
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

Comparing AI Algorithms for Optimizing Elliptic
Curve Cryptography Parameters in e-Commerce

Integrations: A Pre-Quantum Analysis

Felipe Tellez, Jorge Ortı́z
Department of Systems and Industrial Engineering, National University of Colombia, Bogotá, Colombia 111321

Abstract—This paper presents a comparative analysis between
the Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO), two vital artificial intelligence algorithms, focusing on op-
timizing Elliptic Curve Cryptography (ECC) parameters. These
encompass the elliptic curve coefficients, prime number, generator
point, group order, and cofactor. The study provides insights into
which of the bio-inspired algorithms yields better optimization
results for ECC configurations, examining performances under
the same fitness function. This function incorporates methods
to ensure robust ECC parameters, including assessing for sin-
gular or anomalous curves and applying Pollard’s rho attack
and Hasse’s theorem for optimization precision. The optimized
parameters generated by GA and PSO are tested in a simulated
e-commerce environment, contrasting with well-known curves
like secp256k1 during the transmission of order messages using
Elliptic Curve-Diffie Hellman (ECDH) and Hash-based Message
Authentication Code (HMAC). Focusing on traditional computing
in the pre-quantum era, this research highlights the efficacy
of GA and PSO in ECC optimization, with implications for
enhancing cybersecurity in third-party e-commerce integrations.
We recommend the immediate consideration of these findings
before quantum computing’s widespread adoption.

Keywords—Artificial intelligence; genetic algorithms; particle
swarm optimization; elliptic curve cryptography; e-commerce; third-
party integrations; pre-quantum computing

I. INTRODUCTION

This paper explores the field of Elliptic Curve Cryptog-
raphy (ECC), a form of public key cryptography that uses
the mathematics of elliptic curves to secure transactions,
specifically focusing on its application within e-commerce
transactions executed through third-party integrations during
a pre-quantum computing era. The aim is to identify the most
efficient and effective Artificial Intelligence (AI) algorithm
for optimizing parameters essential to ECC’s successful op-
eration within this context. The two leading algorithms being
examined are Genetic Algorithms (GA), and Particle Swarm
Optimization (PSO).

A. Background

Elliptic Curve Cryptography (ECC), an important and
widely used form of public-key cryptography [1][2], provides
enhanced security with shorter key lengths [3], making it
ideal for resource-constrained environments like e-commerce
platforms [34]. Effective ECC operation hinges on the careful
selection of parameters such as curve coefficients, base point,
prime modulus, and others [4] to [11]. Optimizing these
parameters can enhance ECC’s security and efficiency, which
is crucial in e-commerce transactions.

Artificial Intelligence (AI) has shown tremendous potential
in this parameter optimization [12] to [26]. Notably, two AI
algorithms, -GA, and PSO- stand out [12][15]. They represent
different subsets and categories of AI algorithms: GA, an Evo-
lutionary Algorithm [18], and PSO, a Swarm Intelligence [19],
belong to Population-based Optimization. These algorithms
are recognized for their problem-solving and optimization
capabilities.

E-commerce transactions often involve integrations with
third-party solutions such as Enterprise Resource Planning
(ERP) systems, Customer Relationship Management (CRM)
systems, payment gateways, data analytics solutions, among
others [27][28]. These transactions need to be securely en-
crypted, making ECC an excellent choice, especially with
optimized parameters.

B. Objective

The objective of this paper is to compare the efficacy of
GA and PSO in optimizing ECC parameters for e-commerce
transactions involving third-party integrations within binary
computing. Specifically, the comparison aims to determine
which AI algorithm is most efficient in terms of its behavior
during the optimization process, and which AI algorithm is
most effective in terms of the quality of the results it produces.

C. Scope and Limitations

While ECC can be used in contexts other than e-commerce
third-party integrations, such as Web browsers, customer au-
thentication, administrative user authentication, and database
persistence, the focus of this article is on transaction inte-
grations with third parties. Interactions between e-commerce
systems and backend or third-party solutions such as ERPs,
CRMs, payment gateways, and billers are all part of it.

This research uses a simulated e-commerce environment
that incorporates a business process that entails creating orders
in an emulated ERP. The information for these orders is sent
from the e-commerce solution through third-party integrations
using web services to imitate real-world conditions. The re-
search relies on API simulations for outbound connections
utilizing datasets relevant to these types of scenarios rather
than a whole e-commerce solution.

The research also limits its scope to the pre-quantum com-
puting era. Although quantum computing promises significant
advances, its implications for ECC and AI algorithms are
beyond this study’s scope. The research also excludes other AI

www.ijacsa.thesai.org 1539 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

techniques like Simulated Annealing, Ant Colony Optimiza-
tion or Artificial Neural Networks, despite their applicability
to ECC optimization, to keep the research focused.

D. Structure and Contributions

The rest of this paper is organized as follows: Section II
reviews related work on ECC optimization, AI techniques, e-
commerce integrations, and pre-quantum developments. Sec-
tion III details materials and methods, including ECC pa-
rameters and optimization criteria. Section IV describes the
simulation environment design and implementation. Section
V presents results and analysis, covering AI algorithm ex-
ecution, e-commerce simulation, and comparison based on
ECC criteria. Section VI discusses future improvements and
limitations, including parameter tuning, parallelization, hy-
brid algorithms, alternative AI techniques, fitness function
improvements, diverse cryptographic threats, and quantum
computing implications. Section VII concludes with future
work and recommendations. Unique contributions include a
detailed comparison of GA and PSO for ECC optimization
in e-commerce, a novel fitness function, and an evaluation
framework for pre-quantum computing.

