(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

Blockchain-based System Towards Data Security
Against Smart Contract Vulnerabilities: Electronic
Toll Collection Context

Olfa Ben Rhaiem!*, Marwa AmaraZ, Radhia Zaghdoud3, Lamia Chaari*, Maha Metab Alshammari®

Department of Computer Science, College of Science, Northern Border University, Arar, Saudi Arabia

1,2,3,5

Digital Research Center of SFax (CRNS), SM@RTS (Laboratory of Signals, Systems, Artificial Intelligence and Networks),
Sfax, Tunisial’*

Abstract—Electronic Toll Collection (ETC) systems have been
proposed as a replacement for traditional toll booths, where
vehicles are required to queue to make payments, particularly
during holiday period. Thus, the primary advantage of ETC
is improved traffic efficiency. However, existing ETC systems
lack the security necessary to protect vehicle information privacy
and prevent fund theft. As a result, automatic payments become
inefficient and susceptible to attacks, such as Reentrancy attack.
In this paper, we utilize Ethereum blockchain and smart contracts
as the automatic payment method. The biggest challenges are to
authenticate the vehicle data, automatically deducts fees from
the user’s wallet and protects against smart contract Reentrancy
Attack without leaking distance information. To address these
challenges, we propose an end-to-end Verification algorithms at
both entry and exit toll points that corporate measures to protect
distance-related information from potential leaks. The proposed
system’s performance was evaluated on a private blockchain.
Results demonstrate that our approach enhances transaction
security and ensures accurate payment processing.

Keywords—Blockchain; Ethereum; smart contracts; Reentrancy
Attacks; security; ETC

I. INTRODUCTION

The number of vehicles on the highway increases rapidly
day by day. Vehicles passing through toll plaza need to pay
the toll-tax amount (TA). In this case, vehicles are sent to the
waiting queue willing to pay resulting in delay in time, traffic
congestion and more fuel consumption.

Recently, Electronic Toll Collection (ETC) systems have
been proposed to replace the traditional charging mode in
the highway stations and address the aforementioned issues.
Particularly, the main advantage of ETC is to improve traffic
efficiency. In fact, ETC systems automatically collect the usage
fees without requiring any action or stopping by the driver.

But, in IOV, vehicles are equipped with sensors named as
the On Board Unit (OBU) [12]. These sensors collects and
exchange information from stationery Road Side Units (RSU)
and electronic toll collection systems. In the way of centralized
systems, security and effectiveness of data exchanged wit ETC
makes the communication difficult. Particularly, exchanged
information involves critical information (e.g., location which
is used to compute the traveled distance) is highly susceptible
to spoofing attacks. which means that the amount of fees is not

accurately calculated. This problem becomes more challenging
when the distance information (based on location) is required
to have an accurate amount of fees.

Recently, blockchain technology [3], which is applied in
different fields, is defined as a new way to enhance security.
Blockchain combines special features such as decentralized
structure, consensus algorithm, smart contracting, and asym-
metric encryption to ensure network security. Consequently,
data is protected and cannot be stolen by hackers.

Blockchain technology has many other applications that
go beyond digital currencies. In fact, Bitcoin is one of sev-
eral applications that uses blockchain technology. The second
generation of blockchain technology represented by Ethereum
[9] was launched in July 2015. Ethereum®, is an open and
fully decentralized platform enabling a new paradigm of com-
puting Decentralized Applications (DApps) running on top of
blockchains. Ethereum uses smart contracts which allow users
to set and retrieve data from the Ethereum network. Smart
contracts facilitate to exchange of money and any data values.
Smart contracts [10], [11] cannot be updated or modified
after their deployment on a blockchain network. However,
despite all its advantages, smart contracts are not fully secured
and faces challenges of various attacks. In fact, an important
risk is that hackers use another technique called Reentrancy
attack which is one of the most destructive attacks that makes
transactions not secured. Reentrancy attacks are most often
associated with Ethereum Blockchain. Thus, using blockchain
technology for Electronic Toll Collection in internet of vehicle
(IOV) is an important aspect that does not guarantee the data
transmission in a secure way.

Based on these issues, in this paper we have proposed
a decentralized application to secure smart contracts, for
Electronic Toll system (ETC), using Ethereum blockchain that
protects transactions from malicious hackers. The proposed
system preserves privacy for vehicle’s information and ensure
a correct service of payments.

The proposed system offers the following benefits:

e The proposed ETC system would help reduce traffic
congestion and wait times at toll plazas. This would
result in improved traffic flow and reduced travel time
for drivers.

*last accessed on 01-10-2019. [Online]. Available:
*Corresponding authors. https://www.ethereum.org/
www.ijacsa.thesai.org 1524 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

e Electronic Toll Collection system is based on
Blockchain technology which is executed without the
need of third party.

e Smart contracts are used to provide the security of
the exchanged information on the ETC. In fact, since
data are stored in a decentralized system, the chance
of modifying data is very difficult.

e The proposed blockchain-based ETC system secures
smart contract from attacks (e.g., Reentrancy Attack
is exploited to steal funds from smart contracts).

e The proposed ETC system accurately calculate toll
fees based on the traveled distance and automatically
deduct the exact toll fees from the user’s wallet.

o Implementing an end-to-end Verification algorithms at
both entry and exit toll points that corporate measures
to protect distance-related information from potential
leak.

e Creates a verification system of vehicle’s location to
guarantee a correct payments service.

e Using the protecting safeMath library provided by
Openzeppline module to ensure the security of smart
contracts.

The remaining part of this paper is organized as follows:
Section II reviews the most related blockchain-based ap-
proaches. Section III gives a better understanding of the basics
of blockchain framework. Section IV elaborates the proposed
system model and designed solution, which includes an end-
to-end verification algorithms at both entry and exit tolls.
Section V describes the implementation of the Decentralized
application and evaluate it. Section VI concludes the paper.

II. RELATED WORKS

Electronic Toll Collection Systems (ETC) are an important
part of the intelligent transportation system (ITS). Several
works are proposed in the literature (e.g. [1], [2], [3], [5], [13])
to analyze the security issues and challenges of ETC systems.
Some blockchain-based ETC approaches provide security for
vehicle’s information and guarantee an accurate automatic pay-
ment services. However, one biggest challenge related to smart
contract security must be addressed. Particularly, reentrancy
attack is the most destructive attack in Solidity smart contract
to steal funds.

This section discusses the existing blockchain-based ETC
approaches and highlights the concept of reentrancy attack
which is one of the most destructive attacks in solidity smart
contract.

A. Blockchain-based ETC Approaches

Authors in [1] showed that current ETC systems are
not efficient and have vehicle fee evasion complications. To
solve issues, authors proposed a data management method to
improve the security of the data transmission process, without
affecting the system performance. This solution is based on
the alliance chain. Although this system reduces the number of
illegal acts and improves data security, it has some deficiencies
including not being completely decentralized.

Vol. 15, No. 6, 2024

Contract B calls back into
contract a before it is done
updating balances

Contract B

fallbackfunction

Contract @

checkbalance()

sendfunds()
updatebalace

sendfunds(}

Fig. 1. Reentrancy Attack.

In the same context and in order to collect the Toll-Tax
Amount (TA) without slowing down a vehicle’s speed at the
toll plazas; authors in [2], have combined blockchain with the
Electronic Toll collections systems and proposed a new system
named as Blockchain-based Automated Toll-Tax Collection
System (BATCS). In fact, the system uses smart contracts to
authenticate the vehicle data and collect TA automatically at
toll plazas. Less fuel consumption and more time-saving for a
vehicle are the main benefits of the BATCS.

