below along with the training environment for
reinforcement learning.

1) Training environment: In the training phase, stairs were
used as the type of environment, and the robot performed RL
on the behavior of climbing and descending the stairs (see
Fig. 5). The robot’s body crawler only moved forward and
performed RL to control the flippers during the process of
climbing and descending stairs. The climbing and descending
environments of the stairs changed randomly at every 100
episodes. The height of one step of the stairs changed randomly
with the height H [m] being 0 ≤ H ≤ 0.3 and the depth D
[m] being 0.15 ≤ D ≤ 0.2 for each episode. The number of
stairs was fixed at five.

The flipper control timing was selected and executed when
the robot body moved 0.3 [m]. Simultaneously, the action-
value function was updated via Q-learning.
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(a) Climbing situation (b) Descending situation

Fig. 5. Learning environment when the training. The robot performs
reinforcement learning on the shapes of the ascending and descending stairs,

and the generated action-value function is common. In this figure, the red
blocks indicate the goal areas of each environment, and are deliberately

visualized. It is not displayed in the actual simulation.

(a) Single-step stair (b) Multi-step stairs

Fig. 6. Artificially created single-step and multi-step stairs. In contrast to the
training environment, single- and multi-step stairs have fixed step heights

and depths.

2) Single-step environment: To confirm the generaliza-
tion performance of the action-value function, which learned
through RL in the training environment, a single-step stair was
prepared for the Webots. Fig. 6(a) shows that the single-step
stair, and its height was such that the rescue robot could not
climb over it when running with its flippers fixed at 45°. In
contrast to the training environment, this stair was fixed step
height and depth.

3) Multi-step environment: As a second environment,
multi-step stairs were prepared in Webots, as shown in Fig.
6(b). Multi-step stairs were constructed by measuring the
actual stairs in Building 10 of Tokyo Polytechnic University
Atsugi Campus. Similar to the single-step environment, the
stairs had fixed step height and depth.

4) LiDAR data environment: In this environment setting,
the actual stairs were scanned with LiDAR and reconstructed
in Webots. Fig. 7(a) shows that the actual stairs was built at the
Naraha Center for Remote Control Technology Development
(NARREC) of Japan Atomic Energy Agency (JAEA)[22]. The
stairs were scanned in advance by LiDAR, and the stairs object
reconstructed from the point cloud data in Webots is shown in
Fig. 7(b). The number of stairs was also fixed at seven based
on actual stairs.

B. Evaluation Factor

In this experiment, the robot could climb steps and stairs,
and the amount of change in posture angle could be deter-
mined, based on which we calculated angle data of the robot
body in Webots for evaluation. The amount of change in the
posture angle implies the vibration of the robot body when it is

(a) Mockup stairs (b) Reconstructed stairs

Fig. 7. LiDAR data environment is generated for physics simulation based
on pointcloud data. The point cloud data is measured in an actual stair-way
using Velodyne VLP-16 sensor. The stairs are built as a mockup based on

stairs of the Fukushima-daiichi nuclear power station.

moved. A small amount of change in posture angle indicates
that there are few movements that involve sudden changes.
Vibration evaluation contributes to improved driving stability,
less hazardous travel, and fewer hardware failures. Attitude
angle change amount is calculated as follows:

∆η

∆t
=

√
(ϕt+∆t − ϕt)2 + (θt+∆t − θt)2

(t+∆t)− t
, (8)

where, ϕ is roll angle of the robot body, θ is pitch angle
of the robot bod,. t is time, and ∆t is min time as sampling
time; however, it is dependent on the calculation of the time
step of simulation setup. A yaw angle ψ was not considered
in this evaluation because yaw angle has probability to adjust
owing to control of the moving direction of the rescue robot.
ω = ∆η/∆t means pseudo angler velocity. The posture angle
was observed every 0.1 s.

C. Results

1) Training environment: The result of RL in random
stairs (Fig. 5) is shown in Fig. 8. The order of climbing
and descending stairs, which changed every 100 episodes, is
presented in Table I. In Fig. 8, the number of steps on the
vertical axis is the number of actions required by the rescue
robot from the start point to the goal point. The number of
episodes on the horizontal axis is the iteration of learning, with
movement from the start to the goal being one episode. From
the downward trend of the learning curve, the rescue robot
learns how to move using its flippers even in environments
with random steps and switches between going up and down.