II. LITERATURE REVIEW

A. ECC Parameter Optimization

The complexity of Elliptic Curve Cryptography (ECC) op-
timization is central to research on ECC systems’ effectiveness,
security, and efficiency. Koblitz [1] and Miller [2] indepen-
dently introduced Elliptic Curves in public-key cryptography,
stressing the careful choice of parameters for enhanced secu-
rity. Washington [3] emphasized optimizing ECC parameters
such as curve coefficients, base point, prime modulus, and key
sizes, all influencing ECC’s performance.

Lenstra and Verheul [4] advocated ECC’s use in crypto-
graphic systems, with a focus on proper parameter selection,
especially prime modulus. Blake, Seroussi, and Smart [5]
delved into the details of ECC parameter selection, highlight-
ing the selection of the base point, curve coefficients, and
prime modulus.

A significant aspect of ECC optimization is speeding
up point multiplication, a core ECC operation. Hankerson,
Menezes, and Vanstone [6] outlined strategies for this focusing
on ECC’s computational aspects. Other researchers have ex-
amined ECC optimization in MANET and Sensor networks,
where hardware plays a significant role. In [7], we can find
a state of the art of ECC optimizations in these types of
scenarios.

In general, the literature review emphasizes ECC parameter
optimization’s importance and complexity, covering domains
such as elliptic curves’ mathematical foundations, intricate
parameter selection, implementation optimizations, and AI
algorithms for multi-objective optimization [8] to [11]. This
substantial knowledge forms the foundation of this study.

B. AI Techniques for ECC Parameter Optimization

Artificial Intelligence (AI) exhibits vast potential in ECC
parameter optimization, with prominent techniques like Ge-
netic Algorithms (GA) [12] to [14] and Particle Swarm

Optimization (PSO) [15] to [17]. These methods contribute
distinctive strengths to ECC optimization.

GA, inspired by biological evolution, is known for its ef-
fectiveness in exploring complex search spaces, particularly in
seeking optimal solutions within intricate landscapes like ECC
parameter optimization [18]. On the other hand, PSO, modeled
after the social behaviors of birds and fishes, is celebrated for
its simple implementation and intrinsic ability to avoid local
optima [19]. These methods, by emulating natural processes,
present unique solutions to ECC’s challenges, highlighting
the connection between nature’s complexity and technological
innovation.

Besides these techniques, others like Simulated Anneal-
ing (SA) [20], an Stochastic Optimization inspired by the
annealing process in metallurgy, is known for adaptability
and robustness in solving optimization issues [21], including
ECC. Evolutionary Algorithms (EA), similar to GA, involve
mechanisms like reproduction and mutation, showing promise
in optimizing Elliptic Curves [22][23]. Machine Learning
(ML), where algorithms evolve through data usage, has been
applied to Elliptic Curve factorization problems [24]. Also,
Tabu Search has been used to enhance ECC operations and
multimedia encryption [25] [26].

Each of these named AI methods offers unique benefits
in the optimization of ECC parameters; nevertheless, as we
mentioned in the introduction section, the focus of our analysis
will be on GA, and PSO.

C. E-commerce and Third-party Integrations

The growth of e-commerce has fostered an interconnected
technological network involving various third-party entities
such as payment gateways, ERP systems, CRM systems,
billers, web services, and custom solutions [27][28]. They
exchange vital operational data, including inventory status,
billing data, orders information and more.

1) Types of e-commerce integrations: To better under-
stand e-commerce integrations, it’s crucial to consider their
directionality, distinguishing between inbound and outbound
integrations [29] [30].

• Inbound Integrations: SaaS-based e-commerce plat-
forms [31] usually offer an integration layer based
on Application Programming Interfaces (APIs). These
APIs, typically RESTful web services [32][33], are
exposed for third-party consumption. They are pro-
vided ”out of the box,” ready to be used by external
requesters or legacy systems such as ERPs.

• Outbound Integrations: These emanate from e-
commerce platforms to an external entity and are
usually executed through webhooks. These triggers
send detailed order information to third-party entities
such as the ERP system.

2) The Role of AI in ECC and Third-Party Integrations:
As e-commerce evolves, secure and efficient third-party in-
tegrations are essential. ECC maintains data security and
integrity across these integrations [34]. AI techniques optimize
ECC parameters, boosting transaction speed, data security,
and overall user experience, offering a competitive edge in
e-commerce operations.

www.ijacsa.thesai.org 1540 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

D. Pre-Quantum Developments in ECC Optimization

The advent of quantum computing ushers in a new era
with its potential to solve complex problems more efficiently
than classical computers [35]. However, the implications of
this quantum leap for Elliptic Curve Cryptography (ECC)
and its parameter optimization using AI algorithms remain
largely speculative, as quantum computing is yet to become
mainstream. The pre-quantum era, thus, serves as the current
framework within which ECC optimization techniques are
developed and implemented, focusing on the capabilities of
classical computing.

E. Limitations of Similar Research

Although previous studies have made significant contri-
butions to the field of ECC cryptanalysis and security, they
primarily focus on specific techniques like Pollard’s Rho,
DNA-based cryptography, PSO/Cuckoo Search for key gen-
eration, and power optimization for mobile devices. These
studies do not explore other AI techniques for optimizing
ECC parameters, particularly in the context of e-commerce
integrations. Furthermore, there is a lack of consideration for
the practical applications of these optimizations in real-world
scenarios. The limitations of these studies are summarized in
Table I.