Considering the immutability of smart contracts, authors
in [4] proposed an authentic and secure automatic payment
system. This system verifies the location of the specific vehicle
by the other vehicle owners. The experimental results are based
on the gas consumption of all the smart contract and ensures
that the vehicle has traveled to the correct location.

In [7], authors have proposed two scenarios of Blockchain
based secure payment scheme in VANET: i) park toll manage-
ment system and; ii) electronic toll collection. In this work,
only RSU takes part in the consensus and all transaction run
in the smart contract automatically. Also, it is able to mitigate
security and privacy requirements.

To address the issues in relation to data storage, trustworthi-
ness, and transparency, authors in [8] proposed a blockchain-
based ETC system named as EdgeTC. Unlike most other
blockchain-based ETC platforms that use Proof of work (PoW)
or Proff of stack (PoS), this system uses PBFT to achieve
relatively faster performance.

B. Smart Contract Hacking (Reentrancy Attack)

In this section we will understand how Reentrancy At-
tack works. A Reentrancy Attack is a type of serious attack
that affects smart contracts on blockchain platforms, such as
Ethereum. In general, a Reentrancy Attack [14] can allow an
external party to enter the contract and eventually drain the
funds from that contract. This attack happens if a contract
fails to update its state before sending funds, this will create a
chance for the attacker to drain the contract’s funds. In fact, if a
contract calls another contract 3, the Ethereum protocol allows
B to call back to any public or external method 6 of « in the
same transaction before even finishing the original invocation.
An attack happens when [reenters « in an inconsistent state
before o gets the chance to update its internal state in the
original call (see Fig. 1).

www.ijacsa.thesai.org

1525 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Based on the example depicted in Fig. 1, reentrancy is a
serious vulnerability that is quite dangerous because this can
drain out the entire funds of the contract. Thus, Reentrancy
Attacks lead to steel innocence people’s money. Several works
have been proposed [1] [2] [4] [6] to secure smart contracts
and ensure that all transactions in Ethereum blockchain are not
subject to Reentrancy Attacks.

Based on the work comparison discussed in Table I, we
conclude that none of ETC-based blockchain systems help to
secure transactions against both vehicle’s information (espe-
cially location spoofing) and Reentrancy Attacks related to
smart contracts on Ethereum Blockchain. In fact, protecting
the location of vehicle to ensure a correct payment service
is not enough since smart contracts are susceptible to several
attacks such as Reentrancy Attack.

For that purpose, we have proposed a novel decentralized
application based on blockchain technology for ETC systems
using Ethereum blockchain. First, this proposal aims to secure
the vehicle’s information (basically location) to get an accurate
amount of fees. Then, this work aims to get a smart contract
that is immune to Reentrancy Attacks.

III. BLOCKCHAIN FRAMEWORK

This section presents a background information related to
blockchain data model and Ethereum framework. We start by
outlining the basic structure of Ethereum block header and
data. Then, we present the different steps of the Ethereum
blockchain framework for the transaction cycle.

A. Blockchain Data Model

Blockchain is a completely new way to share data. It allows
us to make transactions in a way that are more secure and more
transparent. With blockchain data isn’t held in a centralized
database. It is shared with everyone and verified by people
in the network. Information is secured using cryptography so
that criminals can’t come and steal stored data. This makes
this type of data breach nearly impossible.

Basically, blockchain is a shared database that contains a
list of transactions, and these transactions are made between
the users who become part of this network. The transaction is
sent out to a network of users and the goal of this network
is to take all transactions and group it with other transactions
into a block. Once enough transactions are collected the block
if full and ready to be permanently added to the blockchain.

To give more control about this list of transactions, the
blockchain is split up into smaller sections known as blocks.
Information is held in part of the block known as the block
header. This header details the structure of the data inside the
block: the hash of the previous block, the timestamp the block
was made, the Merkel root and the nonce all sit inside the
block’s header as shown in Fig. 2. The body of the block
contains a set of transactions.

e Previous Block Hash: it is a block hash for the block
that comes directly before the given block in the chain.
Having this connection links, the blocks together by
allowing to always know what block comes before and
after any block on the chain. This forms the basis of
the entire blockchain.

Vol. 15, No. 6, 2024

e Timestamp: shows that the blocks are connected in
a chronological order. It marks the time for each
transaction on the blockchain. Simply put, the time
proves when and what has happened on the blockchain
and its tamper-proof. Timestamp plays to role of a
notary and it is more credible than a traditional one;
because no body can alter the information on the
blockchain.

e Merkle Root: is the Hash that represents every trans-
action inside the block. To get the Merkel Root, pair of
the transactions within the block are repeatedly hashed
together. Each pair results in a single hash. Then
a hash of two pairs of transactions is again hashed
together; over and over again until we left with a
single hash value. Given that final hash value is known
as Merkel root, hashing is reversed to reconstruct the
entire set of transactions from the original block.

e Nonce: Is an arbitrary number that can only be used

once. When creating a hash for a block, not just any
value will work. The system requests a very specific
hash value that starts with a certain number of zeros.
These extra constraints make the hash more difficult
to find. To find that value, blocks data are combined
with the nonce to generate the correct hash value.
Computers guess this nonce over and over again until
finally come up with the value that gives a hash that
meets the constraints.
As we can see in Fig. 2, each block contains its own
hash plus the hash of the previous block. These hash
values chain the blocks together in order form the
most recent block made all the way to the first block
ever created. The fact that these blocks are connected
by hash values gives them some interesting qualities.
We know that if we change the data on a block, it
will create a new hash value for that block. That will
invalidate the block and since the hash for the block
changes, it also changes the hash for this block that
exists on the next block. This change of hash runs all
the way down the set of blocks effectively breaking
the entire chain as shown in Fig. 3.

B. Ethereum Blockchain Framework

In this paper, we consider Ethereum, which is one of the
earliest and most widely deployed smart contract platforms.
Ethereum has several advantages such as, flexibility, complete-
ness, and availability of its development tools. Moreover, it de-
signs a virtual machine specifically for running smart contracts
named as Ethereum Virtual Machine (EVM) [15]. Solidity is
one of the programming languages that is specifically designed
for smart contracts by the Ethereum Team.

Ethereum provides two types of accounts: Externally
Owned Account (EOA) which is controlled by individuals
through the use of private key; the second one is contract
account controlled by smart contract and it don’t require the
use of any private key. Both accounts have a specific address,
which is basically the account identifier, an ETH balance and
can send transactions to the Ethereum network. The main
difference is that contract accounts can’t initiate transactions
on their own, they first need to be triggered by a user vehicle

www.ijacsa.thesai.org

1526 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

TABLE 1. ETC-BASED BLOCKCHAIN APPROACHES

Citation-year ~ Blockchain technology

consensus algorithms

Advantages

Security issues

Blockchain framework

The system effectively reduces the num-
ber of illegal acts,

-solve the problem of escaping fees
-Improves the security of the data.

-Amount of fees is susceptible to Reen-
trancy Attacks.

-Does not guarantee that the amount of
fees is accurately calculated.

-collect the Toll-Tax Amount automati-
cally at toll plaza.

-uses smart contract to authenticate ve-
hicles.

- Less fuel consumption.

