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Abstract—In order to protect electronic data, pseudorandom
cryptographic keys generated by a standard function known as
a key derivation function play an important role. The inputs
to the function are known as initial keying materials, such as
passwords, shared secret keys, and non-random strings. Existing
standard secure functions for the key derivation function are
based on stream ciphers, block ciphers, and hash functions.
The latest secure and fast design is a stream cipher-based
key derivation function (SCKDF3). The security levels for key
derivation functions based on stream ciphers, block ciphers, and
hash functions are equal. However, the execution time for key
derivation functions based on stream ciphers is faster compared
to the other two functions. This paper proposes an improved
design for a key derivation function based on stream ciphers,
namely [-SCKDF;. We simulate instances for the proposed
I-SCKDF3 using Trivium. As a result, [-SCKDF; has a lower
execution time compared to the existing SCKDF,. The results
show that the execution time taken by I-SCKDF; to generate
an n-bit cryptographic key is almost 50 percent lower than
SCKDF5. The security of [-SCKDF; passed all the security tests
in the Dieharder test tool. It has been proven that the proposed
I-SCKDF? is secure, and the simulation time is faster compared
to SCKDFQ.
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I. INTRODUCTION

A Key Derivation Function (KDF) is a standard function
to generate one or more pseudorandom cryptographic keys
from a initial keying material. The initial keying material of
the KDF consists of a non-random secret string and publicly
known string. The output of the KDF is an arbitrary length of
pseudorandom cryptographic key. The example of the secret
string (p) can be user password, a random seed value from
some entropy source, or output value such as shared secret
from Diffie-Hellman (DH) key agreement [1], [2], [3]. The
example of the public string is a random salt value (s) or
context information (c¢) [4].

To date, two-phase KDFs are categorized into stream
cipher-based [4], [5], hash function-based [6], [7], and block
cipher-based KDF's. These KDFs consist of an extractor and
an expander. The extractor takes as input a secret string and
a publicly known random string, generating a pseudorandom
or close-to-uniform string [8], [9], [10] (PRK) as its output.
The PRK and public context information [11] serve as inputs
for the expander, which produces the secret keying material.
The input size can be of arbitrary length, and it is divided
into equally-sized blocks for both hash function-based KDF's

and block cipher-based KDF's. Padding is required for the last
block to ensure consistency in block sizes.

The output of hash function-based KDF's and block cipher-
based KDFs is of a fixed block size. If the derived cryp-
tographic key output has excess bits, these additional bits
are discarded, which is not an efficient use of computational
resources

In this paper, we construct a stream cipher-based KDF
(SCKDF5) using the keystream generator (KG) [5], [4]. The
authors incorporated KG into the KDF designs because its
properties are similar to those of KDF. For example, KG
takes two inputs: the initialization vector (IV) and the secret
key to generate arbitrary lengths of pseudorandom output [12],
[13]. In the extractor of SCKDF5, the original inputs for the
pseudorandom keystream generator, the key and the 7V, are
replaced with p and s, respectively, to generate an intermediate
value, PRK.

For the expander of SCKDF,, the key and IV are the
inputs to KG, which are replaced with PRK and c, respec-
tively. With these inputs, the pseudorandom KG produces an
n-bit cryptographic key. The findings in Chuah et al.’s work
[5] demonstrate that the security level of SCKDF5 is similar
to that of block cipher-based KDF's and hash function-based
KDFs. In terms of execution time, SCKDF5 executes faster
compared to block cipher-based KDFs and hash function-
based KDFs.

The KDF is widely used in Internet protocols [14], [15],
[16]. Mobile devices and Internet of Things (IoT) are in-
creasingly used to access the Internet. These devices are
designed with low processing power and limited memory size.
Therefore, the KDF must be both secure and responsive. In
this paper, we extend the work of Chuah et al. [5] to propose
an improved design for KDF based on stream ciphers while
maintaining the security level and improving execution speed.
We name it [-SCKDF5.