TABLE I. LIMITATIONS OF SIMILAR RESEARCH

Study Limitations
[12] Focuses on cryptanalysis rather than optimization of ECC

parameters for practical applications. Does not explore other AI
techniques or their integration with e-commerce systems.

[13] Concentrates on multi-cloud security using DNA and HECC
techniques but does not explore other AI techniques like GA or

PSO for ECC optimization. Lacks practical implementation
details for e-commerce integrations.

[16] Focuses on mobile devices and optimizing power consumption
using PSO and Simplified Swarm Optimization. Does not

provide a comprehensive comparison with other AI techniques
like GA for ECC optimization. The study’s focus on mobile

device constraints limits its applicability to broader e-commerce
integrations.

[17] Explores PSO and Cuckoo Search Algorithm for ECC key
selection but does not provide a comprehensive comparison

with other AI techniques like GA. Focuses more on key
generation rather than overall ECC parameter optimization in

e-commerce contexts.

III. MATERIALS AND METHODS

This section highlights our research methodology, focusing
on the ECC parameters to optimize and the criteria for the
evaluation of AI techniques.

A. ECC Optimization Parameters

Elliptic Curve Cryptography parameters play distinctive
roles, and they can be carefully tuned to improve ECC without
sacrificing security. The parameters that will be analyzed for
this study are as follows:

1) Choice of elliptic curve: The curve’s equation E : y2 =
x3+ax+ b and specific constants a and b (curve coefficients)
determine the system’s efficiency and security.

2) Field size: Represented by a prime number (p), the
field size affects security and computational load. Larger fields
enhance security but need careful balancing with efficiency.

3) Generator point G: The method used for representing
points (x, y) on the curve affects computation speed.

4) Scalar multiplication: Techniques like the Montgomery
ladder [36] or sliding window method [37] enhance ECC
operations. The operation Q = kP , where P is a point on
the curve and k is scalar, can be optimized for efficiency.

5) Group order n: This represents the number of points on
the elliptic curve and plays a vital role in the security of the
ECC system.

6) Cofactor h: The ratio between the number of points on
the curve and the group order n. It’s essential in defining the
subgroup that is used for cryptographic purposes.

The parameters mentioned above represent only a fraction
of the many that can be considered [1] to [11]. Other aspects,
such as Hash Function, Pairing Function, Random Number
Generation, protocol parameters, use of special curves, batch
operations, endomorphism (ϕ : E → E), parallelism, efficient
arithmetic libraries, hardware acceleration, and more, will not
be discussed to maintain the focus of the study.

B. ECC Optimization Criteria

The efficiency and effectiveness, collectively referred to
as the efficacy, of the selected AI algorithms in optimizing
the ECC parameters, are assessed based on multiple criteria
acknowledged as vital evaluation measures by the broader
research community. These criteria encompass various aspects
that together represent the complete performance of ECC.
Below, we outline these criteria:

1) Evaluation of the AI Algorithms (efficiency):

a) Performance: Speed, convergence rate, computa-
tional time.

b) Flexibility: Ability to adapt to different problems
or changes in the landscape.

c) Robustness: Sensitivity to initial conditions, param-
eter settings, and noise.

d) Scalability: Ability to handle increasing complexity
or problem size.

e) Comparability: Fairness and alignment in compar-
ing the two algorithms.

2) Evaluation of the ECC Parameters Generated (effective-
ness):

a) Security: Resistance against attacks, adherence to
cryptographic best practices.

b) Optimality: How close the parameters are to the
theoretical best solution.

c) Generalization: Effectiveness across different curve
configurations and real-world scenarios.

d) Validity: Compliance with mathematical and crypto-
graphic requirements, such as avoiding singular or anomalous
curves.

www.ijacsa.thesai.org 1541 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

e) Practicality: Consideration of real-world appli-
cations, computational performance, and compatibility with
existing systems.

The two aspects of efficiency and effectiveness, are in-
terconnected in efficacy but evaluate different dimensions of
the problem. Efficiency focuses on the algorithms themselves
and how they perform as optimization techniques [38] to [43],
while effectiveness concentrates on the quality and character-
istics of the ECC parameters they produce [1] to [11].

IV. SIMULATION ENVIRONMENT DESIGN AND
IMPLEMENTATION

The implementation of our simulation consists of an en-
vironment of applications and software modules (hereafter
referred to as components), built using the Python program-
ming language. These are divided into two main groups:
“ECC Params Optimization” and “e-commerce Simulation”.
The architecture of this environment is illustrated in Fig. 1.

Fig. 1. A high-level diagram of the environment’s architecture.

The libraries used in the project include, but are
not limited to, ‘numpy‘, ‘pandas‘, ‘matplotlib‘, ‘deap‘,
‘gmpy2‘, ‘requests‘, and ‘tinyec‘. These libraries,
along with the detailed source code, can be found at:
github.com/cftellezc/GA PSO ECC parameter Optimization

The components of our simulation environment are de-
scribed in more detail below.

A. ECC Params Optimization Group

1) Genetic algorithm: The GA.py script or GA App,
employs the DEAP (Distributed Evolutionary Algorithms in
Python) library to implement a genetic algorithm for ECC
parameter optimization. It initiates a population of individuals,
where each individual is a list representing potential elliptic
curve parameters in ECC. This parameters are the constants
a and b, the prime number p, the generator point G repre-
senting points (x, y), the group order n and the cofactor h.
Through iterative genetic operations like selection, crossover,
and mutation, new generations of individuals are produced.