2) Single-step environment: First, an image of the rescue
robot’s behavior is explained in Fig. 9, 11, 10 and 12 in
single-step environment. As shown in Fig. 9, in the fixed
flipper condition, the rescue robot could not climb a single-step
and tipped over. Whereas, automatic control flipper condition
could realize climbing of a single-step utilizing rear flippers,
as shown in Fig. 10. Both the descending results indicated
that the rescue robots could descend without falling because
single-step descending is not a difficult situation, as shown in
Fig. 11 and 12.
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TABLE I. CHANGE IN TYPE OF STAIRS

Episode num. Type
1 Climb

101 Climb
201 Climb
301 Descend
401 Climb
501 Descend
601 Climb
701 Descend
801 Climb
901 Climb

Fig. 8. Result of learning curve in training environment. At the beginning of
learning, number of steps has large value. As the episode progresses, the

number of steps reduces. Moreover, when the type of stairs changes
indicated in TableI, a convergence tendency is observed. Thus, it is

considered that the training environment can be learnt.

3) Multi-step environment: Fig. 13 and 14 show the robot’s
movements under multi-step environment with fixed flipper
configuration. Under the fixed flipper condition, the rescue
robot could climb and descend steps. However, when the
rescue robot climbed the stairs, the flippers were fixed; thus,
it is expected that there will be a large impact when the robot
lands. It is also expected that an impact will be generated
when entering the descending stairs because the flippers were
fixed. Fig. 15 and 16 show the robot’s movements under multi-
step environment with automatic flipper control configuration
using the proposed method. When the rescue robot climbed
the stairs, it used flippers to increase the number of points
it touched. Furthermore, as the flippers were in front of the
robot when it finished climbing the stairs, it is expected that
the impact of landing would be alleviated. When the rescue
robot entered the descending stairs, the flipper protruded in
front of the robot body, which is considered to reduce the
impact upon entry. Under these experimental conditions, the
rescue robot could run with or without flipper control.

4) LiDAR data environment: The rescue robot’s behavior
is explained in Fig. 17, 18, 19 and 20 in a LiDAR data
environment. Fig. 17 and 18 show the robot’s movements
under LiDAR data environment with fixed flipper configura-
tion. Under these experimental conditions, the rescue robot
with fixed flippers could not climb the stairs and overturned.
On the descending stairs, the rescue robot with fixed flippers
could descend, but it appeared to be slipping while running
down the stairs. Fig. 19 and 20 show the robot’s movements
under LiDAR data environment with automatic flipper control
configuration using the proposed method. The rescue robot

TABLE II. SUMMERY OF RUNNING RESULTS

Environments Fixed flipper Automatic control
Single-step (climb) failed success
Single-step (descend) success success
Multi-step (climb) success success
Multi-step (descend) success success
LiDAR data (climb) failed success
LiDAR data (descend) success success

whose flippers were controlled using the proposed method
could climb the stairs in the LiDAR data, and when it finished
climbing, it moved its flippers slightly forward and downward
to soften the impact of landing. On descending stairs, when
the rescue robot entered the stairs, it moved the rear flipper
downwards to soften the impact when entering the stairs.
Under the flipper control conditions, it is considered that the
contributing factors were that the robot moved without slipping
on the stairs and reduced the impact upon entry.

D. Summary of Results

In summary, we concluded that the rescue robot could
travel through each environment, as presented in Table II.
Under the fixed flipper conditions, the rescue robot rolled
over and could not climb the stairs in environments when
climbing single-step and in case of LiDAR data. Moreover,
slipping occurred during movement in the case of stairs,
resulting in unintended control. However, the rescue robot
that implemented the flipper control law using reinforcement
learning could run under all experimental conditions.

Fig. 21 shows the time series data of the angular velocity
measured under each experimental condition.

E. Discussions

To quantitatively demonstrate the usefulness of automatic
flipper control using the proposed method, this study used
the expected value and variance of the occurrence probability
distribution for the evaluation index ∆η/∆t, which is defined
as (8). Considering ∆η/∆t observed time series data ∆η/∆t
were replaced for the distribution. It can be expressed as a
probability distribution by taking the possible angular velocity
as frequency of the probability of occurrence P (ωi). Fig. 22
presents the angular velocity distribution for each experimental
result. When calculating the distribution, it was experimentally
clear that angular velocities of 0.1 [deg/s] or less in the time
series data were vibrations of the rescue robot while it was
running; thus, the distribution was calculated by filtering data
with ∆η/∆t greater than 0.1 [deg/s].

In the Fig. 22, single-step environment exhibited no sig-
nificant difference in the shape of the distribution; however,
other distributions, the size and spread of the peak differed
between the fixed and automatically controlled flipper con-
ditions. Therefore, in this study, to quantitatively evaluate
the differences in these distributions, the expected value and
variance of the distributions were calculated and compared for
each experimental result.

Expected value of angular velocity ωi in each experimental
conditions is defined as follows:
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(a) (b) (c) (d)

Fig. 9. Rescue robot climbing operation result under the single-step environment with fixed flipper condition.

(a) (b) (d) (f)

Fig. 10. Rescue robot climbing operation result under the single-step environment with automatic control flipper condition.

(a) (b) (c) (d)

Fig. 11. Robot operation descending result under the single-step environment with fixed flipper condition.

