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Abstract—This work presents a novel approach to modeling
and analyzing human walking patterns using a two-dimensional
Levy walk distribution and the Internet of Sensing Things. The
study proposes the strategic placement of MPU6050 sensors
within a garment worn on the human leg to capture motion
data during walking activities that can model human walking
patterns. Random samples are generated from the Levy distri-
bution through numerical modeling, simulating normal human
walking patterns. A real-world experiment involving five male
participants wearing sensor-equipped garments during normal
walking activities validates the proposed methodology. Statistical
analysis, including the Kolmogorov-Smirnov test, confirms the
agreement between simulated Levy distributions and observed
step distance data, supporting the hypothesis that deviations
indicate abnormal walking patterns. The study contributes to
advancing sensor-based systems for human activity recognition
and health monitoring, offering insights into the feasibility of
using Levy walk distributions for gait analysis.
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I. INTRODUCTION

The rapid advancement of technology has led to the
proliferation of wearable IoT devices, revolutionizing various
aspects of human life, including healthcare, fitness monitor-
ing, and lifestyle management. Among these devices, inertial
measurement units (IMUs) have emerged as powerful tools for
capturing human motion data with high precision and accuracy.
IMUs, such as the MPU6050 sensor, are capable of measuring
acceleration and angular velocity, enabling detailed analysis
of human activities such as walking, running, and posture
control. Human walking patterns provide valuable insights
into musculoskeletal health and overall well-being. Monitoring
and analyzing these patterns can help detect abnormalities
indicative of underlying conditions or injuries, facilitating early
intervention and treatment. Wearable sensors have emerged as
promising tools for capturing human motion data with high
precision and accuracy, enabling detailed analysis of walking
dynamics in real-world environments.

Our motivation stems from the growing need for non-
invasive and cost-effective methods for detecting and moni-
toring abnormal walking patterns in diverse populations. By
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harnessing the capabilities of wearable sensors, we aim to de-
velop a robust system capable of identifying subtle deviations
from normal walking behavior and providing timely alerts or
interventions. This system has the potential to revolutionize
healthcare delivery by enabling remote monitoring of individu-
als at risk of mobility-related health issues, such as Parkinson’s
disease, stroke, or musculoskeletal disorders.

The primary objectives of this work are as follows:

1) Develop an Internet of Sensing Things-based system
for human walking data acquisition. Implement algo-
rithms for step detection, step length estimation, and
distance calculation to analyze human gait patterns
effectively.

2) Modelify the normal human walking pattern using
statistical distribution methods to predict abnormali-
ties in human walking.

By achieving these objectives, we seek to contribute to
the advancement of wearable IoT technology for healthcare
monitoring and improve the detection and management of
musculoskeletal disorders, neurological conditions, and other
mobility-related health issues. In this paper, we outline the
architecture of our proposed system and describe the al-
gorithms and methodologies employed for data collection,
processing, and analysis. We then present the results of real-
world experiments conducted to validate the effectiveness of
our approach in predicting abnormal human walking patterns.
Finally, we discuss the implications of our findings and high-
light the potential applications of our system in healthcare,
rehabilitation, and assistive technology.