The script uses a custom mutation function that receives
the individual, an independent probability indpb (the chance
of each attribute to be mutated), and the mutation rate, all
of this to mutate the individuals generating prime numbers or
perturbing parameters using a Gaussian distribution as follows
(Algorithm 1):

Algorithm 1 Custom Mutation Function

1: function CUSTOMMUTATION(individual, indpb, muta-
tion rate)

2: degree of mutation ← 5
3: if mutation rate > 0.5 then
4: degree of mutation ← 10
5: else
6: degree of mutation ← 2
7: end if
8: if random value between 0 and 1 < mutation rate then
9: for i = 0 to length of individual − 1 do

10: if random value between 0 and 1 < indpb then
11: if i = 2 then
12: individual[i] ← generate prime number

for p
13: else if individual[i] is a tuple then
14: individual[i] ← find generator point us-

ing individual[0], individual[1], individual[2]
15: else
16: individual[i] ← individual[i] +

round(value from Gaussian distribution with mean 0
and standard deviation degree of mutation)

17: end if
18: end if
19: end for
20: end if
21: return individual,
22: end function

The script defines several global constants that control the
behavior of the genetic algorithm, as summarized in Table II:

TABLE II. GENETIC ALGORITHM CONSTANTS

Constant Value Description
POP SIZE 500 Population size

CXPB 0.5 Crossover probability

MUTPB 0.2 Mutation probability

NGEN 40 Number of generations

MULTIPARENT CXPB 0.1 Multi-parent crossover probability

ELITISM RATE 0.1 Elitism rate

www.ijacsa.thesai.org 1542 | P a g e

https://github.com/cftellezc/GA_PSO_ECC_parameter_Optimization

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

They were set up and tuned for better performance using
some techniques like grid search. They can be adjusted to tune
the performance of the algorithm.

Executed as the main module, the script’s primary function
initializes the population, assesses their fitness, and enters a
loop for generating and evaluating new individuals over a spec-
ified number of generations (NGEN) as follows (Algorithm 2):

Algorithm 2 Main Genetic Algorithm

1: Initialize: pop← toolbox.population()
2: for all individual in pop do
3: Evaluate fitness and assign to individual
4: end for
5: Initialize: elitism number ← round(len(pop) ×

ELITISM RATE)
6: mutation rate←MUTPB
7: for g = 0 to NGEN − 1 do
8: Log: Starting Generation: g + 1
9: elites← select top individuals from pop

10: offspring ← select next generation from pop
11: Clone: offspring
12: for i = 0 to len(offspring)− 3 step 3 do
13: Apply three-point crossover if random() <

MULTIPARENT CXPB
14: end for
15: for all pair child1, child2 in offspring do
16: Apply crossover to child1, child2 if random() <

CXPB
17: end for
18: for all mutant in offspring do
19: mutate mutant with rate mutation rate
20: end for
21: Evaluate and set fitness of invalid individuals
22: offspring ← offspring + elites
23: pop← offspring
24: end for

Summarizing, we initialize the mutation degree utilizing
the standard deviation of a Gaussian distribution, and adjusting
it according to the mutation rate. This procedure entails cre-
ating random floats to determine the probability of mutation,
which is influenced by both the mutation and indpb rates.

Individual parameters are subject to potential mutation,
adhering to unique criteria for distinct cases: the third param-
eter (p) entails deriving a fresh prime number utilizing the
BITS PRIME SIZE constant — currently set to 256 bits —
from the ai ecc utils.py module. Tuple parameters represent-
ing generator points (G) necessitate fabricating a new point
using the prevailing values of a, b, and p.

The remaining parameters (a and b) undergo modifications
through Gaussian perturbations, with an imperative to retain
integer attributes facilitated by the round function. This mech-
anism ensures compatibility with DEAP, expecting mutated
individuals to be returned as single-item tuples.

The script uses tournament selection and two-point
crossover from the DEAP library. It also implements elitism,
ensuring that the best individuals from each generation are
carried over to the next.

The script evaluates the fitness of the individuals using
a function from the ai ecc utils.py module (which will be
explained later), which calculates the fitness based on the
ECC parameters represented by the individual. The script logs
the progress of the genetic algorithm, including the statistics
of each generation and the best individual from the final
generation.

In the context of ECC, the individuals in the population rep-
resent different elliptic curves, and the fitness function assesses
how well they meet the desired criteria. The genetic algorithm
identifies the best-fitting elliptic curve and generates a file
named ga ecc params.txt, containing the optimal parameters
for ECC optimization.

2) Particle swarm optimization: The PSO.py module or
PSO App, uses a Particle Swarm Optimization (PSO) al-
gorithm to fine-tune ECC parameters. It initializes particles,
where each particle is a list representing potential elliptic curve
parameters in ECC, updates their velocities and positions,
evaluates fitness, and identifies the best ECC parameter set
through the optimal particle. The ECC parameters are the same
as those assessed in GA: (a, b, p,G, n, h).

The update velocity function calculates the new velocity
of a particle. It balances global and local exploration using a
dynamic inertia weight that linearly decreases from 0.9 to 0.4
over iterations. Two components contribute to the velocity:
a cognitive component based on the particle’s best-known
position C1, and a social component based on the swarm’s
best-known position C2. Special handling is done for the
generator point of the elliptic curve, as shown in Algorithm 3.

