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Abstract—The analysis of single-cell genomics data creates an
intriguing opportunity for researchers to examine the complex
biological system more closely but is challenging due to inherent
biological and technical noise. One popular approach involves
learning a lower dimensional manifold or pseudotime trajectory
through the data that can capture the primary sources of
variation in the data. A smooth function of pseudotime then can
be used to align gene expression patterns through the lineages in
the trajectory which later facilitates downstream analysis such
as heterogeneous cell type identification. Here, we propose a
differential evolution based pseudotime estimation method. The
model operates on continuous search space and allows easy
integration of the cell capture time information in the inference
process. The suitability of the proposed model is investigated
by applying it on benchmarking single-cell data sets collected
from different organisms using different assaying techniques. The
experimental result shows the model’s capability of producing
plausible biological insights about cell ordering which makes it
an appealing choice for pseudoitme estimation using single-cell
transcriptome data.
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I. INTRODUCTION

The average expression profile provided by the microarray-
based conventional bulk RNA-seq technology fails to accu-
rately capture transcriptome variation in individual cells. Gene
expression is intrinsically heterogeneous, even in the same or
similar cell types [1]. Averaging expression profiles across a
cell population fails to capture the stochastic nature of the
gene expression associated to different functionally restricted
cell types. Therefore, to comprehend the complex biological
processes such as the development and differentiation of
different cell types, a precise understanding of transcriptome
is necessary for individual cells. In single-cell technology,
the expression profile of each cell is measured individually.
Increasing evidence suggests that many questions in biology
such as cellular function development, cell fate decision,
etc. can be answered in a more refined way at single cell
level [1, 2].

While analyzing gene expression profiles at the individual
cell level holds the potential to uncover novel states of complex
biological processes, this task is difficult due to intrinsic
challenges of both biological and technical nature. Similar
to other RNA-seq technologies like microarray, single-cell
assaying approaches are also destructive. Hence, in certain
instances, the cells being analyzed are undergoing the process
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of development and differentiation, however, the data lacks any
temporal labels. Gene expression dynamics can be analyzed by
employing a pseudotemporal ordering of cells. This ordering
is based on the principle that cells can be viewed as a time
series, where each cell represents a specific time point along
the pseudotime trajectory that corresponds to the progression
through a process of interest.

The estimation of pseudotime, known as a crucial aspect of
analyzing single-cell data, provides a key role in discovering
the complex dynamics of biological processes. It involves
placing cells along a trajectory that shows the biological
phenomenon’s relative activity or growth. This crucial task
lets us evaluate normal cellular function and identify potential
variations that could cause physiological diseases. Time series
investigations that track cell transcriptional dynamics over time
may gain from pseudotime estimation.

For presenting pseudotime trajectories, different for-
malisms have been employed, with early approaches focused
primarily on dimension reduction, followed by cell mapping.
Popular dimension reduction algorithms that have been used
on single-cell data includes linear methods such as Principal
Component Analysis (PCA) [3] and Independent Component
Analysis (ICA) [4], as well as non-linear methods such as
t-Stochastic Neighborhood Embedding (t-SNE) [5], diffusion
maps [6, 7, 8], Gaussian Process Latent Variable Model
(GPLVM) [9, 10, 11] and more recently Uniform Manifold
Approximation and Projection (UMAP) [12].

For creating a pseudotime path, after the initial dimension
reduction, graph-based methods such as Monocle [3], Wander-
lust [13], Waterfall [14], TSCAN [4], Monocle 3 [12] use a
simplified graph or tree for pseudotime estimation, where each
node of the graph or tree corresponds to either a individual
cell or a group of cells. Finally, these methods use different
path-finding algorithms to find a path through the series of
nodes representing the temporal position of cells across the
pseudotime trajectories. SCUBA [15], Slingshot [16], Trade-
Seq [17] use curve fitting to model pseudotemporal ordering
of cells. These methods use principal curves to characterize
pseudotime trajectory where each cell is assigned a pseudotime
point based on its lower dimensional projection on principal
curves. On the other hand, the diffusion pseudotime (DPT)
framework [6, 7] uses random walk-based inference where all
the diffusion components are used to infer pseudotime.