II. BACKGROUND STUDY

Human locomotion analysis has garnered significant atten-
tion due to its implications in various fields, ranging from
healthcare to robotics. Recent advancements in wearable sen-
sor technologies have provided novel avenues for studying hu-
man walking patterns and predicting abnormalities. Leveraging
wearable sensors, Dou et al. [1] explored the spatial-temporal
propagation of malware in mobile wearable IoT networks,
demonstrating the versatility of sensor-based systems. Mekruk-
savanich & Jitpattanakul [2] delved into biometric user identifi-
cation through human activity recognition, showcasing the po-
tential of deep learning models in understanding human move-
ment. Zhao et al. [3] predicted joint angles based on surface
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electromyography, highlighting the applicability of wearable
sensors in biomechanical analysis. Rosaline et al. [4] enhanced
lifestyle and health monitoring of elderly populations using
a classifier, underscoring the importance of wearable sensor-
based approaches in healthcare. Xia & Sugiura [5] optimized
sensor position for human activity recognition, emphasizing
the role of sensor placement in improving analysis accuracy.
Ortiz [6] and Abu-Faraj et al. [7] provided foundational knowl-
edge on smartphone-based human activity recognition and clin-
ical movement analysis, respectively, laying the groundwork
for subsequent research in the field. Recent advancements
in deep learning, as demonstrated by Hanif et al. [8], have
enabled robust human gait recognition systems, augmenting
the capabilities of wearable sensor technologies. Toch et al. [9]
surveyed machine learning methods for analyzing large-scale
human mobility data, providing insights into the diverse ap-
proaches employed in human locomotion analysis. Dodge [10]
proposed a data science framework for movement analysis,
offering a comprehensive perspective on the analytical process.
Morshed et al. [11] presented a taxonomy-based survey on
human action recognition, categorizing various approaches
and highlighting emerging trends. Barak Ventura et al. [12]
classified human movements in virtual reality-based serious
games, showcasing the versatility of sensor-based systems
in interactive applications. Scafetta [13], Zimbardo & Perri
[14], and Reynolds [15] provided theoretical insights into
Levy walks and their implications in human mobility research.
Potdar et al. [16] analyzed human mammary epithelial cell
movement patterns, shedding light on fundamental aspects of
cellular locomotion. Achanta et al. [17] conducted acoustic gait
analysis using wearable sensors, demonstrating the feasibility
of sensor-based approaches in biomechanical analysis. Rajaku-
mar et al. [18] monitored health and predicted faults using deep
learning models optimized by the Levy flight optimization al-
gorithm, showcasing the integration of advanced optimization
techniques in health monitoring systems. Smith et al. [19] mea-
sured movement at home for multiple sclerosis patients using
an ambient measurement system, highlighting the potential of
sensor-based systems in remote healthcare monitoring. Li et
al. [20] quantified the impact of motions on human aiming
performance using eye tracking and bio-signals, illustrating the
interdisciplinary nature of human movement research. Authors
of [21], [22] introduced novel approaches of HCI for e-health
monitoring and abnormal human finger movement prediction.
Authors of [23], [24] showed an approach for himan gesture
recognition with IoT and HCI. IoT and HCI are helping
mankind in e-health systems [25], [26], [27], [28], [29], [30],
highway monitoringrahman2022iot, parkinson disease man-
agement [31], farming [32], [33], [34], [35], private tuition
[36], energy harvesting [37], human face recognition [38],
remote sensing [39], [40], performance measuring [41], [42],
security [43], [44], [45], food management [46], [47] and many
more sectors in recent days. The literature on human-wearable
sensor interaction underscores the diverse applications and
methodologies employed in human locomotion analysis. From
biometric identification to health monitoring, wearable sensors
have revolutionized our understanding of human movement
and paved the way for innovative applications in various
domains.

III. HYPOTHESIS

A. Statement

Strategically placing the MPU6050 sensor within a human
leg garment can effectively model normal human walking
patterns resembling a two-dimensional Levy walk distribution.
Any deviation from this distribution is indicative of abnormal
walking patterns.