Does not guarantee that the amount of
fees is accurately calculated. Amount of
fees is susceptible to Reentrancy Attacks

- Ensures that the vehicle has traveled
to the correct location.

-Authentic and secure automatic pay-
ment system.

- Reentrancy vulnerability cannot be de-
tected accurately

-new cryptographic technique zk-
GSigproof, which preserves privacy
while guaranteeing correct payment
amount.

-Vehicloak is highly efficient in
processing payments on the blockchain

- transaction gas and on-chain workload
are significantly high

-cryptography building blocks protects
the security and privacy of vehicle ac-
counts.

-Only RSUs participate in the consensus
mechanism, and vehicles can obtain data
through RSU, which ensures the fast
synchronization of data stored by all

entitics in the blockcl

-no comparative analysis with similar
payment approaches in VANETs

[1]-2021 (Hyperledger Fabric) Proof of Stake (PoS)

[2]-2022 Ethereum Proof of Stake (PoS)

[4]-2022 Ethereum Proof of Stake (PoS)

[6]-2022 private Ethereum N/A

[71-2020 Ethereum Proof of Stake (PoS)
Practical Byzantine

[8]-2021 Ethereum Fault Tolerance
(PBFT)

- Blockchain-based ETC system based
on PBFT

- PBFT is not suitable for Iarge scale
network

- Reentrancy vulnerability cannot be de-
tected accurately

Genesus Block

Hash Block

'+ Block Header

Previous Block Hash

|
|
|
|
|

P Hash Block

. Block Header

Previous Block Hash
|

Hash Block

Block Data

Transactions

Transactions

Transactions

Fig. 2. Block structure.

with an EOA and that trigger can essentially cause the contract
account to execute actions or even creating new contracts (see
Fig. 4).

The framework depicted in Fig. 5 is an effective way to
understand Ethereum Blockchain.

The wallet contains the wallet address shared with others
used to receive crypto currencies like Ethereum. Thus, we
denoted by User; the user who wishes to send transaction
T; to Usersy, using his wallet address. In fact, the wallet is

responsible for storing the private Key of the address, denoted
as Pry.,, sending transaction and showing the balance.The
first step in using a wallet is to generate the wallet address.
The wallet first generates a random series of 12 words known
as a mnemonic phrase, which will be used to generate a private
key. This private key is used to send transactions and generates
the public key, denoted as Pby., . Finally, using Pby., the
wallet address is generated as shown in Eq. (1).

wallet — address = Keccak — 256(pbyey) (1

www.ijacsa.thesai.org

1527 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

invalid Blocks

B ool 0o

Change Data

Fig. 3. Invalid blocks.

EOA account

Assests |

_
? contractaggount
. IAddress: "0x" I
Key pair |Balance (ETH) |
Assests |
? l_ J
Public Key Private Key

Fig. 4. EOA and contract accounts.

Wallet Address="x0" Last
20 Bytes of [Keccak256 “:ﬂ
(public Key) o %

Public Key=
Private Key | | ECDSA(PRivate
Key)

Transaction Walet — Signatre f——f Mempool —— Network

Blocki Hashing Consensus

Keccak256

Blockchain

POS POW

Fig. 5. Blockchain framework.

Where:

Keccak-256 is the hashing algorithm used to create the
wallet address.

Once User; sends the transaction using the wallet address,
the hash of the transaction object using the Keccak-256 hash-
ing algorithm is calculated as shown in Eq. 2.

Tt = Keccak — 256(T,P*))
Where:

Vol. 15, No. 6, 2024

Thash is the hash value of the ith transaction data, denoted
by TData
3

Then, the sender signs the transaction using their private
key and the ECDSA [] algorithm. The signature is generated
by creating a digital signature on the hash of the transaction
using the sender’s private key (see Eq.(3)). It is then added to
the transaction object along with the sender’s public key and
any other required information.

signature = ECDSA(Prye,, Keccak — 256(T)**")) (3)

Where:

e ECDSA is the Elliptic Curve Digital Signature Algo-
rithm

e Pby,, is the sender’s private key

o Keccak-256 is the hashing algorithm used to calculate
the transaction hash

e Thash ig the hash of the transaction.

e signature is the resulting digital signature on the
transaction

Before becoming a part of the network, and eventually the
blockchain, the transaction is held in the memory pool, which
is a temporary storage where unconfirmed transactions are held
while they await inclusion in a block by a miner.

Transactions in the mempool are ordered by their gas price.
Miners favour transactions with greater gas prices.

If a transaction is stuck in the MemPool for too long (i.e.
considered as invalid or gas fee too low for a miner to ever
pick it up) it will be rejected by the network and removed
from the mempool.

When a miner is ready to mine a new block, they will
typically select the highest gas price transactions from the
mempool to include in the block. The remaining transactions
in the mempool will continue to wait for inclusion in the next
block. Thus, the transaction waiting in the MemPool is in
hopes of being validated. Then they can leave and permanently
be added to the blockchain.

IV. PROPOSED SYSTEM

In this section, we describe the architecture of the proposed
end-to-end blockchain-based ETC system at both entry and
exit toll. The proposed system include the following main
steps: 1) authentication process that includes two sub-steps:
the information gathering and vehicle registration; ii) distance
calculation; and iii) payment process using a secure smart
contract.

Particularly, the general working process is described as
follow:

1) Identify the unique vehicle-ID

2) Verify the authenticity of each transaction
3) Check if the vehicle is registered

4) Calculate the distance

5) Calculate the toll amount

www.ijacsa.thesai.org

1528 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE II. ABBREVIATIONS AND SYMBOLS

Symbols Description
Sty Entry station in an ETC system
Sto Exit station in an ETC system
RSU Road Side Unit
Ve user’s vehicle
RFID Radio Frequency Identification
M, Blockchain Miners
S Servers that control the overall ETC system functionality
Vehld Vehcile’s Identity
L The geographic coordinates associated with each vehicle.
USerqddr the driver’s address

6) Deduct the amount from the driver’s account.

These steps are involved at exit/entrance toll stations.

A. System Architecture

The global architecture of the proposed blockchain-based
ETC system is shown in Fig. 6. It requires five key entities:

e Two ETC stations (St;; ¢ = 1,2); where St; repre-
sents the entry ETC station and St, represents the
exit ETC station. End-to-end security algorithms are
implemented at exit/entrance toll stations. In fact, St;
and Sty are equipped with sensors to read RFID
(A Radio Frequency Identification) or other forms
of electronic identification that are installed on the
vehicles.

e vehicles (V) passing through tollgate are equipped
with an RFID tag or other electronic identification.
When the vehicle passes through the exit/entrance
toll station, RSU (Road side Unit) reads its RFID
information through wireless communication.

e The system is equipped with servers (denoted as S)
which manage all the driver’s transactions at exit/en-
trance toll stations.

e Road side Units (RSUs): The RSUs will be installed
along the toll road and especially at the entry and
exit gates. These units would communicate with the
servers and the vehicles using blockchain technology.
RSUs would be responsible for collecting and trans-
mitting data related to the vehicles passing through
the toll plaza.

e Blockchain miners (Mn) would be responsible
for validating and processing transactions on the
blockchain.

In this work, we assume that Blockchain-based ETC system
is implemented on highways to facilitate faster and more effi-
cient toll payments for vehicles traveling long distance without
interruption. Moreover, the Blockchain-based ETC system is
designed to be interoperable with other toll systems across the
country to ensure seamless travel for vehicles traveling long
distance.