The remainder of this paper is organized as follows: Section
II presents the background information of key derivation func-
tions. In Section III, we provide information about keystream
generators for stream ciphers. Section IV introduces the re-
search framework for the modal structure used to construct
the improved stream cipher-based KDF. Sections V and VI
respectively provide security and performance analyses of the
improved stream cipher based on KDF. Finally, in Section
VII, we present the paper’s conclusion.
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II. KEY DERIVATION FUNCTIONS

A Key Derivation Function (KDF) is a function that
generates one or more cryptographic keys from a source of
initial keying material. The initial keying material of the KDF
consists of a secret string and a public string. The output of
the KDF is an arbitrary length of the cryptographic key.
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Fig. 1. Key derivation function - Single-phase KDF.

Fig. 1 shows the design of the KDF model, K <+
F(p, s,c,n). The private or secret string is p and the public
strings are s and c. F is the function. Based on these inputs,
F generates n-bits of a cryptographic key, K. The value of
length, n must be in a positive integer. The value of the p
must be kept secret from the adversary such as user password,
a random seed value from some entropy source, or output
value (shared secret) from Diffie-Hellman (DH) key agreement
[11]. The example of s is random salt value and c is context
information [4]. The distribution for the string of s is usually
close to uniform. The string of c is an application specific data
such as session identifier of the communicating parties [11].
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Fig. 2. Key derivation function - Two-phase KDF.

There is a two-phase KDF as shown in Fig. 2. It consists
of two independent processes: the extractor function, Ext, and
the expander function, Exp. The goal of the extractor and ex-
pander phases is to generate an output that is computationally
indistinguishable from a random binary string of equal length
[8]. This output is expressed as K = Exp (Ext(p, s), ¢, n).

In the first phase, Ext extracts an amount of entropy from
p and s as the input to produce an intermediate value. We
denote the intermediate value as PRK. PRK is private, and
the distribution of PRK is close to uniform.

Definition 1. [Extractor] Let p and s are chosen uniform
probability over {0,1}P™ and {0,1}°" respectively. Ext
{0,137 x {0,1}*™ — {0, 1}*" is a (t, €)-extractor. The output
is PRK is chosen with uniform probability from {0, 1}*".
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The second phase involves using a standard expansion
scheme, denoted as Exp, which takes the intermediate value
PRK and c as inputs to derive one or more n-bit cryptographic
keys.

Definition 2. [Expander] A function Exp {0,1}F" x
{0,1}" — {0,1}* from a set PRK € {0,1}*" mapping
to an arbitrary length of string {0,1}* which should be
indistinguishable from the random strings of the same length
in time polynomial.

III. KEYSTREAM GENERATOR FOR STREAM CIPHERS

A stream cipher is a symmetric key system consisting
of a keystream generator, plaintext, and XOR operation. The
stream cipher performs both encryption and decryption using
the same secret key (K). The keystream generator (KG) is
utilized to generate an n-bit keystream (X;) from an initial
keying material.

The stream cipher’s encryption process involves XOR
() between the plaintext (P7;) and the keystream (K;) to
generate the ciphertext (C7T;). The decryption process consists
of XORing the ciphertext with the identical keystream to
produce the plaintext. It’s important to note that P, K, and
C have the same arbitrary length (n bits).

Stream ciphers are well-suited for real-time applications
due to their low complexity and fast operation speed;

CT;=PTi® K, , ey

PT,=CT,® K; . @)

Stream cipher uses a KG to generate keystream for both
encryption and decryption. The KG is a critical component
of a stream cipher as the pseudorandomness of the keystream
may protect the secrecy of the output of the stream cipher
[17]. The KG outputs a keystream: ki, ko, k3,..., k; € K.
The keystream is XORed with a stream of plaintext bits,
pt1, pta, pts,...,pt; € PT, to produce the stream of cipher-
text bits cty, cts,cts,...,ct; € PT [17]. The security of a
stream cipher relies on its KG to generate pseudorandom
keystream. For example, a keystream with an endless stream
of zeros will produce a ciphertext that is equal to the plaintext.
This will make the whole encryption useless. Thus, the KG
should produce a pseudorandom bits to have perfect security.