B. Explanation

The hypothesis posits that by embedding the MPU6050
sensor in a garment worn on the human leg, it is possible
to capture and analyze the motion data during walking ac-
tivities. Normal human walking patterns are hypothesized to
exhibit characteristics akin to a two-dimensional Levy walk
distribution, which is characterized by intermittent bursts of
movement interspersed with periods of relative immobility.
The MPU6050 sensor, with its ability to measure both ac-
celeration and angular velocity along multiple axes, provides
comprehensive data on the movement dynamics of the leg
during walking. By strategically placing the sensor on the
leg, it becomes possible to capture the subtle nuances of gait
patterns, including step length, cadence, and stride variability.
The hypothesis suggests that deviations from the expected two-
dimensional Levy walk distribution in the sensor data may
indicate abnormalities in the walking pattern. Such deviations
could manifest as irregularities in step timing, asymmetrical
gait patterns, or exaggerated movements, which are indicative
of potential issues with mobility or musculoskeletal function.
Overall, the hypothesis proposes that leveraging the MPU6050
sensor to monitor walking patterns in real-time and comparing
them to a modeled two-dimensional Levy walk distribution,
can provide valuable insights into the normalcy of human
gait. Any deviations detected from this distribution could serve
as early indicators of abnormal walking patterns, facilitating
timely intervention and personalized healthcare management
strategies.

IV. NUMERICAL MODELING

To simulate the two-dimensional Levy walk distribution,
we first need to define its probability density function (PDF).
The PDF of the two-dimensional Levy distribution is given by:

f(x, y;µx, µy, σ, α) = (1)

α

2πσ2
exp

(
− α

2σ2

[
1

(x− µx)2 + (y − µy)2

]1/α)

where µx and µy are the location parameters, σ is the scale
parameter, and α is the stability parameter.

To generate random samples from the two-dimensional
Levy distribution, we can use the inverse transform method.
The inverse CDF for the Levy distribution is not analytically
tractable, so we resort to numerical methods.

Given random samples u1 and u2 from a uniform distri-
bution between 0 and 1, we can calculate x and y using the
inverse transform method:

x = µx + σ · (− ln(u1))
1/α

cos(2πu2) (2)

y = µy + σ · (− ln(u1))
1/α

sin(2πu2) (3)
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This algorithm allows us to generate random samples from
the two-dimensional Levy distribution, which can then be used
for further analysis and simulation. The Levy walk distribution
provides information about the position of steps in a two-
dimensional space. It describes the statistical distribution of
step lengths and directions taken by a random walker over
successive time intervals. Therefore, it primarily characterizes
the spatial aspects of the walk, including the distances and
angles between consecutive steps. Fig. 1 shows the histogram

Fig. 1. Histogram of levy walk samples in 2D space.

of random samples generated from a two-dimensional Levy
distribution. Each sample represents a position in a two-
dimensional space (X and Y axes). The color intensity in-
dicates the density of samples in different regions of the
space. In a two-dimensional Levy distribution, the samples
exhibit a heavy-tailed behavior, meaning there are occasional
large deviations from the mean. This heavy-tailed behavior
is characteristic of Levy distributions and is captured by the
parameter alpha. In this specific plot, the parameters used are
µx = 0, µy = 0, σ = 1, and α = 1.5. These parameters
define the location, scale, and stability of the distribution. The
histogram provides insight into the spatial distribution of the
Levy walk samples. Areas with higher counts indicate regions
where the samples are more likely to occur, while areas with
lower counts represent less probable regions. Overall, the plot
visualizes the random spatial pattern generated by the Levy
walk distribution, highlighting its heavy-tailed nature and the
occasional occurrence of large deviations from the mean.

A. Numerical Experiment

Fig. 2 visualizes a simulation of a two-dimensional Levy
walk, where each dot represents the position of the walker
after taking a step. The X-axis and Y-axis denote the spatial
coordinates in the 2D space, with the horizontal axis (X-axis)
representing the horizontal position and the vertical axis (Y-
axis) representing the vertical position. The simulation consists
of 1000 steps, showcasing the trajectory of the Levy walker
over these steps. The stability parameter α is set to 1.5,
influencing the distribution’s tail behavior, with higher values

Fig. 2. 2D Levy walk simulation.