In Table II, we present a list of abbreviations and symbols
used throughout the paper. Each abbreviation or symbol is
defined alongside its corresponding meaning or representation.

Vol. 15, No. 6, 2024

Blockchain for Managing
transaction:

vehicle Information
gathering by RSU

Location . .
Speed . .

Fig. 6. Global system architecture.

B. Step 1: Authentication Process

In this sub-section we give details about two sub-steps in-
cluded in the authentication process (i.e., information gathering
and vehicle registration) of the vehicle passing through the
entrance toll.

When a driver wants to register their vehicle in the
blockchain-based ETC system, they would initiate a regis-
tration request by submitting their vehicle information to the
smart contract deployed in the network.

In fact, considering a vehicle (denoted by V.) in which a
Radio Frequency Identification (RFID) is installed. When V,
passes through the entry toll (St;), its RFID tag is scanned
by the Road-Side Unit (RSU) to retrieve the vehicle’s identity
(vehI D). Meanwhile, it is essential to ensure the validation of
data and prevent the recording of duplicate or invalid entries.
This is achieved thorough two main sub-processes: i) data
validation; and ii) Duplicate Check.

Let V represents the vehicle’s information. The validation
process verifies the correctness of V. Note that Viajidated T€P-
resents the validity of the vehicle’s information. If V' are not
valid, the ETC will restrict this vehicle from accessing the
highway and the status of the current vehicle will be set as
illegal.

Once V has been validated, the duplicate check sub-process
is initiated to prevent registering the same vehicle multiple
times. This involves comparing Viaidaed With the existing
records in the blockchain-based ETC system, denoted as R.
The comparison is denoted as Vigjidated N R- If Viatidaea VR = 0,
it means that the vehicle is not registered previously. Once the
double check and validation of the vehicle data (V) have been
successfully completed, the registration process is initiated.

In fact, the vehicle user initiates the registration process
by sending a request to the blockchain system. The vehicle
communicate with the RSU device in the ETC channel by
sending its information (e.g., vehicle’s identity (vehlD), user
address (userqqq,) and its current location (L)).

Subsequently, the RSU generates a transaction that interacts
with the smart contract on the Ethereum blockchain to store

www.ijacsa.thesai.org

1529 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

the transaction data. This smart contract is designed to store
and manage vehicle registration data. The RSU pays a small
fee in the form of gas, which is used to incentivize miners to
include the transaction in the blockchain.

The transaction of the ¢th vehicle including the function
call is then created to be recorded within the blockchain-based
ETC system (see Eq. 5).

Tih”h = registerUser(userqyqar, vehID, L)) 4)

Where useryqq- is the account address of the vehicle being
registered.

The created transaction contains the vehicle’s ID, location
data, the user’s address as well as the current time, gas price,
etc). This transaction is, then, hashed using a secure hash
function such as Keccak-256. This generates a unique fixed-
size output that serves as a digital fingerprint of the transaction
data. Then a digital signature using the V.’s private key is sent
to the ETC system along with the vehicle’s registration details.
This proves that the transaction could only have come from
the specific vehicle and was not sent fraudulently.

The smart contract validates the registration request by
checking if the vehicle information provided is valid. Once the
registration request is validated, the transaction is broadcast
to the Ethereum network, where miners execute the smart
contract to verify the uploaded information.

According to the verification process; if the block including
the transaction is approved, it is added to the blockchain as
the latest block. In this case, for for each registered vehicle,
a unique vehicle identifier, denoted as UV;p, is generated.
This identifier serves as a distinct reference for the vehicle
within the blockchain-based ETC-system, allowing for efficient
tracking and management of registered vehicles.

To prevent false information attacks, the RSU receives
a confirmation message, from the Ethereum network, which
indicates that the vehicle’s information has been successfully
registered in the Blockchain-based ETC system. Meanwhile, a
unique Vehicle’s ID, denoted as UV;p is generated for each
vehicle registered in the blockchain. The whole authentication
process of each vehicle passing through the entrance toll is
resumed in Algorithm 1.

During the registration process some constraints must be
checked:

e Firstly, it checks that the contract is deployed, and
contract address is generated.

e Secondly, it confirms that a vehicle cannot be regis-
tered before owner is registered.

e Finally, it confirms that an owner address cannot be
registered as a vehicle user address.

C. Data Collection and Distance Calculation Methodology

This subsection outlines the methodology used for distance
calculation and location verification at the exit-ETC, as shown
in Fig. 7.

Vol. 15, No. 6, 2024

Algorithm 1 Registration Process: Entrance ETC

1: Input: vehID, L, useraqdr, Priey > the vehicle’s
information denoted as V'
Output: Message
if V is valid then

Vistatus < Validated

if vehID, Pricy, L,userqqqr NOT stored in the
Blockchain then
6: T; « registerUser(vehID, L, user,qqr)
7: Value < Verify(T;)
8.
9

if (Value==true) then
H; + Hash(Ti)

10: Si < Sign(Hj, Priey)

11: tab < AddMempool(T;)

12 Broadcast(T;) © transaction is broadcasted to
the Ethereum network

13: Val < Validate(T;) > to ensure that it meets
certain criteria.

14: if (Val) then

15: Mining(T;) > Miners verify the
transactions and create new blocks.

16: VehStatus < Registered

17: UV;p is generated

18: end if

19: end if

20: else

21: Message < Vehicle already registered

22: end if

23: else

24: VehStatus <« illegal

25: Vstatus < invalid

26: end if

When a vehicle V. gets onto the highway and passes
through the exit-ETC; ETC identifies the vehicle’s information
to get parameters required for the identification of the current
vehicle in the ETC-blockchain through RSUs. This identifica-
tion process is done in the purpose of automatically deducting
the toll amount from the vehicle owner’s account based on the
vehicle registration information stored in the smart contract.

Particularly, when a vehicle V, passes through the Sto ETC
station; It sends their data to the Ethereum blockchain for
identification by comparing their produced unique identifier
(i.e., UV;D) to the list of registered vehicles. If the vehicle is
verified, the smart contract retrieves the vehicle’s current and
previous locations. In our system we uses public-private key
authentication to ensure that location information comes from
a trusted source. The location data is signed with the vehicle
owner’s private key. Then, any user verifies the location using
the owner’s public key.

When the vehicle V, reaches a distance present in the smart
contract, the vehicle owner is charged a certain amount. In fact,
The distance between the entry and exit toll is calculated using
the euclidean distance formula shown in Eq. 5. Let A(z1,y1)
be the given starting point of V, at the entry ETC station; and
Let B(x2,y2) represents the exit coordinates of V, at the exit
ETC station.

Ty = /(22— 21)2 + (y2 — y1)2 5)

www.ijacsa.thesai.org

1530 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

View Toll History

View user's information

Vol. 15, No. 6, 2024

smal

Get registration

Check
address?

smart contract

information stored in the

— measure distance validate |
| (location information distance |

Warning message:
"unregistered user "

check Vehcils
status

Warning message: "Insufficient
balance "

|

Buy Ethers

ave Enought

- 0
Toll Amount %EEﬁPERﬁUNITfOFfDISTANCE

—_— e —

need to wait 10 |
minutes before paying |
toll again.

deduct the amount |

Pay Toll from the user's wallet

Ether ?

Fig. 7. Data collection and distance calculation methodology: ETC exit toll.

where T} is the traversed distance between the entry and
exit tolls on the highway; (z1,y1) and (21, y2) respectively.