Algorithm 3 Update Velocity of a Particle
1: procedure UPDATEVEL(part, vel, best part, glob best part, iter,

max iter)
2: new vel← []
3: wmax ← 0.9
4: wmin ← 0.4
5: w ← wmax − (wmax − wmin) · iter

max iter
6: for i = 0 to len(part)− 1 do
7: v ← vel[i]
8: r1, r2← random(0, 1)
9: if i = 3 then

10: cog ← calc cog(best part[i], part[i], r1)
11: soc← calc soc(glob best part[i], part[i], r2)
12: if is tuple(v) then
13: new v ← calc new v tuple(v, w, cog, soc)
14: else
15: new v ← calc new v(cog, soc)
16: end if
17: else
18: cog ← C1 · r1 · (best part[i]− part[i])
19: soc← C2 · r2 · (glob best part[i]− part[i])
20: new v ← w · v + cog + soc
21: if i ̸= 3 then
22: new v ← abs(new v)
23: end if
24: end if
25: Append new v to new vel
26: end for
27: return new vel
28: end procedure

www.ijacsa.thesai.org 1543 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

The update position function calculates the new position
of a particle based on its velocity. It ensures that coordinates
remain positive and integers, and specific attention is given to
update the generator point. It also makes use of the external
utility functions from ai ecc utils.py to update the prime
number and generator point, as shown in Algorithm 4.

Algorithm 4 Update Position of a Particle

1: procedure UPDATEPOSITION(particle, velocity)
2: new particle ← empty list
3: for i = 0 to len(particle)− 1 do
4: p← particle[i]
5: v ← velocity[i]
6: if i = 3 then
7: new p ← tuple(|int (round(pi + vi))| for pi, vi

in zip(p[:2], v[:2]))
8: else
9: new p ← |int (round(p+ v))|

10: end if
11: Append new p to new particle
12: end for
13: new particle[2] ← ai ecc utils.get prime for p()
14: a, b, p ← new particle[:3]
15: new particle[3]← ai ecc utils.find generator point(a,

b, p)
16: return new particle
17: end procedure

The script specifies several global constants that regulate
how the Particle Swarm Optimization algorithm behaves, as
summarized in Table III:

TABLE III. PARTICLE SWARM OPTIMIZATION CONSTANTS

Constant Value Description
SWARM SIZE 500 Number of particles in the swarm

MAX ITERATIONS 40 Maximum number of iterations

C1 1.0 Cognitive parameter (influence of
particle’s best-known position)

C2 2.5 Social parameter (influence of
swarm’s best-known position)

MAX ITERATIONS
WITHOUT
IMPROVEMENT

20 Used for an early stopping feature

The implementation includes a parameter grid for tuning
the PSO constants.

The main function initializes the swarm of particles, their
velocities, and their best-known positions. Global best-known
positions are also identified. The main loop iterates through the
swarm, updating velocities and positions using the previously
defined functions. Fitness is evaluated for each particle using
the same fitness function from the ai ecc utils.py module that
is used by GA.py (which will be explained later), and best-
known positions are updated as necessary. If there is no im-
provement in global best fitness for 20 iterations, the algorithm
stops early, and at the end, statistics regarding fitness values
are calculated and printed. The best particle is selected, and its
details are printed and written to the pso ecc params.txt file.

3) ga ecc params.txt: This file contains the best parame-
ters found by the Genetic Algorithm (GA) for ECC parameter
optimization.

4) pso ecc params.txt: Represents the file with the best
ECC parameters found by the Particle Swarm Optimization
(PSO) technique.

5) ai ecc utils.py: It is a utility module that aids AI
algorithms like GA and PSO in the process of ECC parameter
optimization. The module’s primary purpose is to facilitate the
creation of elliptic curves and their associated parameters, as
shown in Algorithm 5.

Algorithm 5 Elliptic Curve Parameter Generation

1: procedure GENERATE CURVE
2: signal.signal(signal.SIGALRM, handler)
3: while True do
4: p← get prime for p()
5: while True do
6: logging.info(”a, b generation”)
7: a← random.randint(0, p− 1)
8: b← random.randint(0, p− 1)
9: if (4 · a3 + 27 · b2) mod p ̸= 0 and

not is singular(a, b, p) then
10: break
11: end if
12: end while
13: try:
14: signal.alarm(TIMEOUT SECONDS)
15: G← find generator point(a, b, p)
16: logging.info(”G : ”, G)
17: signal.alarm(0)
18: break
19: except NoGeneratorPointException,TimeoutError :
20: continue
21: end while
22: n← p− 1
23: h← 1
24: return (a, b, p,G, n, h)
25: end procedure
26: procedure GET PRIME FOR P
27: return getPrime(BITS PRIME SIZE)
28: end procedure
29: procedure IS SINGULAR(a, b, p)
30: discriminant← (4 · a3 + 27 · b2) mod p
31: return discriminant == 0
32: end procedure
33: procedure FIND GENERATOR POINT(a, b, p)
34: for x in 0 to p− 1 do
35: rhs← (x3 + a · x+ b) mod p
36: if legendre symbol(rhs, p) == 1 then
37: y ← tonelli shanks(rhs, p)
38: return (x, y)
39: end if
40: end for
41: raise NoGeneratorPointException
42: end procedure

It includes functions for generating prime numbers and
finding generator points on the elliptic curve using mathemati-
cal functions, such as the Legendre symbol and Tonelli-Shanks
algorithm [44]. The Legendre symbol determines whether a
number is a quadratic residue modulo a prime, essential for
finding valid points on the elliptic curve. The Tonelli-Shanks
algorithm finds the square root of a number modulo a prime,

www.ijacsa.thesai.org 1544 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

crucial for computing the y-coordinates of the points on the
curve. These methods ensure the generated points are valid
and lie on the elliptic curve, as shown in Algorithm 6.