There are two major processes in the generation of a
keystream which are initialization and keystream generation
process as shown in Fig. 3. In the initialization process, the
inputs consist of a secret key and publicly known initial vector
(IV). These inputs are mixed in the mixing process. The
initialization process is to diffused pair of secret key and IV
in order to harden the process for the attacker to find the
correlation between the secret key and IV with it associate
keystream. Upon the completion of mixing process, KG now
is in internal state which is ready for keystream generation
process. We denoted the internal state as IS and the size of
internal state as . The value of internal state is the output
from mixing process. The output function takes the internal
value to generate the keystream character. At the same time,
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the next state function utilizes the internal value to generate
a new internal state. It should be noted that the keystream
generation state update function may be different or similar to
the initialisation state update function.

r Key v
Initialization
Process | Mixing process |

Internal State %\
Next State
Function
Keystream St
= Function
Generation \
Zt
Keystream

Fig. 3. Keystream generator [17].

Definition 3. [Pseudorandom generator] There is no polyno-
mial time algorithm that can distinguish between the output
sequence of a keystream generator and a truly random se-
quence with probability significantly greater than % , where
there length of these sequences are same, then the keystream
generator is considered a pseudorandom generator that passes
all statistical tests which are conducted within the polynomial-
time framework [18].

Definition 4. [Pseudorandom generator] Let internal state
has a set space over {0,1}5. A keystream generator is
a pseudorandom generator (Definition 3) that mixing and
diffusing the string from internal state, from which is mapping
to an arbitrary length of pseudorandom keystream.

In order to gain confidence that such keystream is pseudo-
random, the keystream sequences should be Schneier [17] and
Stallings [19]:

e Large period: Any infinite binary sequence produced
by a deterministic process is ultimately periodic. If the
same keystream is repeated in side of a cryptogram it
may be possible to do a ciphertext only attack [20].

e High linear complexity: A short key is used as the
input to the pseudorandom function such as keystream
generators to produce the keystream. The linear com-
plexity of a pseudorandom sequence is the length (L)
in bits of the shortest linear feedback shift register
which will produce this sequence. If 2L consecutive
of keystream are known then the internal state of the
generators can be found by using Berlekamp-Massey
algorithm [21]. So, to avoid such an attack the linear
complexity should be high.

e  White noise: The keystream is trying to “appear” like
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a random sequence namely one-time pad [17], [19].
The measure of the closeness of sequence to a random
sequence is called white noise characteristics.

A. Existing KDF Proposals

Existing KDF proposals mainly are two-phase design with
extractor function and expander function. The cryptographic
primitives to construct these extractor function and expander
function can be block ciphers, hash functions and stream
ciphers.

e  Block ciphers [11]: Advanced encryption standard -
CMAC (AES—CMAQ) is the cryptographic primitive
that has three different key length and one block size.
The key length can be 128-bits, 192-bits and 256-
bits. The block size is 128-bits. The extractor based
on AES—CMAC can use the key length of 128-bits,
192-bits and 256-bits. But, the expander based on
AES—CMAC is limited to the key length of 128-bits.
Eq. (3) is the extractor based AES—CMAC The
inputs for the extractor function is p and s. The p
is divided equal size of 128-bits, we denote the block
as D and 1 < i< &%, PRK( = 0% and N can be
128-bits, 192-bits or 256-bits;

PRK; + AES—CMAC,(PRK;_1 & D;) . (3)

Eq. (3) is the expander based AES—CMAC. The
inputs for the expander function is PRK and c. The
PRK is the output from expander which is 128-bits.
The ¢ is divided into block with each size of 128-bits,
we denote the block as D and 1 < i < 2. Ko = 0'2®
and NNV is 128-bits;

K; < AES—-N-CMACprg(K;—1®D;) . @

The last block D, requires addition subkey one or
subkey two, we denote it as SK, b € {1,2}. The
algorithm subkey generation as show in Barker er al.
[11];