For example, let’s say that a registered vehicle passes
through the Entry ETC point located at (2,3) and the Exit
ETC point located at (6, 7). The smart contract can verify that
the vehicle is registered and retrieve its entry location. Then,
it can calculate the distance traveled by the vehicle using the
following formula:

Ta=+/(6-2)%+ (7T -3)?
=16 + 16

32

~ 5.66

This means that the vehicle has traveled a distance of ap-
proximately 5.66 units between the Entry and Exit ETC
points. Once the distance Ty has been calculated, the price is
determined by multiplying T; by the fee per unit of distance
(denoted as f;) which is expressed in terms of cryptocurrency
units. For example, if the f; is 0.01 Ether and the distance
traveled by the vehicle is 5.66 kilometers, then the price is
expressed as:

fees = T, - fee per unit of distance
= 5.66km - 0.01 ETH/km
= 0.057ETH

(6)

This means that the smart contract deducts approximately
0.057 ETH from the vehicle owner’s account as the price for
traveling between the Entry and Exit ETC points.

In this study, we employed a precision arithmetic library

, provided by OpenZeppelin®, called SafeMath*. It is used in
the smart contract to verify that the deducted fees are accurate.
Particulalry, SafeMath is used to prevent overflow/underflow.
In this work, Safemath is used to perform the multiplication of
the distance by the fee per unit of distance in order to ensure
that the result is accurate and within the expected range.

Fig. 8 is a solidity code example that uses SafeMath library
to perform the fee calculation. In this example, we first import
the SafeMath library using the import statement. This library
is applied to the uint256 data type (i.e., using statement).

We, then, define a constant FEE-PER-UNIT-OF-
DISTANCE to represent the fee per unit of distance in
the contract, and a function calculateFees() that takes a
distance parameter and returns the calculated fees. Inside
the calculateFees function, we use the SafeMath library’s
multiplication function mul() to multiply the distance by the
FEE-PER-UNIT-OF-DISTANCE, and assign the result to a
variable fees. We then return the calculated fees.

By this way, we can ensure that the smart contracts handle
arithmetic operations safely and avoid vulnerabilities related
to integer overflow/underflow, which are common sources of
security issues in blockchain applications. Meanwhile, we can
ensure that the calculated fees are accurate and within the
expected range.

D. Smart Contracts Security: Vulnerabilities

Smart contracts [16] are typically written in high-level
programming languages such as Solidity. These high-level

Thttps://github.com/OpenZeppelin/openzeppelin-solidity

fOpenZeppelin Solidity: SafeMath Library.
https://github.com/OpenZeppelin/openzeppelinsolidity/blob/master/contracts/
math/SafeMath.sol

www.ijacsa.thesai.org

1531 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1 import "./SafeMath.sol";

2

3 contract MyContract {

4 using SafeMath for uint256]

5

6 uint256 constant FEE_PER_UNIT_OF_DISTANCE = 18; // 8.@1 ETH/km
7

8 function calculateFees(uint256 distance) public view returns (uint256) {
9 uint256 fees = distance.mul(FEE_PER_UNIT_OF_DISTANCE);

10 return fees;

11 }

12}

13

Fig. 8. Using SafeMath to perform an accurate fee calculation.

languages are then compiled into bytecode, which is a lower-
level language that can be executed by the blockchain’s virtual
machine.

When a smart contract is executed, it is triggered by a
blockchain transaction, which contains the necessary input
data for the smart contract to perform its functions. The
blockchain transaction is then processed by the blockchain
network’s nodes, which run the smart contract code on the
virtual machine. The virtual machine serves as the execution
environment for the smart contract, providing it with access
to the blockchain’s data storage and network resources. Once
the smart contract has completed its execution, the results
are recorded on the blockchain as a new transaction, which
becomes a permanent part of the blockchain’s immutable
ledger.

Smart contracts are designed to be trustless and secure,
but they can still be vulnerable to various security threats and
vulnerabilities [17] throughout their lifecycle.

One of the primary security threats is a smart contract
being hacked, resulting in theft or manipulation of funds.
This can occur due to coding errors or vulnerabilities in the
smart contract’s design, as well as attacks on the underlying
blockchain network.

A Reentrancy Attack [18] is a type of vulnerability in smart
contracts, where an attacker can repeatedly enter and exit a
contract function before the original transaction is completed,
allowing them to execute malicious code and potentially steal
funds. Here are the best practices that we have based on to
prevent Reentrancy Attacks:

1) Checks-Effects-Interactions: The Checks-Effects-
Interactions pattern (CEI) [19] is a best practice for designing
smart contracts to ensure their security and reliability. The
pattern recommends structuring the smart contract code in
three distinct phases:

Checks: During this phase, the contract verifies whether
the conditions for contract execution have been met.
These checks may include ensuring that the sender has
the necessary balance, that the contract is in the correct
state, and that the smart contract has not previously been
executed.

Effects: In this phase, the smart contract executes the
requested function or updates the contract’s state. The

contract may, for example, transfer fees, update a balance,
or change a record in the contract’s storage.
Interactions: In this phase, the smart contract interacts
with other contracts or external systems. For example,
the contract may call a function in another smart contract,
make an external API call, or transfer funds to an external
wallet.

Let’s consider an example of a smart contract that demon-
strates the use of this pattern to provide protection against
Reentrancy Attacks as shown in Fig. 9:

Assuming we have a vulnerable smart contract and an
attacker who can exploit it. The attacker deploys a mali-
cious contract that calls the vulnerable contract’s function
withdraw() repeatedly before the balance is updated, thus
causing the contract to pay out more than what the user has
in their account.

Let’s consider the following vulnerable withdraw function
in a smart contract: The withdraw function [see Fig. 9(A)]
allows a user to withdraw a specified amount of Ether from
their balance. The function first checks if the user has enough
funds in their balance to withdraw the specified amount. Then,
it uses the call function to transfer the specified amount of
Ether to the user’s address, and finally deducts the amount
from the user’s balance.

This code is vulnerable to a Reentrancy Attack because the
external call function msg.sender.callvalue : amount(””)
can execute arbitrary code, including calling the withdraw
function again before the balance is updated. An attacker could
repeatedly call the withdraw function, draining the contract’s
balance and leaving the user with an incorrect balance.

Let’s assume that the contract has a starting balance of 100
ETH and the attacker is able to drain the contract’s balance at
a rate of 1 ETH per second. In this scenario, the attacker can
drain the entire contract’s balance in 100 seconds.

With CEI, the protected contract checks the user’s balance,
updates the balance, and then sends ether to the user’s address.
This ensures that the balance is updated before any external
calls are made, making the contract safe from Reentrancy
Attacks. Assuming the same starting balance of 100 ETH, the
protected contract can resist the Reentrancy Attack because the
attacker will not be able to drain the contract’s balance before
the user’s balance is updated.

www.ijacsa.thesai.org

1532 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

In the updated code (see Fig. 9), we have added a locked
mapping to keep track of whether a user is currently withdraw-
ing funds to prevent Reentrancy Attacks. The locked mapping
is set to true when the user starts withdrawing funds and set
back to false when the withdrawal is complete.

Suppose the user has initially 100 ETH in their balance,
and they want to withdraw 50ETH. Here is how the updated
withdraw function using the CEI pattern works:

1) The function checks that the user has a balance of
at least 50 ETH and that the user is not currently
withdrawing funds (locked[msg.sender]).

2) The function sets the locked flag to true for the user
to indicate that they are currently withdrawing funds.