Deep learning methods have also been used for pseudotime
estimation. An autoencoder is a neural network consisting of
an encoder, bottleneck, and decoder that compresses and recon-
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structs data to obtain a precise representation in a latent space.
Variational Autoencoder (VAE) stands out among its seven dif-
ferent types for pseudotime estimation. VAE finds a probability
distribution over input data that has been compressed, allowing
for unsupervised learning and data compression. VAE applies
a normal distribution on the encoded representation and can
generate new data samples by decoding learned distribution
samples. As demonstrated by Variational Inference for Trajec-
tory by Autoencoder (VITAE) [18], which integrates VAE and
hierarchical mixture models to identify non-linear trends and
account for confounding covariates. Probabilistic approaches
of pseudotime estimation are also available which focus on the
quantification of uncertainty across the inferred trajectory [19].
DeLorean [10] and GrandPrix [11] use GPLVM to project cells
on latent dimension. These methods support the incorporation
of capture time information when availalbe. Recently, DGP-
LVM [20] method is developed that additionally supports the
incorporation of RNA velocity [21] in the form of derivatives
within the GPLVM framework.

The existing pseudotime estimation algorithms use dimen-
sion reduction methods at some point in the inference process.
The performance of a model, i.e. the accuracy of estimated
pseudotime may largely depend on the dimension reduction
algorithm being used and the amount of information lost
while converting the original data to the lower dimensional
space. For instance, linear methods like PCA and ICA may
not capture nonlinear biological processes, whereas nonlinear
methods like t-SNE and UMAP are computationally expensive
as well as difficult to interpret. Recently, [22] have investigated
the effects of dimension reduction on pseudotime estimation.
They simulated three-dimensional data under three different
settings and then employed five distinct dimensional reduction
strategies to assess the extent to which the original data
might be preserved. They found that all dimension reduction
algorithms fail to clearly depict the temporal structure of
the data. Therefore, certain pseudotime estimation methods
may fail to approximate the underlying trajectory using lower
dimensional representation of data particularly when some
genes exhibit typical behaviors such as piece-wise linearity
etc.

To overcome the issues with dimension reduction, pseu-
doGA [22] proposes a Genetic Algorithm(GA)-based method
that directly uses the original data for pseudotime estimation.
PseudoGA employs gene expression value ranking prior to
entering the main procedure, assigning the average value in
cases where values are identical. Applying GA for optimization
requires finding a suitable representation of the candidate
solution. PseudoGA assumes the search space is discrete, i.e.
the goal of the model is to find the best permutation of cells
that can explain the transcriptomic change of gene expression
levels along the corresponding trajectory. Therefore, the model
uses the permutation representation of cell ordering. Cells are
indexed from 1 to n, where n is the number of cells. The
algorithm randomly populates different permutations from 1
to n, each representing a candidate pseudotime ordering. This
representation of the candidate solutions enables the algorithm
to apply genetic operators, i.e. recombination, mutation, and
selection on a population to generate a new one. PsedoGA
uses a cubic polynomial function and Bayesian Information
Criterion (BIC) to evaluate the fitness of each candidate
solution and selects the fittest ones for the next generation.

Although the genetic algorithm provides an appealing
solution for pseudotime estimation that does not require any
dimension reduction, it demands the search space to be dis-
crete. Therefore, PseudoGA only considers the ordering of
cells and ignores the absolute position of cells on the estimated
trajectory. The paper argues that there may be no physical
meaning to the quantitative location of cells on a pseudotime
trajectory. For discrete representation cell to cell, distance is
the same for all cells of the system. From a biological point
of view, this does not seem right. During development, cells
receive signals from other cells and stimuli and define their
fate decisions. Therefore, all cells do not progress at the same
rate hence creating the cell ordering. A cell may be in close
proximity to a group of cells and relatively far from other cells.
The absolute position of a cell across pseudotime trajectory
reflects the cell progression through the underlying biological
system. The discrete representation of pseudotime ordering
fails to capture these dynamics. The discrete pseudotime
ordering forces the Pseudo cost function to use the rank values
rather than the actual gene expression values [22]. While the
authors claim that the use of ranks aids in the model’s ability
to avoid the specific effects of any particular functional form
of gene expression, it may endanger the model losing valuable
information.