K, < AES—N—CMACPRK(Ki71 ®D; P SK},) .
&)
If n > 128, additional iterations are performed until
the desired length is achieved. Extract the leftmost n
bits from the output and discard any remaining bits.

e  Hash function [8]: The propose KDF based on hash

functions consists of extractor function and expander
function. The hash function is using HMACgya fam-
ilies.
Eq. (6) is the extractor function which generates PRK
from the inputs of p and s. The output for this phase
PRK is based on the length of hash digest (hn) of
SHA families. The s is proposed has the same length
as the hash digest of HMACgpya. If the length of s is
shorter or longer, then s is hashed using the equivalent
SHA function;

PRK <= HMACgua (s @ opad) ||
HMACsna (s @ ipad || p) . (6)
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Eq. (7) is the expander function. The PRK and c
are the inputs to the expander function. The expander
produces n-bits of cryptographic key from these in-
puts. The cryptographic key is the concatenation string
such that Ky || Ko || ... || K¢—1,1 < @ < t, where
t = [;=]. The first n bits are used as the crypto-
graphic key and the remaining bits are discarded;

K;y1 < HMACgsua (PRK @ opad) ||
HMACgua (PRK @ ipad) || K; || c||i . (7)

Noted that for both extractor function and expander
function, the opad is the outer padding with one block
long hexadecimal of 0x5c5c. . . 5¢ and the ipad is the
inner padding with one block long hexadecimal of
023636 . .. 36.

e  Stream cipher [5]: The SCKDF5 uses pseudorandom
KG to construct both extractor function and expander
function. The input for the extractor is p and s, which
results in the output sequence PRK. The length of s
can be vary, but it must not exceed the length of pn
or be null.

Eq. (8) shows the extractor function which XOR p and
s as the input to the KG. If the length of p is longer
then the key and IV of KG, it repeats the loop;

PRK, < SCKDFQ(pl S 81) s

Eq. (9) shows the expander function. The length of
c is arbitrary or null. If ¢ is not null, it is divided
into the total length of key and IV of KG. The ¢
is XORed with PRK and c as the input to the KG.
If the length of c is longer then the key and IV of
KG, it repeats the loop. After completion the loop, the
SCKDF; generates the n-bits cryptographic key;

®)

K, <= SCKDFy(PRK; @ s1) ,

K; < SCKDFQ(Kq‘,—l ©® Cq‘,) . ©)
IV. IMPROVED KDF BASED ON STREAM CIPHERS:
I-SCKDF,

In this section, we modify the pseudorandom KG to
construct two-phase I—-SCKDF5. The input of the proposed
extractor is p and s, which results in the output sequence of
PRK. The block size of p is r and the r is considered as
the length of the internal state. In I-SCKDF5 scheme, during
the extractor phase, PRK is generated such that its length is
equal with the size of the internal state of the pseudorandom
KG used in the expander phase. Fig. 4 depicts our proposed
I-SCKDF, based extractor. The extractor process is as in
Algorithm 1.

The output of extractor and arbitrary length of c are
the inputs to the expander I-SCKDF5. The expander for
I-SCKDF; produces n-bits pseudorandom cryptographic key
as shown in Fig. 5 and Algorithm 2.

V. SECURITY ANALYSIS

Here, we show a statistical test and a formal security proof
for our propose I-SCKDF5 in section V-A and section V-B
respectively.

Vol. 15, No. 6, 2024

A. Statistical Test

Diehareder test suite requires 1.25 mega bytes input to
test either the string is pseudorandom or non-random. We
use Dieharder security test to test the pseudorandomness of
cryptographic key which is generated by I-SCKDF,. To
generate these long cryptographic key, we use 500 strings of
p, for each string only one bit changes, s and c are same. For
each p with corresponding s and c as inputs to I-SCKDF9
and generates 2500 bytes of cryptographic key. All these
cryptographic keys are concatenated as in total 1.25 mega
bytes. The cryptographic key is converted to 32-bits unsigned
integer. The result of security analysis for I-SCKDF5 is
shown in Fig. 6.