3) The function deducts 50 ETH from the user’s balance.

4) The function executes the call function to transfer 50
ETH to the user’s address.

5) The function checks that the call function was suc-
cessful [require(success)]

6) The function sets the locked flag back to false for the
user to indicate that the withdrawal is complete.

By updating the user’s balance and setting the locked flag
before executing the call function, we ensure that the user’s
balance is updated before any external interactions occur. This
makes it impossible for an attacker to repeatedly call the
withdraw function before the balance is updated, effectively
preventing Reentrancy Attacks. In this way, the CEI pattern
can protect smart contracts against Reentrancy Attacks and
ensure their security.

By separating the checks, effects, and interactions into
distinct logical components, this can ensure that our smart
contract code is more secure and less likely to be vulnerable
to attacks and helps to improve the clarity, maintainability, and
modularity of the code.

2) Limiting GAS fees: A Reentrancy Attack occurs when
a malicious user exploits a vulnerability in a smart contract
to repeatedly call a function within that contract before the
previous call has finished executing. This can lead to unin-
tended behavior, such as the attacker being able to drain funds
from the contract. One way to mitigate the risk of Reentrancy
Attacks is to limit the gas fees for transactions that interact with
smart contracts. This can be done by setting a maximum gas
limit for these transactions, which would prevent the attacker
from executing an excessive number of function calls within
a single transaction.

Here is an example of how limiting gas fees can help
to prevent a Reentrancy Attack: Considering the two codes
depicted in Fig. 10. In the first code example [Fig. 10 (vulner-
able code)], the withdraw function allows a user to withdraw
a specified amount from their account balance. The function
first checks that the user has enough funds, then transfers the
funds to the user’s address using the call function. However,
there is a vulnerability in this contract that allows a malicious
user to exploit the call function to repeatedly call the withdraw
function before the previous call has completed. This can lead
to the user receiving funds multiple times, effectively draining
the contract balance.

To prevent this attack, we can limit the amount of gas that
can be used by the withdraw function. We can do this by setting

Vol. 15, No. 6, 2024

a gas limit using the gas keyword as shown in Fig. 10(updated
code). we have set a gas limit of 100,000 gas for the call
function. This means that the withdraw function can only use
a maximum of 100,000 gas for each call. If an attacker tries
to repeatedly call the withdraw function using more gas than
the limit, the transaction will fail and any changes made by the
function will be reverted. This helps prevent the Reentrancy
Attack and protects the contract balance.

However, it is important to note that limiting gas fees alone
may not be sufficient to prevent Reentrancy Attacks. It is also
necessary to carefully audit smart contracts for vulnerabilities
and to implement appropriate security measures, such as using
the ”withdrawal pattern” to prevent Reentrancy Attacks.

3) Withdrawal pattern: Here we demonstrate the impor-
tance of using withdrawal Pattern to protect the smart contract
against reentrency attacks. As shown in Fig. 11(1), this is a
sample contract vulnerable to reentracy attack. In this code
it is clear that when using msg.sender.call.value to transfer
fees, this makes it susceptible to Reentrancy Attacks. Thus,
an attacker may create a hacker contract and repeatedly call
the withdraw function to to drain the contract’s balance before
their own balance is updated.

To effectively preventing re-entrancy attacks, a secure ver-
sion of the simple example [Fig. 11(1)] as shown in Fig. 11(2),
where we define a requestWithdrawal() method. We set the
withdrawal Allowed = true. Then, the withdraw function
checks if withdrawal is allowed. Meanwhile, it ensures that
there are sufficient funds and disables further withdrawals
until the current one is completed. This prevents the con-
tinuous calls of function until the the contract’s funds are
drained. After these checks, the function performs the transfer
using payable(msg.sender).callvalue : amount(””), and the
sender’s balance is updated.

V. SYSTEM DESIGN AND PERFORMANCE EVALUATION

This section presents the design of the blockchain-based
system for electronic toll collection. Particularly, it highlights
the technical aspects of the implementation and describes the
data security measures to evaluate the effectiveness of the
blockchain-based ETC system in enhancing data security and
accuracy of fees.

A. System Design

In this subsection, we present the blockchain ecosystem
(shown in Fig. 12) used to analyze and evaluate our pro-
posal. The implementation mainly include: User Interface and
Ethereum blockchain which includes smart contract, Ganache,
metamask and truffle framework.

Particularly, in this work, we make a decentralized ap-
plication (Dapp) in which users may access through web
browsers. To do that, we use the truffle development framework
to develop, test and deploy the smart contract. We choose
to run an Ethereum node locally and use the Ganache tool
which allow us to connect and distribute the EVM workload
across the nodes in the blockchain network. Ganache offers
by default 10 dummy account addresses and private keys (i.e.
one per each account). Thus, in spite of connecting to the
entire network, we basically connect to the local Ethereum

www.ijacsa.thesai.org

1533 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vulnerable code

require(success);

function withdraw(uint256 amount) public {

(bool success,) = msg.sender.call{value: amount}("");

Vol. 15, No. 6, 2024

mapping (address => uint256) public balances;

balances[msg.sender] -=

amount;

1
2
3
4 require(balances[msg.sender] >= amount);
5
6
7
8

} 1 mapping (address => uint256) public balances; :
} 2 mapping (address => bool) public locked; :
| I
[3 |
} 4 function withdraw(uint256 amount) public { :
} 5 require(balances[msg.sender] >= amount); :
} 6 require(!locked[msg.sender]); :
Updated code | 7 I
\ I
‘ 8 | T T locked[msg.sender] true; '
I |
} 9 | balances[msg.sender] -= amount; ‘ :
| 10 | |
} 11 | (bool success,) = msg.sender.call{value: amount}("");° :
} 12 | require(success); |
! 13 | I
\ I
} 14 L —plocked[msg.sender] = false; :
| 15})
Fig. 9. CEI pattern: (A) Vulnerable code and (B) Updated code.
[———————— ———— —

contract MyContract {

Vulnerable code
mapping(address => uint) balances;

-Functionlwithdraw(uint amount) |pub1ic {
require(balances[msg.sender] >= amount, "Insufficient balance");

balances[msg.sender] -=

1

2

3

2 I
5 |
6 (bool success,) =|msg.sender.call{va1ue: amount}(""); [
7 require(success, "Withdraw failed"), |
s I
: |
%)

. . . . Updated code
‘FunctlonlWlthdr‘aW(umt amount) I;)ubllc {
require(balances[msg.sender| >= amount, "Insufficient balance");

amount;

(bool success,)|= msg.sender.call{value: amount“ gas: 100000} ("");

require(success,
balances[msg.sender] -=

|
Tailed ™)3 |
amount; |

Fig. 10. (1) Vulnerable code and (2) Updated code (Limiting GAS fees).

network using Ganache. So, the entire Ethereum network
is located locally in the computer. Each Ganache account
address is considered as an EOA and will be assigned to
one vehicle user. Particularly, we consider two types of EOA
accounts: user account and owner account. We are considering
an accounts table that manage the whole accounts addresses

and we assume that owneryqq, = Accounts[0]. This owner
address ownergqqr) is the one which deploy the smart contract
in the blockchain. The deployment of the smart contract to the
Ethereum Blockchain creates a contract address. This contract
Address needs to be replaced after each deployment.