Moreover, in some cases, cell capture time is available
along with the single-cell RNA-seq data. This capture time
information is informative [10, 11]. As capture times are
real values, the discrete representation of pseudotime does
not allow the incorporation of this information within the
inference process, although PseudoGA has used capture time
to validate the estimated pseudotimes. But [10, 11] have shown
that the incorporation of capture time information within the
inference process helps the model significantly, even the model
can identify specific features of interest such as cell cycle or
other sources of variations such as branching dynamics. In this
contribution, we present a new efficient pseudotime estimation
algorithm based on differential evolution (DE). Differential
evolution is a metaheuristics optimization algorithm that has
a long legacy in bioinformatics applications [23, 24, 25].
DE optimization operates on continuous search space hence
facilitating the smooth integration of capture time information
within the inference process. The model obviates the necessity
for dimensionality reduction techniques and the estimated
pseudotime represents the ordering of cells as well as cell
progression through the dynamic biological process.

The rest of the paper is divided into a set of sections,
each developing a part of the research. Section II discusses
the proposed approach and its specific workings. Section III
outlines the experimental results. Sections IV and V include
the Result Analysis and Discussion respectively, analyzing
the study’s significant outcomes and implications. Finally,
Section VI concludes the current study with possible future
directions.

II. PROPOSED METHOD

Differential Evolution (DE) is a widely used metaheuristics
optimization algorithm that can be easily adapted for pseu-
dotime estimation. The algorithm iteratively tries to improve
a candidate solution based on a quantity known as the fit-
ness score. The algorithm proceeds by generating an initial
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population of candidate solutions known as chromosomes or
individuals. Each chromosome represents a pseudotemporal or-
dering of cells under consideration. By combining the existing
candidate solutions, the optimization process generates new
candidate solutions and keeps whichever candidates possess a
better fitness score. In this way, DE maintains a population of
the fittest candidate solutions from one generation to the next.
This process continues until a termination criterion is met. The
outline of the proposed algorithm is shown in Fig. 1.

Since the expression profiles of all genes do not contribute
equally to the inference process, it is recommended to perform
a preliminary gene selection to improve the accuracy of pseu-
dotime estimation. As cells are ideally clustered into two or
more clusters, therefore, genes that are differentially expressed
among clusters are chosen for the inference process. Other
feature selection approaches for single-cell data such as the
selection of highly variable genes [26, 27], and dropout-based
feature selection [28] can also be employed.

A. Feature Selection

We use the Wilcoxon rank sum test [29] to compare the
expression levels of the transcriptomics dataset of individual
genes between pairs of clusters.

The Wilcoxon rank sum test, also known as the Mann-
Whitney U test, is a nonparametric statistical test used to
compare the differences between two independent groups or
samples. It involves ranking all the observations from both
groups together and calculating the sum of ranks for each
group. The test statistic is calculated as the smaller of the two
sums of ranks, which represents the probability that a randomly
chosen observation from one group is smaller than a randomly
chosen observation from the other group. It compares the
differences between groups without making assumptions about
the underlying distribution of the data.

Therefore, to select interesting genes, at first, a cluster
(cluster i) is selected and has been compared with other
clusters. Then submatrices are created containing only the
samples from cluster i and the second cluster being compared
(cluster j). The resulting p-values are stored in a vector,
which is then sorted to identify the genes that are most
differentially expressed between the two clusters. This process
is repeated for all pairs of clusters, with the resulting vectors of
differentially expressed genes and cluster indices being stored
to be used for pseudotime estimation.

B. Representation of Pseudotime and Incorporation of Cell
Capture Time

Differential evolution operates in a continuous search
space. Therefore, the chromosomal representation of pseudo-
time is straightforward. Any collection of n real numbers can
be a candidate chromosome where n is the number of cells.
Formally, each individual X is represented as,

X = {x1, x2, ..., xn}, (1)

where each xj corresponds to the pseudotime point of cell j.

However, the critical assumption of the proposed model is
that the available cell capture times are informative to model

the biological dynamics of interest. Therefore, at the time of
population initialization, for each chromosome, the pseudotime
value xj of cell j is drawn from a normal distribution centered
on the capture time cj of cell j,

xj = N(cj , σ
2), (2)

where σ2 represents the variance of pseudotime around the
cell capture time.

C. Cost Function

The extent to which a pseudotime trajectory interprets
specific changes in gene expression level can also be described
in terms of a cost function. Fitting a smooth curve with the
expression values as the dependent variable and the pseudotime
values as the explanatory variable yields this cost or penalty.
The hypothesis for this cost function is to find out which indi-
vidual is better at explaining the behavior of gene expression.

Gene expression along pseudotime exhibits three distinct
patterns: (i) monotonic increase or decrease, (ii) peak or dip
followed by a reversal, and (iii) peak or dip followed by a
secondary change in expression. To capture these patterns,
our algorithm assumes that gene expression values can be
modeled by a polynomial of degree up to 3 as in [22]. This
flexibility accommodates even cyclic behavior in specific genes
throughout the pseudotime trajectory, encompassing all three
expression patterns mentioned.