The result shows that I-SCKDF; passed all the security
tests in Dieharder test suite. This indicates that the crypto-
graphic key which is generated by I-SCKDF5 is pseudo-
random. This would imply that and a polynomial-time A is
unable to differentiate whether the given string is either the
n-bit cryptographic key which is derived from secret string p
or just an n-bit random string. The best A can differentiate the
given string with only probability greater than % + €, where €
is negligible.

B. The Security of I-SCKDF,

Theorem 1. Let Ext be a (tx, €x )-extractor w.r.t to the secret
string p and Exp a (tp, qp, €p)-secure variable-length-output
pseudorandom function family, then the above extract-then-
expand KDF scheme is (min{tyx, tp}, qp, €x + €p)-secure
w.r.t the secret string p [8].

Generic [I-SCKDF is two-phase KDF which consists of
extractor function and expander function. Hence, it follows
the Theorem 1. This mean that the generic I-SCKDF5 is a
secure extract-then-expand KDF'. The proof of Theorem 1 can
be seen at the paper of Krawczyk [8].

In this section we review the properties of KG based
on Definition 3 and Definition 4. We build a I-SCKDF,
with extractor function Ext and expander function Exp. Both
functions are built using the KG which is from the family of
pseudorandom KG that fulfil Definition 3 and Definition 4.
Hence, it should be collision resistance such that KG(p) =
KG(p') where p # p'.

Lemma 1. If KG is a secure pseudorandom KG, then extrac-
tor build from KG is a secure (tr, er)-extractor.

Proof: 1f there is an adversary Ap that can break the Ext
built from KG, then there is another adversary Br who is
able to break the security of pseudorandom generator. Hence,
on the basis of A7 we build the By against the KG based
extractor for the [I-SCKDF5. Extractor generates PRK from
p and s: Ext(p,s) — PRK. Once you get the PRK, you
will be able to find p, such that Ext(PRK,s) — p. This
means, Ar is able to find the p by invert the input and
output of extractor in polynomial time ¢7. This indicating the
pseudorandom generator is not a one way function. This is
contradicts our assumption of ideal KG. Hence, if KG is a
secure pseudorandom generator, then extractor built from KG
is a (tp, er)-extractor. [ |
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Fig. 4. Extractor of [I-SCKDF5.

Algorithm 1 Extractor of I-SCKDF,

Require: Input: p, s, pn, sn, r.

Ensure: Split p into blocks such L = Z%. L is the number of total blocks. The r is the size of internal state. D; denote the ith
block of p. If the length of the last block, Dy, is shorter than r bits, the block is padded with ‘0’s.

1: if s is null then

2: Go to Step 8.

3: else if s is not null, sn < pn then

4: Divide the s into block, J = SI—”

5: Denote the i*" block of s as Fj. If the length of the last block E; is shorter than r-bits, the blocks is padded with ‘0’s.
6: Perform XOR operation between the D1 and Fj.

7: end if

8: for i <—1to L do

9: if i = L then

10: The input of the pseudorandom KG is r-bits internal state.

11: The pseudorandom KG produces r-bits of keystream.

12: Go to Step 24.

13: else if © < L then

14: The input of the pseudorandom KG is r-bits internal state.

15: The pseudorandom KG produces 7-bits of keystream.

16: if i <= J then

17: Perform XOR operation between r-bits of keystream, D; 1 and E; 4.
18: end if

19: if ¢ > J then

20: Perform XOR operation between r-bits of keystream and D; .
21: end if

22: end if

23: end for

24: Output: r-bits PRK.

Lemma 2. If KG is a secure pseudorandom generator, then
expander built from KG is a secure (tp, qp, €p) arbitrary
length output pseudorandom KG function family.