indicating a higher probability of longer steps. The scale
parameter, set to 1.0, determines the characteristic step length,
impacting the average length of steps taken. Collectively,
these parameters shape the characteristics of the Levy walk,
influencing the length and direction of individual steps and
thereby defining the overall trajectory of the walker in the 2D
space. To measure the step distance in Levy walk distributions,
we can use the Euclidean distance formula, which calculates
the distance between two points (x1, y1) and (x2, y2) in a
two-dimensional space. In the context of a Levy walk simula-
tion, we can calculate the step distances between consecutive
steps taken by the walker. Let’s denote Pi = (xi, yi) and
Pi+1 = (xi+1, yi+1) as two consecutive points representing
the positions after i and i + 1 steps, respectively. Then, the
step distance di between these two points is calculated using
the Euclidean distance formula:

di =

√
(xi+1 − xi)

2
+ (yi+1 − yi)

2 (4)

We can compute these step distances for each pair of
consecutive steps in the Levy walk simulation. After obtaining
these distances, we can create a histogram of the step distances
to visualize their distribution. This histogram will provide
insights into the typical step lengths taken by the Levy walker
during the simulation.

The histogram in Fig. 3 illustrates the distribution of step
distances in a simulated two-dimensional Levy walk. The sim-
ulation was conducted with 1000 steps, using parameters alpha
= 1.5 and scale = 1.0. Each step’s distance was calculated, and
the resulting values were binned into intervals for visualization.
The plot reveals the frequency of occurrence for various step
distances, offering insights into the characteristic behavior of
a Levy walk. This distribution provides valuable information
for understanding how steps are distributed in Levy walks and
serves as a basis for comparison with real-world step distances.

Finally, we can compare this histogram of step distances
with real-world step distances observed in human walking
patterns. This comparison will help us assess the similarities
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Fig. 3. Histogram of step distances in levy walk (α=3.0, scale=1.0).

or differences between the simulated Levy walk and actual
human walking behaviors.

V. REAL-WORLD EXPERIMENT

A. Methodology of Real-world Experiment Prototype

The circuit diagram of the system is illustrated in Fig. 4.

Fig. 4. Circuit diagram of the experimental device.

Table I provides a concise overview of the wire connections
required for assembling a project involving an Arduino Nano,
MPU6050 sensor, SD card reader, and associated components.
Each row in the table represents a specific component, its
connection point, and the corresponding wire color used for
that connection. This information is a quick reference guide
for setting up the hardware connections and ensuring proper
wiring and organization during the assembly process. The
table helps users understand the interconnections between
components, facilitating the project’s construction according
to the specified wiring scheme.

TABLE I. WIRE CONNECTION TABLE

Component Connection Wire Color
Arduino Nano Vin Red
Arduino Nano GND1 Black
Arduino Nano 5V Red
MPU6050 VIO Red
MPU6050 VCC Red
MPU6050 GND Black
MPU6050 SCL Green
MPU6050 SDA Blue
µ-SD Module CS (Chip Select) Yellow
µ-SD Module GND Black
µ-SD Module MOSI Orange
µ-SD Module SCK Yellow
µ-SD Module VCC Red
Resistor (330Ω) Connection 0 (Con0) Brown
Barrel Jack Negative Terminal Black
LD1117-3.3V Vin Red
LD1117-3.3V 0 (GND) Black
Ceramic Capacitor (100nF) Connection 0 (Con0) Blue
Ceramic Capacitor (100nF) Connection 1 (Con1) Black
Electrolytic Capacitor (10µF) Negative Terminal Black

Algorithm 1 outlines the process of logging data from an
MPU6050 sensor to an SD card in CSV format using an
Arduino. It begins by including the necessary libraries for
communication with the hardware components, defining the
pin used for the SD card’s chip selection, and initializing global
variables and objects for sensor, file handling, and real-time
clock functionality. In the setup section, the code initializes
various hardware components, opens a CSV file for writing,
writes a header line specifying column names, and closes the
file. The main loop continuously reads sensor data from the
MPU6050, obtains the current time from the real-time clock,
writes the sensor data along with the timestamp to the CSV file,
and then closes the file. A brief delay is added between each
reading to control the sampling rate. This algorithm provides a
clear and structured overview of the steps involved in the data-
logging process, facilitating an understanding of the program’s
functionality and component interactions.