For each gene j in cell i, the expression level yi,j is
modeled using a cubic polynomial,

yi,j = β0 + β1xi + β2x
2
i + β3x

3
i + ϵi,j , (3)

where xi represents the pseudotime for cell i and ϵi,j is
associated noise. Therefore, cost of a chromosome X for gene
j can be defined by the mean square error (MSE),

MSEX,j =
1

n
∗

n∑
i=1

(yi,j − ŷX,i,j)
2
, (4)

where n is the number of cells and ŷX,i,j represents the
calculated expression level of gene j using the pseudotime
value of the cells i according to chromosome X . Now, the
error or fitness score of chromosome X is,

MSEX =

D∑
j=1

MSEX,j (5)

where D is the number of genes being used for pseudotime
estimation.

D. Inference Algorithm

Then crossover and mutation operations of DE are applied
to these individuals to generate a new population of NP
offspring individuals, where NP is 4 to 10 times greater than
the size a single chromosome. These newly generated offspring
individuals are combined with the old parent individuals to
create a combined population of size 2.NP .

Crossover is a key element of the Differential Evolution
algorithm, as it permits the combination of data from various
individuals to generate new candidate solutions. This process
entails the exchange or recombination of parent solution
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Fig. 1. Framework of the proposed methodology.

parameters or variables. In our algorithm, we employ the
crossover operation to produce diverse offspring solutions and
potentially enhance the population’s overall performance. In
our work, we have used a standard single-point crossover strat-
egy. However, the specific crossover strategy and parameters
employed depend on the problem domain and optimization
process objectives.

The solution space of the problem contains many local
optima that may lead the search algorithm to the wrong
direction and, eventually, the global solution may remain
undetected [23]. Thus, for locating the global optimal solu-
tion in such a search space, population diversity has to be
maintained. Mutation is the operator that has traditionally been
used in differential evolutions for introducing diversity in the
population. As our search space is continuous, the mutation
operation updates the pseudotime value of a cell with a new
value drawn from a normal distribution centered at the current
pseudotime value of that particular cell. Each of the 2NP
chromosomes is chosen and based on a mutation probability,
a mutation operation is applied to them. This gives us an
augmented set of chromosomes of size 4NP .

The optimization procedure evaluates the quality of all
4NP solutions using a cost function and the top 25% chro-
mosomes are selected for the next generation. This way, the
algorithm iteratively enhances the population through multiple
iterations of generating new offspring, evaluating their fitness
using the cost function, and updating the population based on
selection criteria. This method permits the exploration and
refinement of candidate solutions until an optimal or near-
optimal solution is reached.

III. EXPERIMENTAL RESULTS

We examine our proposed model’s performance by em-
ploying it on multiple datasets with different sizes and charac-
teristics that have been collected from distinct organisms using
various approaches. Table I contains a brief description of the
datasets.

Algorithm Pseudotime Estimation

Input: Cell by gene matrix obtained from single cell RNA-
seq data. Choose an ϵ, a small preassigned positive quantity.

Output: Near optimum pseudotime of cells.
Construct X0 = {X1, . . . , XNP }: initial set of chromoso-
mal representing of pseudotemporal ordering of cells.
while Minimum cost function over the population converges
do

Step 1: Perform crossover on X0 to generate
offsprings. Set of chromosomes becomes
X1 = {X1, . . . , XNP , X

(o)
1 , . . . , X

(o)
NP }, where

{X(o)
1 , . . . , X

(o)
NP } are the offspring from {X1, . . . , XNP }

due to crossover. Here C(X1) = 2NP , where C(A) is
the cardinality (number of elements) of a set A.
Step 2: Perform Mutation on each element of X1 to find a
new augmented set of chromosomes X2 = {X1, X(m)}.
X(m) = {X(m)

1 , . . . , X
(m)
NP , X

(mo)
1 , . . . , X

(mo)
NP }, where

X
(m)
i and X

(mo)
i are new chromosomes due to mutation

from Xi and X
(o)
i respectively for each i = 1, . . . , NP .