Algorithm 6 Legendre Symbol and Tonelli-Shanks Algorithm

1: procedure LEGENDRE SYMBOL(a, p)
2: ls← pow(a, (p− 1)÷ 2, p)
3: return −1 if ls == p− 1 else ls
4: end procedure
5: procedure TONELLI SHANKS(n, p)
6: assert legendre symbol(n, p) ==

1, ”n is not a quadratic residue modulo p”
7: q ← p− 1
8: s← 0
9: while q mod 2 == 0 do

10: q÷ = 2
11: s← s+ 1
12: end while
13: if s == 1 then
14: return pow(n, (p+ 1)÷ 4, p)
15: end if
16: for z from 2 to p− 1 do
17: if legendre symbol(z, p) == −1 then
18: break
19: end if
20: end for
21: m← s
22: c← pow(z, q, p)
23: t← pow(n, q, p)
24: r ← pow(n, (q + 1)÷ 2, p)
25: while t ̸= 1 do
26: i← 0
27: ti ← t
28: while ti ̸= 1 do
29: ti ← pow(ti, 2, p)
30: i← i+ 1
31: end while
32: b← pow(c, 2m−i−1, p)
33: r ← r · b mod p
34: t← t · b · b mod p
35: c← b · b mod p
36: m← i
37: end while
38: return r
39: end procedure

The ai ecc utils.py module validates ECC parameters,
checking cofactor, prime p, point validity, handling generator
point exceptions, matching order and cofactor, and confirming
non-singular, anomalous, or supersingular characteristics [45],
as shown in Algorithm 7. These validations ensure the integrity
and security of the ECC parameters used in the cryptographic
system.

The module also implements Pollard’s rho attack [45] to
evaluate the security of the generated ECC parameters. This
attack is a well-known method for finding discrete logarithms
in elliptic curves, making it an essential tool for assessing
the resilience of the cryptographic system against specific
types of attacks. It employs functions to add two points on
an elliptic curve, apply the ”double and add” method for
point multiplication, and check if a point is ”distinguished”

Algorithm 7 Validation and Properties of Elliptic Curve

1: procedure VALIDATE CURVE(a, b, p,G, n, h)
2: if h < 1 then
3: log ”The cofactor h is less than 1, which makes it

invalid.”
4: return False
5: end if
6: if p == 0 then
7: log ”The prime p can’t be zero.”
8: return False
9: end if

10: if len(G) == 2 then
11: x, y ← G
12: if (y · y − x · x · x− a · x− b) mod p ̸= 0 then
13: log ”The point G is not on the curve!”
14: return False
15: end if
16: field← SubGroup with (p,G, n, h)
17: if No generator point in field then
18: log ”No generator point found!”
19: return False
20: end if
21: curve ← Curve with (a, b, field,

”random curve”)
22: else
23: log ”Invalid generator point provided. Skipping

curve creation.”
24: return False
25: end if
26: order ← n
27: if h ̸= field.h then
28: log ”The cofactor does not match the expected

cofactor!”
29: return False
30: end if
31: if IS SINGULAR(a, b, p) then
32: log ”The curve is singular!”
33: return False
34: end if
35: if IS ANOMALOUS(p, order) then
36: log ”The curve is anomalous!”
37: return False
38: end if
39: if IS SUPERSINGULAR(p, order) then
40: log ”The curve is supersingular!”
41: return False
42: end if
43: return True
44: end procedure
45: procedure IS SINGULAR(a, b, p)
46: discriminant← (4 · a3 + 27 · b2) mod p
47: return discriminant == 0
48: end procedure
49: procedure IS ANOMALOUS(p, n)
50: return p == n
51: end procedure
52: procedure IS SUPERSINGULAR(p, n)
53: if p ∈ [2, 3] or not isprime(p) then
54: return False
55: end if
56: return (p+ 1− n) mod p == 0
57: end procedure

www.ijacsa.thesai.org 1545 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

by having t trailing zeros in its x-coordinate, as shown in
Algorithm 8.

Algorithm 8 Pollard’s Rho Attack on an Elliptic Curve

1: function P RHO ATTACK(G, a, b, p, order, t,max iter)
2: Qa, Qb ← G,G
3: a, b← 0, 0
4: power of two← 1
5: iterations← 0
6: while iterations < max iterations do
7: for in range(power of two) do
8: i← Qa[0] mod 3
9: if i = 0 then

10: Qa ← add points(Qa, G, a, p)
11: a← (a+ 1) mod order
12: else if i = 1 then
13: Qa ← double and add(2, Qa, a, p)
14: a← (2 · a) mod order
15: else
16: Qa ← double and add(2, Qa, a, p)
17: a← (2 · a) mod order
18: Qa ← add points(Qa, G, a, p)
19: a← (a+ 1) mod order
20: end if
21: if is distinguished(Qa, t) then
22: return a,Qa

23: end if
24: end for
25: for in range(2) do
26: Repeat the same steps for Qb

27: , but twice per iteration
28: end for
29: iterations← iterations + 1
30: if Qa = Qb then
31: power of two← power of two× 2
32: Qb ← Qa

33: b← a
34: end if
35: end while
36: logging.info(′′No collision found within the)
37: specified maximum number of iterations.′′)
38: return None
39: end function

Lastly, the ai ecc utils.py module calculates the fitness
function, incorporating all the elliptic curve validations. It
evaluates the fitness of a candidate, whether an “individual”
in the GA population or a “particle” in the PSO swarm, as
shown in Algorithm 9.