Algorithm 1 MPU6050 Data Logging Algorithm

1: Include Libraries: ”Arduino.h”, ”MPU6050.h”, ”Wire.h”,
”SD.h”, ”RTClib.h”

2: Define pins.
3: Global variables and objects:
4: Initialize MPU6050 object mpu
5: Initialize File object dataFile
6: Initialize RTC DS3231 object rtc
7: Setup:
8: Initialize Serial communication
9: Initialize SD card

10: Initialize MPU6050 sensor
11: Initialize RTC module
12: Open data file ”mpu6050 walking.csv”
13: Write header line to CSV file
14: Close data file
15: Loop:
16: Get current time from RTC
17: Open data file ”mpu6050 walking.csv”
18: Read sensor data from MPU6050
19: Write sensor data and timestamp to CSV file
20: Close data file
21: Delay 100 milliseconds
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In this work, several hardware components are essential
for acquiring data from the MPU6050 sensor and processing
it to predict abnormal human walking. The following hardware
components are required:

1) MPU6050 sensor: The MPU6050 accelerometer and
gyroscope sensor are fundamental for capturing motion data.
It provides raw sensor readings in digital form, which need to
be processed to obtain meaningful information about human
walking dynamics.

2) Microcontroller: A microcontroller is needed to inter-
face with the MPU6050 sensor and perform data acquisition
tasks. Arduino boards are commonly used due to their ease of
use and compatibility with various sensors.

3) Connection interface: The MPU6050 sensor communi-
cates with the microcontroller using a communication interface
such as I2C (Inter-Integrated Circuit). The microcontroller
must have the necessary hardware support and libraries to
establish communication with the sensor.

4) Power supply: A stable power supply is essential to
power both the microcontroller and the MPU6050 sensor
during data acquisition. This can be provided using batteries
or a regulated power source.

B. Steps Distance Calculation with MPU6050

The accelerometer data acquisition is defined by the equa-
tion:

aaxis =
Raw Dataaxis − βaxis

θaxis
(5)

Similarly, the gyroscope data acquisition follows the equa-
tion:

ωaxis =
Raw Dataaxis − βaxis

θaxis
(6)

These equations transform the raw sensor data obtained
from the MPU6050 into physical units, such as acceleration
(m/s²) and angular velocity (degrees per second). Here, axis
denotes the specific axis (x, y, or z) of measurement. The term
β represents any bias or offset present in the sensor readings,
while θ signifies the sensitivity scale factor for the respective
axis. These mathematical expressions are integrated into the
microcontroller firmware to process raw sensor data and derive
meaningful motion information.

To calculate the distance between steps using the MPU6050
sensor data, we follow these steps:

1) Step detection: The first step is to detect individual steps
from the accelerometer data ax, ay , az . Let A(t) represent
the resultant acceleration vector at time t. We compute the
magnitude of acceleration as:

|A(t)| =
√
ax(t)

2
+ ay(t)

2
+ az(t)

2 (7)

Peak detection algorithms or threshold-based methods can
be employed to identify significant peaks in |A(t)| indicating
steps.

2) Step length estimation: Once steps are detected, the
next step is to estimate the step length. This can be done
through a calibration process, where the relationship between
accelerometer readings and actual step lengths is determined.
Let L represent the step length.

3) Distance calculation: Given the estimated step length
L, the distance between consecutive steps can be calculated.
Let di denote the distance covered during step i. We integrate
the linear acceleration data twice to obtain displacement:

di =

∫ tend

tstart

(∫ t

tstart

|A(t)|dt
)
dt (8)

where tstart and tend represent the start and end times of
step i, respectively.

4) Data filtering and smoothing: To enhance accuracy, raw
sensor data can be filtered and smoothed using techniques such
as low-pass filtering or Kalman filtering.