Clearly C(X2) = 4NP .
Step 3: Calculate cost for each chromosome in X2 and
order them as C(1), . . . , C(4NP ), where C(r) is the r-th or-
dered value of {C(1), . . . , C(4NP )}. Selection is based on
choosing the best NP chromosomes, i.e. chromosomes
corresponding to {C(1), . . . , C(NP )}. Denote this new set
of chromosomes as X1 obtained after first iteration.
Step 4: Go back to Step 1 - 3 until |Cnew(1) − C(1)| < ϵ

TABLE I. DATASETS IN DETAIL

Dataset Name Samples Features Capture
Time

Whole-leaf Microarrays of
Arabidopsis Thaliana Data [30] 24 100 4

Human Preimplantation
Embryos Data [31] 90 500 7

Human Acinar Cell Data [32] 271 500 4
Human Skeletal Muscle
Myoblasts (HSMM) [33] 312 500 8

Mouse Embryonic Fibroblast [34] 315 500 5
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A. Whole-leaf Microarrays of Arabidopsis Thaliana

Windram et al. [30] studied a high-resolution time series
of gene expression profiles from a single leaf of Arabidopsis
thaliana during infection by Botrytis cinerea. Using time series
measurements, they compared infected samples to control
conditions over 48 hours. The study found that about one-
third of the Arabidopsis genome showed differential expression
during the first 48 hours after infection. The data included 24
distinct time points, with measurements conducted every two
hours. For our experiment, we divide these time points into
four groups, each containing six consecutive time points that
are used to initialize the model. For pseudotime inference, 100
genes out of 150 described genes are used, with the remaining
50 genes being held out for validation.
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Fig. 2. Arabidopsis thaliana microarray data [30]: Pseudotime (horizontal
axis) versus true capture time. Colors represent the prior information utilized

for the inference process.

We plot the estimated pseudotime against the actual cell
capture times to examine their correspondence, as shown in
Fig. 2. Each point on the plot represents a specific time point,
with colors indicating the synthesized cell capture time.

B. Human Preimplantation Embryos Data

The Human embryo development data [31] includes em-
bryos at seven preimplantation stages, including oocyte, zy-
gote, 2-cell, 4-cell, 8-cell, morula, and late blastocyst at the
hatching stage. The dataset also includes individual blas-
tomeres of three 2-cell, three 4-cell, and two 8-cell embryos
for analysis. Before pseudotime estimation, gene filtering
improves the algorithm’s accuracy. We select the top 500
differentially expressed genes for our experiment by dividing
all genes into two clusters. The detailed process is described
in Section II.

The analysis [31] shows that all cells grouped together
are from the same stage of development, except for two
blastomeres from a morula stage embryo that were grouped
with blastocysts. This finding is also consistent with our
findings shown in Fig. 3.

Based on the information presented in Fig. 3, we can see
that the cells of each stage have formed distinct regions, mak-
ing them readily identifiable. According to the source [35, 36],
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Fig. 3. Analysis of Human embryo developmental data [31]. X-axis is the
the ranks of pseudotime; Y-axis represents the developmental stage, with

discrete values for each point of each stage.

during the transition from the 4-cell to the 8-cell stage, the
most significant variations in gene expression were observed.
Our findings reflect this pattern of behavior. From the oocyte to
the 4-cell stage, they maintain a shared pseudotime range, and
from the 8-cell stage to late blastocytes, some cells exhibit
a similar pseudotime. However, there are hardly any shared
pseudotime-contained cells between the 4 and 8-cell stages.

ACCSL, C21ortf, ALOX15, C10orf82 and RSPO2 are the
top five genes that have the highest linear rank correlation
with the estimated pseudotime. Fig. 4 plots the profiles of the
top genes with the estimated pseudotime. On the x-axis, we
observe pseudotime projections for each cell, and the y-axis
displays smoothed, z-scored log gene expression. The color
scheme indicates label order.

The conclusion drawn from the aforementioned biological
validation is that the result obtained by our model is capable
of seeing the latent pattern of data.

C. Human Acinar Cell Data

The study [32] examines the changes in the pancreas
with age and diabetes development using single-cell RNA
sequencing from 28 human volunteers aged 1 to 75. The age-
dependent mutational signature in the endocrine pancreas is
caused by reactive oxygen species and consists of high rates of
C > A and C > G changes. The accumulation of epigenetic
errors may explain the decline in fitness and organ function
with age.