Proof: 1f there is an adversary Ap that can break the
Exp built from the KG, then there is another adversary Bp
that can break the pseudorandom generator. Hence, on the
basis of Ap we build Bp against the KG based expander
for the I-SCKDF,;. PRK and c are the inputs to the

expander, then produces n-bits of cryptographic key, such that
Exp(PRK,c) — K. This means, Ap is able to distinguish the
n-bits cryptographic key which is generated from two different
string of ¢ in polynomial time ¢p, after gp test queries, such
that Exp(PRK,c) = Exp(PRK,c') where ¢ # (. This
indicating collision is happening, the pseudorandom generator
is not a one way function. Again, this is contradicts our as-
sumption of ideal KG. Hence, if KG is a secure pseudorandom
generator, then expander built from KG is a secure (tp, qp,

www.ijacsa.thesai.org

1490 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

PKR 0 c :
i=2tol,i+=1 Internal State

Next State
No-t_e_: """"" > Function
1. The above dotted arrow
show the process will
start for the second Output Function
iteration.

2. Intermediate value, PKR.
3. Context information, c.
cn

e

4, 1=Z

No

i==1L?

r-bits of keystream
Yes

n-bits of keystream (Cryptographic key)

Fig. 5. Expander of I-SCKDF5.

Algorithm 2 Expander of I-SCKDFs.

Require: Input: PKR, ¢, cn, n.

1:

A R

if ¢ is null then

The input for the pseudorandom KG is the r-bits of PRK.
The pseudorandom KG produces n-bit of keystream.
Go to Step 29.
else if ¢ is not null then
Split ¢ into blocks such that L = <*. L is the number of total blocks.
Denote the it block of ¢ as D;. If the length of the last block, Dy, is shorter than r bits, the block is padded with ‘0’s.
XOR the r bits of PRK (from the extractor phase) with D; of c.
if L =1 then
The input for the pseudorandom KG is the r-bits of PRK.
The pseudorandom KG produces n-bit of keystream.
Go to Step 29.
else if L > 1 then
The input for the pseudorandom KG is the r-bits of PRK.
The pseudorandom KG produces n-bit of keystream.
Go to Step 19.
end if
end if
for i < 2 to L do
if ¢ = L then
Perform an XOR operation between the r-bits of keystream and D; of c. The output is the input for the pseudorandom

keystream generator.
The pseudorandom KG produces n-bit of keystream.
Go to Step 29.
else if © < L then
Perform an XOR operation between the 7-bits of keystream and D, of c. The output is the input for the pseudorandom
keystream generator.
The pseudorandom KG produces n-bit of keystream.
end if

: end for
: Output: n-bits cryptographic key.

e p) arbitrary length output pseudorandom KG function family.  p if KG is a secure pseudorandom generator.

|
Corollary 1. The extract-then-expand 1—SCKDF5 built from Proof- This is an immediate result from Lemma 1, Lemma
KG is (min{tr, tp}, qp, er+ep)-secure w.rt the secret string 2 and Theorem 1. m
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# dieharder version 3.31.1 Copyright 2003 Robert G. Brown #
i#: H
rng_name | filename |rands/second|
file input] triviumtest.txt| 5.69e+06 |
# #
test_name  |ntup| tsamples |psamples| p-value |Assessment
#: H#
diehard birthdays| @] 100 100|@.22765395| PASSED
diehard_operms| @ 1000000 | 100|0.44061577| PASSED
diehard rank 32x32| @ 40000 | 100|@.16152269| PASSED
diehard rank 6x8| @ 100000 | 100|08.96725029| PASSED
diehard bitstream| @ 2097152 100|0.73777773| PASSED
diehard opso| @ 2097152 100|0.26088111| PASSED
diehard ogso| @| 2097152]| 100|0.62091416| PASSED
diehard dna| @ 2097152 100|0.36128116| PASSED
diehard count 1s str| @] 256000 | 100|0.21853634| PASSED
diehard _count_1s byt| @] 256000 | 100|©.58628181| PASSED
diehard parking lot| @] 12000 | 100|0.67934334| PASSED
diehard 2dsphere| 2| 3000 | 100|0.15889293| PASSED
diehard 3dsphere| 3| 4000 | 100|8.61050166| PASSED
diehard squeeze| @] 100000 | 100|0.50220585| PASSED
diehard sums| @] 100 | 100|0.02178726| PASSED
diehard runs| o] 100000 | 100|@.50234739| PASSED
diehard craps| @] 200000 | 100|0.87970912| PASSED
marsaglia tsang gcd| @] 1e0eeoee| 100|0.60785646| PASSED
sts_monobit| 1 100000 | 100|08.23980723| PASSED
sts_runs| 2| 100000 | 100|0.83592643| PASSED
sts_serial| 1] 100000 | 100|©.23980723| PASSED
rgb_bitdist| 1 100000 | 100|0.54809660| PASSED
rgb minimum distance| 2| 10000 | 1000|08.07758298| PASSED
rgb_permutations| 2| 100000 | 100|0.30264181| PASSED
rgb lagged sum| @| 10eeoee| 100|0.96261442| PASSED
rgb kstest test| 0| 10000 | 1000|0.50961402| PASSED
dab_bytedistrib| @| 51200000]| 1]|@.29473786| PASSED
dab_dct]| 256 50000 | 1|@.75523077| PASSED
dab_filltree| 32| 5eoeeoe| 1]@.32434695| PASSED
dab_filltree2| ©| 5000000 1|0.84601385| PASSED
dab_monobit2| 12| 65000000| 1]|@.24737411| PASSED