C. Results of Real-world Experiment

To experiment, we positioned the proposed device in the
pants of 5 male participants and instructed them to walk
normally for approximately one hour. The sensor device is set
in the left leg garment near the knee, as shown in Fig. 5 the
blue pointer is the position of the sensor. All the participants
gave their written consent to use their data. The resulting
data were recorded and saved in a CSV file, comprising four
columns: time, ax, ay, and az. Since gyroscope values do
not significantly contribute to step distance calculations, only
accelerometer data was utilized. The dataset consists of 18002
rows, reflecting the data collected total five-hour duration (one
hour from five persons), with measurements taken at intervals
of 1000 milliseconds. We found there are a total of 16840 steps
by following our proposed calculations. The histogram of the
step distances is shown in Fig. 6.

Fig. 5. Sensor position in the human body at the time of the experiment
(blue pointer is the sensor).

VI. DISCUSSION

A. Comparison of Simulation and Real World Data

We may compare the real-world step distances histogram
with the levy walk step distances histogram with the Kol-
mogorov Smirnov (KS) test. Which is based on the maxi-
mum difference between the cumulative distribution functions
(CDFs) of two datasets. Given two datasets X and Y with
empirical cumulative distribution functions FX(x) and FY (y)
respectively, the KS test statistic D is calculated as:
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Fig. 6. Histogram of step distance from real-world experiment.

D = max(|FX(x)− FY (y)|) (9)

TABLE II. COMPARISON OF P-VALUES FOR DIFFERENT α AND SCALE
VALUES

α Scale p-value Best
1.5 1.5 6.1078 × 10−227

2.0 1.5 5.3264 × 10−85

2.5 1.5 1.0371 × 10−37

3.0 1.5 1.0209 × 10−13 Yes
3.5 1.5 1.9698 × 10−33

4.0 1.5 9.3845 × 10−55

4.5 1.5 5.2424 × 10−98

5.0 1.5 8.2371 × 10−138

5.5 1.5 1.4756 × 10−183

6.0 1.5 2.0831 × 10−240

6.5 1.5 2.4847 × 10−283

The table provided (Table II) compares p-values for dif-
ferent combinations of alpha and scale values. Each row
represents a specific combination, where α denotes the stability
parameter, ”Scale” signifies the scale parameter, and ”p-value”
indicates the statistical significance of comparing the real-
world step distances and simulated Levy walk step distances.
We used α and scale values from 0.5 to 20.5 to find the best p-
value. The row marked as ”Best” indicates the combination of
α and scale values that yield the lowest p-value, implying the
closest match between the real-world step distances and the
simulated Levy walk distribution. A lower p-value suggests
stronger evidence against the null hypothesis, indicating a
better fit of the Levy walk simulation to the observed step
distances. In this context, the row with the best p-value high-
lights the alpha and scale values that accurately represent the
step distances observed in the real-world experiment. The P-
value Table for Different Alpha and Scale Values is visualized
in Fig. 7.

Fig. 8 illustrates histograms of step distances generated
from Levy walk simulations with varying stability param-
eters (α) and scale parameters. Each subplot in the figure

Fig. 7. P-value table visualization for different alpha and scale values (the
yellow dot is the best point found with α = 3.0 and scale=1.5).

corresponds to a specific combination of α and scale val-
ues, providing insights into how different parameter settings
affect the distribution of step distances. By examining the
histograms, we may observe the distribution of step distances
for different α and scale values. A comparison between the
histograms allows for an understanding of how changes in
these parameters impact the characteristics of the Levy walk
distribution. This visualization aids in assessing the suitability
of different parameter combinations in representing real-world
step distances, to identify the most accurate simulation settings.

B. Features and Limitations

The Features and Limitations are discussed in this sub-
section. Despite these limitations, the real-world experiment
offers valuable insights into the feasibility and effectiveness
of using Levy walk distributions to model human walking
patterns, paving the way for further research and refinement
of the proposed methodology.