The initial dataset contains 411 cells. For our experiment,
we select 312 samples using random sampling. A population
of 1248 potential solutions is generated using donor age as
a starting point for optimization. Each individual is created
from a normal distribution with a mean equal to the donor’s
age and a standard deviation of 4. The optimization process in-
volves 100 iterations, with promising individuals chosen based
on the objective function. Promising individuals are used to
generate improved solutions through crossover and mutation.
Fig. 5 shows the estimated pseudotime for individual cells
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Fig. 4. Exploring the intricate profiles of highly variable genes within Embryo data [31]. Visualizing the five genes characterized by the highest absolute
coefficients against the pseudotime generated through our model. The line depicts a geom smoothed curve, crafted using the ggplot2 R package.
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Fig. 5. Analysis of Human Acinar Cell [32]. Pseudotime (horizontal axis)
versus true capture time. Colors represent the prior information utilized for

the inference process.

corresponds to different donor ages. The expression profiles
of the most correlated genes with pseudotime are plotted
against the estimated pseudotime in Fig. 6. Clusterin (CLU)
is important in pancreatic regeneration and is expressed in
chronic pancreatitis [37]. Amylase (AMY2B) is characteristic
of mature acinar cells and encodes a digestive enzyme [38].
ITM2A is significantly differently regulated in a model of
chronic pancreatitis.

The study reveals molecular changes in the pancreas as
we age, with somatic mutations potentially contributing to
pancreatic diseases like cancer and diabetes. The research
uses single-cell RNA sequencing data on primary cells to
understand genetic and transcriptional processes in human
tissue as it ages. This allows studying traits in arbitrary cell
populations from primary tissue, regardless of cell division
ability. The results could guide future research on age-related
diseases and develop effective treatments. The analysis reveals
specific gene expression alterations associated with aging in
the pancreas of humans, with pseudotime for close age data
falling within a roughly identical range. Cells captured from
later age groups contain diverse and distinct ranges from earlier
age groups.

D. Human Skeletal Muscle Myoblasts (HSMM)

Primary Human Skeletal Muscle Myoblasts (HSMM) [33]
are the first myoblast cells isolated from human skeletal muscle
tissue. These cells can proliferate and multiply and these
were cultured in mitogen-rich environments to promote growth
and division. After proliferation, they undergo differentiation,
which transforms undifferentiated cells into specialized or ma-
ture cells. To induce differentiation, myoblasts are transferred
to a culture medium with minimal mitogen concentrations.
RNA-seq libraries were collected from several hundred serum-
induced differentiated cells over an extended period of time.
The data were collected from 271 cells at 0, 24, 48, and
72 hours after differentiation conditions. Myoblasts, interme-
diates, myotubes, fibroblasts and undifferentiated cells were
annotated using Gene Set Variation Analysis (GSVA) [39]
based on known gene markers.

In this experiment, we optimize an initial population of
1084 viable solutions, using capture time as a baseline. We
generate each individual by randomly selecting data from
a normal distribution, using the capture time as the mean
and within three standard deviations. The model requires one
hundred iterations, each selecting individuals according to the
objective function. We employ survivals to develop improved
solutions through crossover and mutation, with a probability
of 0.95 and 0.1, respectively. Fig. 7 illustrates the relationship
between the resultant pseudotime and the capture time.

Our model’s estimated pseudotime is consistent with the
findings of Tran and Bader [40]. There is a shared pseudotime
range between cells from 0H to 24H, as well as a shared range
between the other three stages. The result shows an increasing
trend and aligns with the known biology of myotube devel-
opment. Our model’s pseudotime has a Pearson correlation of
0.943 with the collection time of the data sets.

E. Mouse Embryonic Fibroblast

The dataset reveals the transcription changes that occur
when MEFs are converted into neurons using transcription
factors Ascl1, Brn2, and Myt1l (BAM). Researchers examined
transcriptomes of single cells at multiple time points during the
direct conversion of MEFs into induced neuronal cells. The
data was extracted at Day 0 (starting point), Day 2 (Ascl1-
only cells), Day 5 (purifying Tau–eGFP+ and Tau–eGFP-
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Fig. 6. Profiles of the highly variable genes in acinar cells [32]. Plotting the five genes with the highest absolute coefficients against the pseudotime generated
by this model. The line represents a geom smoothed curve as determined by the ggplot2 R package.
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Fig. 7. Human Skeletal Muscle Myoblasts (HSMM) [33]. Pseudotime
(horizontal axis) versus true capture time. Colors represent the prior

information utilized for the inference process.

cells), Day 20 (late stage of reprogramming), and Day 22
(BAM-mediated reprogramming). The researchers used prin-
cipal component analysis (PCA) to identify three distinct
clusters within Ascl1-only cells based on their expression
level. On Day 20, they analyzed a subset of Tau–eGFP+
cells, representing the late stage of the reprogramming process.
On Day 22, they analyzed both Ascl1-only cells and cells
reprogrammed using all three BAM factors, comparing the
transcriptional profiles of cells reprogrammed with different
factor combinations. This data provides insights into the het-
erogeneity and limitations of the reprogramming process.