Fig. 6. Result of dieharder security test for I-SCKDF.

VI. PERFORMANCE ANALYSIS AND DISCUSSION

In Chuah et al. [4], there are simulation results of KDF
based on hash functions, block ciphers and stream ciphers.
The execution time for KDF based on stream ciphers are
running faster compare with KDF based on hash functions
and block ciphers, especially Trivium based KDF's. Therefore,
we only simulate [-SCKDF; using Trivium. Table I is eight
experiments parameters taken from Heer ef al. [22] and Zhu
et al. [23]. The parameters are measured with bytes.

TABLE I. THE PARAMETER EXPERIMENTS

Experiment Parameters

n D S c
1 64 128 8 32
2 192 128 8 32
3 64 256 8 32
4 192 256 8 32
5 64 128 null 64
6 192 128 null 64
7 64 256 null 64
8 192 256 null 64

All the experiments are simulated in a computer with the
following specification: Intel Core i7, NVIDIA GEFORCE
940MX, 8GB RAM. Each experiment is executed 100 times,
average execution time is recorded.

Fig. 7 depicts the simulation results. The result shows
that the proposed I-SCKDF, is relatively executes faster
compared with existing SCKDF5. This is because the design
of I-SCKDF5 reduces the number round of looping for
the extractor function and expander function compares with
SCKDF,. For example, SCKDF5 needs to perform sevan
rounds in extractor (128 bytes of p, 8 bytes of s ) and two
rounds in expander (32 bytes of c¢) to produce 64 bytes of
cryptographic key. While I-SCKDF5 needs to perform only
four rounds in extractor and one round in expander for the
same length of inputs and output. The results also indicate the
propose I-SCKDF5 executes faster compare with KDF based
on hash functions and block ciphers.

VII. CONCLUSIONS

We propose an improved KDF based on stream ciphers, de-
noted as I-SCKDF5. We have demonstrated that [-SCKDF,
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Fig. 7. Simulation results.

is theoretically secure, provided that the underlying KG used to
construct [I-SCKDF; belongs to the family of pseudorandom
functions. Therefore, careful selection of the KG type is essen-
tial for building KDF. To assess the pseudorandomness of the
cryptographic key derived from I-SCKDF5, we utilized the
Dieharder test suite. [-SCKDF5 successfully passed all the
tests. Additionally, we conducted experiments to simulate the
execution time of [-SCKDF5 across eight different parameter
configurations, including p, s, ¢, and n. The results demon-
strate that [I-SCKDF5 executes more quickly in comparison
to the existing KDF based on stream ciphers, denoted as
SCKDFs.

ACKNOWLEDGMENT

The authors would like to thank Guangdong University of
Science & Technology, China, Rabdan Academy, United Arab
Emirates and Universiti Tun Hussein Onn Malaysia.