www.ijacsa.thesai.org

1534 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

1 contract vulnerablecContract {

2 mapping(address =» uint256) public balances; @
3

4 function withdraw(uint256 amount) public {

5 require(balances[msg.sender] >= amount, “Insufficient balance");
6

7 // vulnerable to reentrancy attack

8 (bool success,) = msg.sender.call{value: amount}("");

9 require(success, "Transfer failed");

10

1 balances[msg.sender] -= amount;

12 }

13}

Vol. 15, No. 6, 2024

1 contract SecureContract {

2 mapping(address => uint256) public balances;

3 mapping(address => bool) public allowedwithdrawals;

a

5 function deposit() public payable { @

6 balances[msg.sender] += msg.value;

7 ¥

8

9 ‘function requestWithdrawal(uint256 amount) public|{

10 require(balances[msg.sender] >= amount, "Insufficient balance");
allowedwithdrawals[msg.sender] = true;

12 }

13

14 function withdraw(uint256 amount) public {

15 [require(allowedWithdrawals [msg. sender]] “Withdrawal not allowed");

16 require(balances[msg.sender] >= amount, "Insufficient balance");

17

18 allowedwithdrawals[msg.sender] = false;

19

20 (bool success,) = payable(msg.sender).call{value: amount}("");

21 require(success, "Transfer failed");

22

23 balances[msg.sender] -= amount;

24 }

25)

Fig. 11. (1) Vulnerable code and (2) Updated code (withdrawal pattern).

|

|

| -

| s

| Userinterface |¢— & o,

i T s

: Ensrgl :_> E g Truffle migrate
| Javscript | é’ JSON ABI

Truffle

Localhost:7545

[
| Ganache:Test Mmllill:tsk
| Ethereum Network ’
e]
|)
|l =
| Blockchain ethereum data
I
|
[

import ethereum accounts
(private Key)

Fig. 12. User interface and blockchain framework.

TABLE III. ABBREVIATIONS AND SYMBOLS

Prerequisites Version
Nodels v16.17.1
Truffle v5.4.29

Ganache V2.54
Web3.js v1.5.3

This blockchain framework is accessed on a web browser
like google chrome using Metamask. In fact, we have created
a frond-end (user interface) with Node.js Web server, HTML
and CSS. In order to interact with the distributed application,
we use Metamask application which allows users to run Dapp
directly in the browser without running a full Ethereum of
node. The main prerequisites implementation tools are listed
in Table III.

In Fig. 13, we depict a flowchart that provides a high-level
overview of the process for using Truffle with MetaMask and
acquiring Ether to develop, test, and deploy smart contracts. In
fact, In step (1), we first use the intt command to initialize a
new project with the default contracts, migrations and tests

folders and truf fle-config.js file [as shown in step (2)]
that represent the basic template to start new project. In Step
(3) we configure the truf fle-config.js which contains the
network endpoints for deployments. For example, we have
used the following lines for Ganache deployment running on
localhost : 8545 for migration and testing.

module. exports = {
networks: {
development: {

host: ’127.0.0.1°,
port: 8545,
network id: %’

}
}
}

Migration scripts are used for deploying smart contracts to the
Ethereum network. After a successful migration process(i.e.,
using the command truffle migrate --reset) in the
network object creates new migration scripts as shown in
steps (6) and (7). After that, as shown in steps (8) and (9),
the deployment of the smart contract require the check of
the wallet. If the wallet has has enough ether to cover the

www.ijacsa.thesai.org

1535 |Page

@

J

create project
directory

H

(IJACSA) International Journal of Advanced Computer Science and Applications,

creates directory -® contracts :
Create a truffle structure +e migrations
Project -e test
> o truffie-config.js
(2) | Add network
\T) definition

Install hdwallet-
provider

Configure the
Truffle settings

on

Create Smart contract

Vol. 15, No. 6, 2024

Acquire Ether on the
network

A

y
Deploy the smart

Connect to the Test contract

Network using
MetaMask.

in contract directory
(example.sol)

have enough
ether

(6 7
N | -
compile the smart Sresie e ST " '1_deploy_contractjs |
contract I scripts (migration directory)
(truffle compile) | | T L e
Fig. 13. Smart contract deployment using truffle.
TABLE IV. TRANSACTION STATISTICS

NB transactions 100 200 300 400 500 600 700 800 900 1000

% Valid Tr 99.0 99.0 99.33 99.5 99.4 99.5 99.57 99.5 99.56 99.5

% Non-Valid Tr 1.0 1.0 0.67 0.5 0.6 0.5 0.43 0.5 0.44 0.5

Accuracy-fees 99.99 9998 9997 99.97 9997 9991 99.92 99.84 99.84 99.83

100 g
- —\‘—*\.—h_‘ 400
o' 998
s 350
3
§ 99.6 g 300
o @ 250
S £
£ 994 E 500
8 g
g = 150
5 99.2 3
gﬂ b 100
f=4
g 99 50
5]
= 0
98.8 PayToll

100

200 300 400 500

600

700

Number of transactions

=== % Valid_tr

«=@-=Accuracy-fees

800 900 1000

Fig. 14. Accuracy-fees and valid-transactions vs number of transactions.

deployment cost and any transactions, the smart contract is
deployed on the network. If not Ethers must be acquired on

the network.

Registration buyTokens
Smart contract functionalities

Fig. 15. Execution time.

B. Performance Evaluation

In this subsection, we evaluate the efficiency of the smart
contract regarding the Reentrency Attacks and accuracy of fees
calculation. For that purpose, two metrics are considered (i.e.,
Accuracy of fees calculation and execution time).

www.ijacsa.thesai.org

1536 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Let T" be a set of n transactions denoted as T" = t1, to, ..., {5,
, where each transaction ¢; has an expected distance and toll
fees denoted as di.yp and fic., respectively.

For each transaction t; in T, the actual toll fees fi,qt
is calculated based on the distance di,.; and the toll rate r
which represents the fee per unit of distance. This formulate
is expressed in Eq.7.

fiact = diact xXr (7)

The accuracy of the ETC fees calculation, denoted as

m'ggggmy, for a single transaction ¢; is then given by:
e R e | R ®

L erp
[d.ea: - d.ac
L exrp
[d.ea: _d‘ac

~ 1= <T(leap — @1 t”)] % 100% (10)
L Qicgp X T
[d.em _d.ac

=1- <w)] x 100% (11)
L icrp

The average accuracy for the set of transactions 7' is
expressed by:

Taccuracy

1 n

= - E tiz]zcggiracy (12)
"=
1 & dle:}c - d.ac

—— § {1 _ (M)} x 100% (13)
n iczp

where n represents the total number of transactions.

In this work, let’s assume we have a secure smart contract
that accurately calculates the fees for a given distance. We
will discuss the accuracy of our smart contract in the presence
of a hacker smart contract (hacker node) that tries to modify
the distance values. We calculate the average accuracy of fees
using Eq. 13 for five transaction sets denoted by: n = 100,
n = 200, n = 300, n = 400, and n = 500.

This will help us understand how the accuracy of fees is
affected as the number of transactions increases.

Fig. 14 shows that as the number of transactions increases,
the average accuracy of fee calculation decreases, indicating a
slight impact of the hacker smart contract on our secure smart
contract.

This result shows that, while the hacker smart contract
did have an impact on the accuracy of fees calculation, the
overall impact on the entire set of transactions is relatively
small. In fact, the high percentage of fees accuracy reflect that
the proposed decentralized system is highly accurate.