The optimization process involves generating an initial
population of 1260 potential solutions using the collection time
as a basis. Each solution is created from a normal distribution
with a mean equal to the donor’s age and a standard deviation
of 3. The process involves 150 iterations, with promising
individuals chosen based on the objective function. Promising
individuals are used to generate improved solutions through
crossover and mutation. The pseudotime results are plotted
against the capture time in Fig. 8, and expression values of
the most correlated genes are drawn.
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Fig. 8. Analysis of Mouse Embryonic Fibroblast (MEF) data [34].
Pseudotime (horizontal axis) versus true capture time. Colors represent the

prior information utilized for the inference process.

Expression values of the most correlated genes with pseu-
dotime are drawn in Fig. 9, x-axis is pseudotime value learned
for each cell; y-axis is z-scored log2 gene expression values.

IV. RESULT ANALYSIS

A. Tracing Gene Expression Changes through Pseudotime

Throughout the processes of cellular development, pro-
liferation and the other similiar activities, individual genes
manifest distinct behavioral patterns. As per existing literature
and our formulated hypothesis, these behaviors can broadly
be categorized into three distinct patterns: (i) a monotonic
increase or decrease, (ii) a peak or dip followed by a reversal,
and (iii) a peak or dip succeeded by a secondary change in
expression.

The calculation of pseudotime relies primarily on under-
standing the intrinsic behaviour of the genes involved. To
evaluate the accuracy of the derived pseudotime, a crucial
procedure is generating a graphical representation that aligns
gene profiles with the estimated pseudotime. In these plots,
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Fig. 9. Profiles of highly variable genes from MEF data [34]. Plotting the five genes with the highest absolute coefficients against the pseudotime generated by
this model. The line depicts a geom-smoothed curve generated by the ggplot2 R package.

a discernibly smooth curve serves as an indicator that the
resulting pseudotime adeptly captures the intricate behavior
of the genes.

In Fig. 4, 6, 9 we observe the preeminent correlation of
genes with pseudotime. These plots notably exhibit a remark-
ably smooth curve, consistently adhering to the anticipated
and hypothesized patterns. It thus validates our estimated
pseudotime.

B. Roughness Statistics

To validate our results, we utilize a technique describe
in [10]. This method focuses on assessing the uniformity of ex-
pression profiles for excluded genes throughout the estimated
pseudotime.

The statistical process is used to capture the smoothness
of the gene expression values xg, c

′ across cells 1 ≤ c ≤ C,
pseudotime τ1.....τC, and ordering z1......zC satisfying the
condition τz1 ≤ .... ≤ τzC. The roughness of the genes is
determined by the disparities between successive expression
measurements in pseudotime ordering.

Rg(z) =
1

σ g

√√√√ 1

C − 1

C−1∑
c=1

(x′
g,zc − x′

g,zc+1
)
2 (6)

TABLE II. THE ROUGHNESS STATISTICS VALUES FOR THE DATASETS
USING THE PSEUDOTIME GENERATED BY THE PROPOSED METHOD, IN

COMPARISON TO THREE OTHER WIDELY RECOGNIZED METHODS

Models

Datasets
1 2 3 4 5

Our Model 0.71 0.55 0.63 1.10 0.57
PseudoGA 0.82 0.44 0.59 1.39 0.61
slingshot 0.77 0.46 1.10 0.86 0.41
Monolcle3 0.92 0.53 1.06 0.83 0.40

In Eq. (6), σg represents the standard deviation of the ex-
pression measurements in this context. Lower Rg values imply
smoother expression profiles, whereas higher values indicate
rougher expression profiles. However, there’s an acceptance
range for this value, which is valid if the value falls within
two standard deviations (2∗σg) of the gene expression values.
Values of Rg within this range are considered to be acceptable

for assessing the uniformity of expression profiles for excluded
genes.

In Table II, the roughness statistics values corresponding
to the datasets employed in this study are presented. With
the exception of HSMM dataset, all values fall within one
standard deviation. Notably, while acknowledging that the ac-
ceptable range for roughness values extends up to two standard
deviations, the observed values affirm a coherent relationship
between gene expression and the estimated pseudotime.