REFERENCES

[1] M. A. Mobarhan and S. Tian, REPS-AKAS: A robust group-based
authentication protocol for 10T applications in Ite system, Internet
of Things, 22, 100700, 2023.

[2] S. Duttagupta, E. Marin, D. Singel ee and B. Preneel, HAT: secure and
practical key establishment for implantable medical devices, Pro-
ceedings of the Thirteenth ACM Conference on Data and Application
Security and Privacy, 2023.

[3] G. Fedrecheski, L. C. Costa, S. Afzal, J. M. Rabaey, R. D. Lopes and
M. K. Zuffo, A low-overhead approach for self-sovereign identity in
IoT, Internet of Things: 5th The Global IoT Summit, 2023.

[4]

(51

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

Vol. 15, No. 6, 2024

C. W. Chuah, E. Dawson and L. Simpson, Key derivation function: the
SCKDF scheme, 28th IFIP TC 11 International Conference, 2013.

C. W. Chuah, Key derivation function based on stream ciphers, Ph.D.
dissertation, Queensland University of Technology, 2014.

R. Housley, Algorithm identifiers for the hmac-based extract-and-
expand key derivation function (HKDF), Internet Engineering Task
Force (IETF), Tech. Rep., 2019.

J. M. Mcginthy and A. J. Michaels, Further analysis of PRNG-based
key derivation functions, 1EEE Access, 7, 95978-95986, 2019.

H. Krawczyk, Cryptographic extraction and key derivation: The HKDF
scheme, CRYPTO, 2010.

C. W. Chuah, E. Dawson, J. M. Gonzailez Nieto and L. Simpson, A
framework for security analysis of key derivation functions,  Infor-
mation Security Practice and Experience: 8th International Conference,
2012.

W. W. Koh and C. W. Chuah, Robust security framework with bit-
fipping attack and timing attack for key derivation functions,  1ET
Information Security, 14(5), 562-571, 2020.

E. Barker, L. Chen and R. Davis, SP 800-56C Rev. 2 recommendation
for key-derivation methods in key-establishment schemes, NIST
Special Publication, 41, 2020.

D. Watanabe, S. Furuya , H. Yoshida , K. Takaragi and B. Preneel, A
new keystream generator MUGI, 9th International Workshop Fast
Software Encryption, 2002.

E. Dawson, A. Clark, J. Golic, W. Millan, L. Penna and L. Simpson,
The LILI-128 keystream generator, ~NESSIE Workshop, 2000.

F. Hauser, M. Hiberle, M. Schmidt and M. Menth, P4-IPSEC: Site-to-
site and host-to-site vpn with IPSEC in p4-based SDN, IEEE Access,
8, 139567-139586, 2020.

L. Hornquist Astrand, L. Zhu, M. Cullen and G. Hudson, RFC 8636:
Public key cryptography for initial authentication in kerberos (PKINIT)
algorithm agility,  2019.

L. Malina, G. Srivastava, P. Dzurenda, J. Hajny and R. Fujdiak, A
secure publish/subscribe protocol for internet of things, Proceedings of
the 14th international conference on availability, reliability and security,
2019.

B. Schneier, Applied cryptography: protocols, algorithms, and source
code in C, 2015.

A. Menezes, P. Van Oorschot and S. Vanstone, Handbook of applied
cryptography, — 1997.

W. Stallings, Cryptography and Network Security: Principles and
Practices, Fourth Edition, 2006.

E. Dawson and L. Nielsen, Automated cryptanalysis of XOR plaintext
strings,  Cryptologia, 20(2), 165-181, 1996.

J. Massey, Shift-register synthesis and BCH decoding,
Transactions on Information Theory, 15(1), 122-127, 1969.
T. Heer, P. Jokela, T. Henderson and R. Moskowitz, Host identity
protocol version 2 (HIPv2), Internet Engineering Task Force (IETF),
Tech. Rep., 2012.

L. Zhu, M. Wasserman and L. Astrand, PKINIT algorithm agility,
Internet Engineering Task Force (IETF), Tech. Rep., 2012.

IEEE

www.ijacsa.thesai.org

1493 |Page