The fitness function extracts the elliptic curve parameters
(a, b, p,G, n, h). Curve Validation checks if the parameters
form a valid curve, returning a fitness of 0 if not. The expected
order of the curve is calculated, checks Hasse’s theorem
bounds [44] and the Hasse score is computed to evaluate
how close the actual order is to the expected. Pollard’s Rho
Attack is attempted, with a longer execution time indicating
higher resistance. An Attack Resistance Score is assigned.
The Final Fitness Calculation includes 40% weight to the
natural logarithm of the curve’s order, 20% to the Hasse score
(weighted by the logarithm of the order), 20% to the execution
time score of the attack, and 20% to the resistance score. The

Algorithm 9 Function to evaluate the fitness of a candidate in
GA or PSO

1: function EVALUATE(candidate)
2: Extract a, b, p,G, n, h from candidate
3: if not VALIDATE CURVE(a, b, p,G, n, h) then
4: return 0
5: end if
6: expected order ← p+ 1− 2 · √p
7: upper bound← expected order + 2 · √p
8: hasse score← max

(
0,

upper bound−|n−expected order|
upper bound−lower bound

)
9: start time← current time

10: rho attack result← P RHO ATTACK(G, a, b, p, expected order)
11: execution time← current time− start time
12: max time← 10.0,min time← 0.1
13: execution score← max

(
0,min

(
1, execution time−min time

max time−min time

))
14: attack resistance score ← 1 if rho attack result is None

else 0
15: fitness ← 0.4 · log(n) + 0.2 · hasse score · log(n) + 0.2 ·

execution score+ 0.2 · attack resistance score
16: return fitness
17: end function

cumulative fitness score is returned, reflecting the candidate’s
elliptic curve suitability.

These are several global constants that are defined for
ai ecc utils.py module, as summarized in Table IV:

TABLE IV. AI ECC UTILS.PY MODULE CONSTANTS

Constant Value Description
BITS PRIME SIZE 256 Size of the prime in bits. Generates

a n-bit prime number

POLLARDS RHO TRIALS 20 Number of trials for the Pollard’s
Rho function

POLLARDS RHO
MAX ITER

10**2 Maximum iterations for each trial
in the Pollard’s Rho function

This module is designed to be used in conjunction with
other modules that implement bio-inspired algorithms, such
as PSO and GA, and given how it was designed, other AI
algorithms that are capable of optimizing elliptical curves may
use it in the future.

B. E-commerce Simulation Group

1) well-known curves params.txt: Represents parameters
for standard elliptic curves used in cryptography, such as
secp256k1 and brainpoolP256r1 [46].

2) ecc.py: This utility module includes classes and
functions for elliptic curve cryptography. A key function
reads ECC parameters from files like ga ecc params.txt,
pso ecc params.txt, secp256k1.txt, or brainpoolP256r1.txt
(the latter two as well-known curves params.txt), creating a
structured set of parameters to be used in the e-commerce
simulation, as shown in Algorithm 10.

The ecc.py module has support functions like
ec addition for adding points on an elliptic curve, and
ec scalar multiplication for multiplying a point by a scalar
using the double-and-add method, as shown in Algorithm 11.

These utility functions facilitate key generation by creating
a random private key, an integer within the range [1, n−1], and
producing the corresponding public key, which is computed by

www.ijacsa.thesai.org 1546 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

Algorithm 10 Initialization of ECC Parameters

1: function INITIALIZE PARAMS(option)
2: Select filename based on option:
3: if option = ”1” then
4: filename← ”ga ecc params.txt”
5: else if option = ”2” then
6: filename← ”pso ecc params.txt”
7: else if option = ”3” then
8: filename← ”secp256k1.txt”
9: else if option = ”4” then

10: filename← ”brainpoolP256r1.txt”
11: else
12: filename← ”secp256k1.txt” ▷ default
13: end if
14: Open filename for reading as f
15: Initialize params dict as an empty dictionary
16: for each line in f do
17: Split line into key, value and store in

params dict
18: Convert value to integer
19: end for
20: Extract parameters p, a, b,Gx, Gy, n, h from

params dict
21: G← ECPoint(Gx, Gy)
22: return ECCParameters(p, a, b,G, n, h)
23: end function

Algorithm 11 Point Addition and Scalar Multiplication

1: function EC ADDITION(P,Q, p)
2: if P is None or inf then return Q
3: end if
4: if Q is None or inf then return P
5: end if
6: if P.x = Q.x then
7: if P.y = −Q.y mod p then return EC-

Point(None, None) ▷
Infinity

8: end if
9: m← (3P.x2 + a) · (2P.y)−1 mod p

10: else
11: m← (Q.y − P.y) · (Q.x− P.x)−1 mod p
12: end if
13: x← m2 − P.x−Q.x mod p
14: y ← m(P.x− x)− P.y mod p return ECPoint(x, y)
15: end function
16: function EC SCALAR MUL.(P, s, p)
17: r ← ECPoint(None, None)
18: c← P
19: while s do
20: if s&1 then
21: r ← is None ? c : ec addition(r, c, p)
22: end if
23: c← ec addition(c, c, p)
24: s >>= 1
25: end while
26: Print r.x, r.y return r
27: end function

multiplying the base point G by the private key, as shown in
Algorithm 12.