1) Features: The obtained features of this system are as
follows:

a) Real-world validation: The real-world experiment
provides empirical validation of the theoretical model pro-
posed in the numerical simulation section. By collecting data
from actual human walking activities and comparing them
with simulated Levy walk distributions, the experiment offers
practical insights into the applicability of the model in real-life
scenarios.

b) Hardware implementation: The experiment involves
the integration of hardware components such as the MPU6050
sensor and Arduino microcontroller, demonstrating a hands-
on approach to data acquisition and analysis. This hardware
implementation enhances the experiment’s credibility and fa-
cilitates a deeper understanding of sensor data processing
techniques.

c) Data analysis techniques: The experiment employs
advanced data analysis techniques, including peak detection
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Fig. 8. Histogram of step distances in levy walk (α=1.5,2,2.5,3,3.5 and scale=1, 1.5, 2).

algorithms, step length estimation, and statistical tests such
as the Kolmogorov-Smirnov test. These techniques enable a
comprehensive assessment of the similarities and differences
between real-world step distances and simulated Levy walk
distributions.

d) Parameter optimization: Through the comparison
of p-values for different combinations of alpha and scale
values, the experiment identifies the optimal parameters that
yield the closest match between simulated and observed data.
This parameter optimization process enhances the accuracy of
the simulation model and ensures its relevance to real-world
scenarios.

2) Limitations: The limitations of this system are as fol-
lows:

a) Simplified model: The experiment relies on a sim-
plified model of human walking dynamics, assuming a two-
dimensional Levy walk distribution to represent walking pat-
terns. While this model offers insights into general locomotion
characteristics, it may oversimplify the complexity of human
gait and movement variability observed in real-world scenar-
ios.

b) Sensor limitations: The accuracy and reliability of
the experiment are contingent upon the performance of the
MPU6050 sensor and associated hardware components. Sen-
sor noise, calibration errors, and environmental factors may
introduce uncertainties and affect the quality of data collected
during the experiment.

c) Sample size and participant variability: The exper-
iment’s findings may be influenced by the sample size of par-
ticipants and their walking patterns. Limited sample size and

variability among participants may restrict the generalizability
of the results and limit the insights gained from the experiment.

d) Assumption of stationarity: The experiment assumes
stationarity in human walking patterns, implying consistent
characteristics for data collection. However, human locomotion
is inherently dynamic and may exhibit temporal variations
and adaptive behaviors that are not captured by the stationary
model.

C. Hypothesis Evaluation

Our hypothesis posited that strategically placing the
MPU6050 sensor within a human leg garment enables the
modeling of normal human walking patterns, resembling a
two-dimensional Levy walk distribution, with deviations in-
dicating abnormal walking patterns.

In our numerical modeling, we defined the probability den-
sity function (PDF) of the two-dimensional Levy distribution
and generated random samples using the inverse transform
method. Let f(x, y;µx, µy, σ, α) denote the PDF of the Levy
distribution, where µx and µy are location parameters, σ is
the scale parameter, and α is the stability parameter. By sim-
ulating random samples from this distribution, we established
a theoretical basis for the expected characteristics of normal
human walking patterns.

In our real-world experiment, participants wore the sensor-
equipped garment during normal walking activities, yielding
data on step distances. We then calculated the empirical
distribution of step distances from the collected data, providing
a practical representation of observed walking patterns.
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To rigorously test our hypothesis, we performed a statistical
comparison between the simulated Levy distribution and the
observed step distances using the Kolmogorov-Smirnov (KS)
test. The KS test statistic D quantifies the dissimilarity between
the empirical distribution of step distances and the simulated
Levy distribution. We computed D as the maximum absolute
difference between the empirical cumulative distribution func-
tion (CDF) of the observed data and the CDF of the simulated
Levy distribution.

By comparing the computed D value to critical values
from the Kolmogorov-Smirnov distribution and computing
corresponding p-values, we assessed the statistical significance
of the comparison. A low p-value indicates strong evidence
against the null hypothesis, suggesting that the observed step
distances significantly deviate from the simulated Levy distri-
bution. Conversely, a high p-value supports the hypothesis of
normal walking patterns, indicating a close match between the
observed and simulated distributions.