E(Ω) =
∑
i

ωiP (ωi). (9)

Here, Ω is the set of ωi. Note that, in this case E(Ω) = ω̄i

because the expected value was not calculated from a classified
distribution, but from the measured time-series angular velocity
data. ω̄i is average of ωi. Variance of calculated angular
velocity ωi is defined as following:

V (Ω) =
∑
i

(ωi − µ)2P (ωi). (10)

Here µ = E(Ω) is defined for above equation. The
expected values and variances for each experimental condition
are presented in Table III. Note that climbing in the single-step
and LiDAR data environment under the fixed flipper condition
was not possible owing to a fall; thus, this was excluded from
the discussion but will be listed in parentheses in the Table III.
In the single- and multi-step environments, the expected value
of automatic control of the flipper shifted to be smaller than

the expected value of fixed flipper. Similarly, the variation was
also narrower. This is because the rescue robot equipped with
a flipper that was automatically controlled by the proposed
method had a lower angular velocity when climbing up and
down stairs than in the case of a fixed flipper. Thus, the
vibration decreased. In addition, by narrowing the validation,
it is suggested that the number of types of angular velocity
was reduced and the vibration became less complex.

In the LiDAR data environment, although there was no
large difference in value, both the expected and validation
values were larger in the automatic flipper condition than in
the fixed flipper condition. This is thought to be owing to
the fact that the shape of the environment was composed of
data obtained from LiDAR and had a complex shape that
included unevenness. Although the usefulness of the proposed
method cannot be clearly observed from the numerical values,
considering that the rescue robot could run the stairs, it can be
said that the proposed method can contribute to running the
stairs compared to the fixed flipper condition.
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(a) (c) (e) (f)

Fig. 12. Rescue robot descending operation result under the single-step environment with automatic control flipper condition.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13. Rescue robot climbing operation result under the multi-step environment with fixed flipper condition.

TABLE III. COMPARISON OF EXPECTED VALUES AND VALIDATIONS. THE
NUMBERS IN PARENTHESES ARE FOR REFERENCE ONLY

E(Ω) V (Ω)
Environments Fix Auto Fix Auto
Single-step (climb) (4.96) 4.24 (12.54) 7.17
Single-step (descend) 6.67 4.68 32.30 14.57
Multi-step (climb) 5.01 3.30 10.68 5.44
Multi-step (descend) 5.41 3.10 11.71 4.77
LiDAR data (climb) (8.73) 1.81 (1609.12) 11.01
LiDAR data (descend) 3.41 4.09 3.42 8.24

V. CONCLUSION

This study described that tele-operation of the rescue robot
is difficult for human operator in disaster response situations.
Thus, automatic flipper control using RL and physics simula-
tion, was proposed. In the proposed method, the rescue robot’s
flipper control was trained using stairs of random heights in
advance through simulation to provide generalization perfor-
mance. Thereafter, as an evaluation of the proposed method, it
was confirmed that the running performance of the learning
resulted in a realistic staircase environment obtained using
LiDAR from the actual environment, including a single step
and multiple steps. As the experimental results, compared to a
rescue robot with a fixed flipper condition, the flipper control

using the proposed method tended to have less vibration during
movement, suggesting that it reduced risks at the store and
damage to the rescue robot itself.

In the future works, it will be necessary to transfer the
learning results using the proposed method in this study to
an actual rescue robot and verify whether it is possible to
travel as expected. Furthermore, although this study evaluated
artificial single- and multi-step environments, it is thought
that the environment shape obtained by LiDAR is the most
effective learning environment for actual tasks. Therefore, it
is also important to verify the effectiveness of the proposed
method through computer simulations using environmental
shapes measured by LiDAR in various other environments.
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Fig. 18. Rescue robot descending operation result under the LiDAR data environment with fixed flipper condition.

(a) (b) (c)

(d) (e) (f)

Fig. 19. Rescue robot climbing operation result under the LiDAR data environment with automatic control flipper condition.
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Fig. 20. Rescue robot descending operation result under the LiDAR data environment with automatic control flipper condition.

(a) Single-step, climbing (b) Single-step descending (c) Multi-step, climbing

(d) Multi-step, descending (e) LiDAR data, climbing (f) LiDAR data, descending

Fig. 21. Time series data of measures angular velocity under each experimental condition. In this figure, “Fix” is the condition for a fixed flipper, and “Auto”
is a condition for automatic control of the flipper learned by reinforcement learning.
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(a) Single-step, climbing (b) Single-step descending (c) Multi-step, climbing

(d) Multi-step, descending (e) LiDAR data, climbing (f) LiDAR data, descending

Fig. 22. Angular velocity distribution in each experimental result. In this figure, “Fix” is the condition for a fixed flipper, and “Auto” is a condition for
automatic control of the flipper learned by reinforcement learning.
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