In the same figure (i.e. Fig. 14), we observe the percent-
ages of valid transactions. We remark that the number of
transactions increases from 100 to 1000, the percentage of
valid transactions remains consistently high (ranging from 99%
to 99.5%) as shown in Table IV. This indicates that with a
larger number of transaction, the hacker smart contract may

Vol. 15, No. 6, 2024

affect a few specific transactions. Particularly, this indicates
that the smart contract’s security patterns are resilient even
when dealing with a larger number of transactions.

For example if we take these two cases from the Table IV:
(i) 500 transactions resulting in 0.6% of non-valid transactions
and 99.97% of fees accuracy; ii) 200 transactions resulting in
1% of non-valid transactions and 99.98% of fees accuracy. De-
spite the relatively higher percentage of non-valid transactions
at 1% in the second case, the fees accuracy remained high. This
result is explained by the fact that hacker smart contract had
a minimal impact on the average accuracy of fees, signifying
that the difference between the expected and actual average of
fees calculation was extremely low.

The performance of the smart contract is evaluated based
on the execution time metric. Fig. 15 shows the execution
time of the three basic functions of the given smart contract
(Registration, Buy_toll, Pay_Toll) that were called by a specific
transaction. We can see that the registration and the pay_toll
take 307ms and 314ms, respectively. The Buytoll function
only takes about 236ms less than registration and the pay_toll
functions. The functions (registration and the pay_toll) need
more execution time, which is reasonable, because they include
complex calculations such as verification of vehicle’s status
and distance validation at the exit toll.

VI. CONCLUSION

In conclusion, this paper tackles the vulnerabilities of
current Electronic Toll Collection (ETC) systems, including
privacy issues and potential attacks such as the Reentrancy
Attack. To address these challenges, we proposed an innovative
solution leveraging Ethereum blockchain and smart contracts
for automated payments within the Internet of Vehicles (IOV)
framework. Our main goals are to authenticate vehicle data, au-
tomatically deduct toll fees from users’ wallets, and safeguard
against smart contract Reentrancy Attacks while protecting
sensitive distance-related information.

Specifically, we introduced an end-to-end verification algo-
rithm that functions at both entry and exit toll points, providing
a robust solution to these issues. We evaluated the system’s
performance on a private blockchain, and the results show that
this decentralized approach not only enhances security but also
ensures accurate payment processing.

In future research, we plan to integrate deep learning
algorithms to further enhance the system’s capabilities. By
incorporating deep learning, we aim to detect anomalies and
potential fraud in real-time, improving the overall reliability
and security of the ETC system. This addition will provide an
even more comprehensive and intelligent solution for manag-
ing toll payments in the context of the Internet of Vehicles.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the approval and the
support of this research study by the grant no. SCIA-2023-
12-2233 from the Deanship of Scientific Research at Northern
Border University, Arar, KSA.

www.ijacsa.thesai.org

1537 |Page

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]

(IJACSA) International Journal of Advanced Computer Science and Applications,

REFERENCES

J. Wang, R. Zhu, T. Li, F. Gao, Q. Wang and Q. Xiao, ETC-Oriented
Efficient and Secure Blockchain: Credit-Based Mechanism and Evidence
Framework for Vehicle Management, in IEEE Transactions on Vehic-
ular Technology, vol. 70, no. 11, pp. 11324-11337, Nov. 2021, doi:
10.1109/TVT.2021.3116237

Das, D., Banerjee, S., Biswas, U. Design of a secure blockchain-based
toll-tax collection system. In: Micro-electronics and telecommunication
engineering, pp. 183-191. Springer, Singapore (2022).

Shanmukha Makani, Rachitha Pittala, Eitaa Alsayed, Moayad Aloqaily
and Yaser Jararweh, A survey of blockchain applications in sustainable
and smart cities, Journal: Cluster Computing, 2022

Sahoo, Sujit Sangram, Aravind R. Menon, and Vijay K. Chaurasiya.
Secure Blockchain Model for Vehicles toll Collection by GPS tracking:
A case study of India. 2022 TIEEE India Council International Subsections
Conference (INDISCON). IEEE, 2022.

Banerjee S, Das D, Biswas M, Biswas U (2020), Study and survey on
blockchain privacy and security issues. In: Williams I (ed) Cross industry
use of blockchain technology and opportunities for the future. IGI Global,
pp 80-102. https://doi.org/10.4018/978-1-7998-3632-2.ch005

Guo, Yihao, et al. Vehicloak: A Blockchain-Enabled Privacy-Preserving
Payment Scheme for Location-Based Vehicular Services. IEEE Transac-
tions on Mobile Computing (2022).

Deng, Xinyang, Gao, Tianhan. (2020). Electronic Payment Schemes
Based on Blockchain in VANETs. IEEE Access. PP. 1-1. 10.1109 AC-
CESS.2020.2974964.

Chiu, Wei-Yang, and Weizhi Meng. EdgeTC-a PBFT blockchain-based
ETC scheme for smart cities. Peer-to-Peer Networking and Applica-
tions 14 (2021): 2874-2886.

Buterin, V. Ethereum: a next generation smart contract and decentralized
application platform. https://github.com/ethereum/wiki/wiki/White-Paper
(2013)

Vol. 15, No. 6, 2024

[10] Clack, C.D., Bakshi, V.A., Braine, L. Smart contract templates: founda-
tions, design landscape and research directions. CoRR abs/1608.00771
(2016)

[11] Szabo, N. Formalizing and securing relationships
on public networks. First Monday 2(9) (1997),
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/ fm/arti-

cle/view/548

[12] Tkram Ali, Alzubair Hassan, and Fagen Li, Authentication and pri-
vacy schemes for vehicular ad hoc networks (VANETs): A survey,
Vehicular Communications Volume 16, April 2019, pp. 45-61, doi:
10.1016/j.vehcom.2019.02.002

[13] R. Jabbar et al., Blockchain Technology for Intelligent Transportation
Systems: A Systematic Literature Review, in IEEE Access, vol. 10, pp.
20995-21031, 2022, doi: 10.1109/ACCESS.2022.3149958

[14] Liu and Cao. 2018. Reguard: finding reentrancy bugs in smart con-
tracts. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings. ACM, 65-68

[15] Wood, G. Ethereum: a secure decentralised generalised transaction
ledger. gavwood.com/paper.pdf (2014)

[16] Zou, W.; Lo, D.; Kochhar, P.S.; Le, X.-B.D.; Xia, X.; Feng, Y.; Chen,
Z.; Xu, B. Smart Contract Development: Challenges and Opportunities.
IEEE Trans. Softw. Eng. 2021, 47, 2084-2106.

[17] Qian, P; Liu, Z.; He, Q.; Zimmermann, R.; Wang, X. Towards Auto-
mated Reentrancy Detection for Smart Contracts Based on Sequential
Models. IEEE Access 2020, 8, 19685-19695.

[18] Mehar, M.L; Shier, C.L.; Giambattista, A.; Gong, E.; Fletcher, G.;
Sanayhie, R.; Kim, H.M.; Laskowski, M. Understanding a revolutionary
and flawed grand experiment in blockchain: The DAO attack. J. Cases
Inf. Technol. 2019, 21, 19-32

[19] Maximilian Wohrer and Uwe Zdun. Smart contracts: security patterns
in the Ethereum ecosystem and solidity. In 2018 International Workshop
on Blockchain Oriented Software Engineering (IWBOSE), pages 2-8.
IEEE, 2018.

www.ijacsa.thesai.org

1538 |Page