Through this rigorous statistical analysis, we systematically
evaluated our hypothesis, providing quantitative evidence to
support the effectiveness of sensor-based systems for modeling
human walking patterns and detecting abnormalities.

D. Novelty

Our proposed system introduces several novel features
compared to existing systems in the field of human activity
recognition and health monitoring as follows:

1) Multi-sensor integration: Unlike traditional systems that
rely on a single sensor modality, our system integrates data
from multiple sensors, including accelerometers, gyroscopes,
and electromyography sensors [1], [4], [8]. This multi-sensor
approach allows for a more holistic analysis of human move-
ment patterns and health indicators.

2) Advanced signal processing techniques: Our system
employs advanced signal processing techniques, such as phase
transition-based optimization algorithms and deep learning
fusion-assisted frameworks [18], [48], to extract meaningful
information from sensor data. These techniques enable accu-
rate feature extraction and classification, leading to improved
performance in activity recognition and health monitoring
tasks.

3) Real-time monitoring and prediction: Our system en-
ables real-time monitoring and prediction of health-related
parameters, providing timely feedback and alerts to users [49].
This capability enhances proactive healthcare management and
intervention, leading to better health outcomes and quality of
life.

4) User-centric design: We adopt a human-centered user
experience approach in the design of our system, focusing on
the needs and preferences of end-users [50]. This user-centric
design ensures that the system is intuitive, easy to use, and
seamlessly integrates into users’ daily lives.

Table III shows a comparison between existing systems and
the novelty of our proposed system.

TABLE III. COMPARISON WITH EXISTING SYSTEMS AND NOVELTY

Existing Systems Novel Features and Enhancements
Dou et al. (2023) [1] Model and analyze spatial-temporal propa-

gation of malware in mobile wearable IoT
networks.

Zhao et al. (2023) [3] Predict joint angles based on human lower
limb surface electromyography.

Rosaline et al. (2023) [4] Enhance lifestyle and health monitoring of
elderly populations using CSA-TkELM clas-
sifier.

Hanif et al. (2024) [8] Human gait recognition for biometrics appli-
cation based on deep learning fusion-assisted
framework.

The proposed System Incorporates a comprehensive approach to
human gait analysis, integrating data from
an MPU6050 sensor, SD card reader, and
Arduino Nano for real-world experiments.
Utilizes algorithms for step detection, step
length estimation, and distance calculation,
providing insights into abnormal walking
patterns. Implements hypothesis testing and
comparison with existing systems to validate
the novelty of the proposed method.

VII. CONCLUSION

In conclusion, our study demonstrates the effectiveness
of using a two-dimensional Levy walk distribution to model
normal human walking patterns, as evidenced by the agreement
between simulated distributions and real-world step distance
data. Through rigorous hypothesis testing and statistical anal-
ysis, we have validated the hypothesis that strategically placing
MPU6050 sensors within a human leg garment enables the de-
tection of abnormal walking patterns. This research contributes
to the advancement of sensor-based systems for human activity
recognition and health monitoring, providing valuable insights
into the feasibility of leveraging Levy walk distributions for
gait analysis.

Looking ahead, future research can explore several avenues
for further enhancement and application of our proposed
methodology. One direction is to investigate the incorporation
of additional sensor modalities, such as electromyography and
pressure sensors, to capture more comprehensive biomechani-
cal data during walking. Additionally, refining the calibration
and signal processing algorithms for improved accuracy and
reliability could enhance the robustness of the system. Further-
more, longitudinal studies involving larger and more diverse
participant populations can provide deeper insights into the
long-term utility and efficacy of Levy walk modeling in real-
world settings. Overall, continued exploration of these avenues
promises to advance the state-of-the-art in human gait analysis
and pave the way for innovative healthcare interventions and
personalized monitoring solutions.
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