V. DISCUSSION

With the emergence of single-cell transcriptomics, the field
of functional genomics has made significant progress, which
enables an in-depth analysis of cellular processes such as tissue
development and cellular differentiation. The first step towards
analyzing single-cell data obtained from a developmental
biological system is to project cells on a pseudotemporal
trajectory representing the ordering of cells based on their
cellular development. This ordering of cells can be viewed
as the restoration of the time series information that was lost
at the time of the cell capture process.

To estimate pseudotime trajectories, a number of methods
have been developed in the existing literature. Most of these
methods construct the pseudotime based on the lower dimen-
sional representation of the original data. While dimension
reduction algorithms aim to identify major trends within the
underlying data, recent studies [22] have shown that it is
susceptible to losing valuable information. Therefore, certain
methods may find it difficult to approximate a temporal
trajectory while using reduced dimensional data. A genetic
algorithm-based model PseudoGA has been developed in [22]
that does not employ any dimension reduction for pseudotime
inference. Through a number of experiments, this work has
been aimed to tackle the challenges associated with the lower
dimensional representation of the data as well as the proposed
model’s applicability of pseudotime estimation while using the
original data.

However, being a GA-based algorithm, PseudoGA is forced
to use a discrete chromosomal representation which greatly
hinders the flexibility and usability of the proposed model.
First, the discrete representation assumes that all cells maintain
an equal pseudotemporal distance from one another. The model
only provides a pesudotime ordering of cells and ignores the
physical interpretation of cells’ pseudotime values across the
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trajectory. Therefore, a cell’s progression through development
processes compared to other cells can not depicted. Second,
PseudoGA needs to use gene rank values instead of actual gene
expressions, which in the long run may affect the quality of
estimated pseudotime. Third, applying genetic operators, i.e.
crossover and mutation on the discrete pseudotime representa-
tion demands special consideration. Otherwise, more than one
cell may try to occupy the same pseudotime location. This
collision is evident and PseudoGA needs to employ special
treatments to avoid this [22]. Finally, and most importantly, the
discrete chromosomal representation of pseudotime does not
allow the incorporation of the cell capture time when avail-
able. Finally, and most importantly, the discrete chromosomal
representation of pseudotime does not allow the incorporation
of the cell capture time when available. This capture time
information is informative and its incorporation within the
inference process helps the model to find more biologically
plausible pseudotime estimation [10, 11].

In this study, we introduce a new computational model,
which provides some notable advantages. At the core of our
model is the differential evolution algorithm, which operates
on continuous search space. The model obviates the necessity
for dimensionality reduction techniques and facilitates the
smooth integration of capture time information during the
population initialization stage. Because of the simple chromo-
somal representation (see Section II-B), the implementation
of crossover and mutation is straightforward and does not
require any special attention. The model uses the actual gene
expressions which further strengthens the model’s ability of
pesudotime estimation, especially in the presence of genes
having particular expression profiles. Finally, the estimated
pseudotime not only provides the cell ordering but also depicts
the cellular progression of undergoing biological system. We
assessed the performance of our proposed model on multiple
datasets of varying sizes and derived from different organisms
using different single-cell assaying techniques. Five different
datasets have shown consistent results from our approach,
which demonstrates its reliability. Through extensive exper-
imentation, we demonstrate that our proposed model can be
used to effectively estimate the pseudotime, a significant factor
in temporal analysis of single-cell data, with similar or even
greater precision. This improvement could enhance our com-
prehension of complicated biological processes in a dynamic
setting by enabling us to analyze single-cell information and
extract relevant temporal dynamics.

VI. CONCLUSION

The analysis of single-cell transcriptomics and pseudotime
inference methods provide intriguing possibilities for under-
standing complex dynamics of cellular processes where the
generation of time course experiments is challenging or techni-
cally impossible. As single-cell data are becoming increasingly
available in larger volumes, therefore, simple yet rigorous
approaches such as the differential evolution we have presented
will become ever more relevant. Differential evolution is
inherently parallel. The flexibility of the proposed approach
can further leverage the parallel execution of the model for
larger sample data as well as analysis of the connection
between pseudotime and lineage or branching structures; with
the potential for future refinement and expansion.

Supplementary Source code and data are available at
https://github.com/sumonahmedUoM/PseudoDE
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