Algorithm 12 Private and Public Key Generation

1: function GENERATE PRIVATE KEY(params)
2: return randbelow(params.n− 1)
3: end function
4: function GENERATE PUBLIC KEY(private key, params)
5: result← ec scalar multiplication(params.G,
6: private key, params)
7: return result
8: end function

Additionally, within the ecc.py module, the functions
ec addition and ec scalar multiplication are utilized to en-
crypt and decrypt messages, as shown in Algorithm 13.

Lastly, ecc.py uses the hmac Python library to generate and
verify a Hash-based Message Authentication Code (HMAC)
for a given message and key, ensuring the integrity and
authenticity of messages.

3) Orders dataset: This e-commerce dataset includes in-
voices generated by an authorized online retailer [47]. These
have been pre-processed and curated as orders for practical
simulation purposes, converting them into order data. This data
feeds Entity A and is then sent to Entity B in the e-commerce
simulation.

4) EntityA.py: This component emulates an e-commerce
solution, and communicates with a simulated ERP server (En-
tityB.py) via Elliptic Curve Cryptography (ECC). It includes
functionalities for server connections, ECC parameters, key
management, order message generation, and transaction han-
dling. The system reads data from a spreadsheet file (Orders
dataset), encrypts messages with ECC and HMAC using the
module ecc.py, sends them to the ERP server, and employs
Elliptic Curve Diffie-Hellman (ECDH) for key agreement, as
shown in Algorithm 14.

5) EntityB.py: It is a simulated ERP server that interacts
with the emulated e-commerce solution (EntityA.py) using
Flask (Python web framework). It handles orders, key re-
trievals, initiates ECC and ECDH keys, and allows users to
select the type of ECC parameters (such as GA, PSO, or well-
known curves) to be used throughout the simulation. Functions
for decrypting orders and verifying HMACs are included.

The ECC parameters employed in the simulation are se-
lected by the user and loaded from the corresponding txt
file. The ecc.py module handles all cryptographic operations
throughout the process.

6) pollards rho attack.py: To evaluate the ECC param-
eters in the simulation, a component is designed to attack
the communication between EntityA.py and EntityB.py. This
Python script executes Pollard’s rho attack [36][45] on the
e-commerce simulation, employing the ”tortoise and hare”
technique to implement the attack logic. By leveraging multi-
processing for parallelization and handling collisions to de-
termine the private key, it interacts with the ERP server
(EntityB.py) to gather essential data such as the public key
of the targeted entity. The script employs various methods like

www.ijacsa.thesai.org 1547 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

Algorithm 13 ECC Encryption and Decryption

1: function ENCRYPT MESSAGE(message, public key, params)
2: if not is valid point(public key, params) then
3: raise ValueError(”Public key is not a valid point

on the elliptic curve”)
4: end if
5: k ← generate private key(params)
6: if not is valid scalar(k, params) then
7: raise ValueError(”Invalid scalar value”)
8: end if
9: C1← ec scalar multiplication(params.G, k, params)

10: C2← ec scalar multiplication(public key, k, params)
11: message bytes← message.encode(′utf − 8′)
12: encrypted message← []
13: for byte in message bytes do
14: if C2.x is None then
15: raise ValueError(”Encryption failed: kQ re-

sulted in the point at infinity”)
16: end if
17: encrypted byte← byte⊕ (C2.x&0xFF)
18: encrypted message.append(encrypted byte)
19: end for
20: return C1, encrypted message
21: end function
22: function DECRYPT MESSAGE(C1, encrypted message,)

private key, params)
23: ▷ Try block starts here
24: C2← ec scalar multiplication(C1, private key, params)
25: ▷ Catch block starts here
26: print(f”An error occurred during decryption:
{str(e)}”)

27: return None
28: ▷ Catch block ends here
29: decrypted message bytes← bytearray()
30: for encrypted byte in encrypted message do
31: byte← encrypted byte⊕ (C2.x&0xFF)
32: decrypted message bytes.append(byte)
33: end for
34: decrypted message ←

decrypted message bytes.decode(′utf − 8′)
35: return decrypted message
36: ▷ Try block ends here
37: end function

Algorithm 14 Main Function Procedure for Entity A

1: procedure MAIN
2: Initialize ServerConnection with server URL
3: Initialize ECCParams with ServerConnection
4: Request ECC parameters from server
5: Initialize ECCKeys with ECC parameters
6: Generate ECC private and public keys
7: Initialize RetailMessage with MS Excel file path
8: Initialize TransactionManager with necessary objects
9: Run transactions until a predetermined end time

10: end procedure

scalar multiplication and point addition on elliptic curve points
to successfully carry out the attack, as shown in Algorithm 15.

It is important to note that within the ai ecc utils.py
component, there is a function that leverages the logic of
Pollard’s Rho attack to evaluate ECC parameters. While this
function shares core mathematical principles with those in pol-
lard rho attack.py, their objectives differ significantly. Specif-
ically, the function in the first code seeks to find collisions
in points to assess the security of ECC and facilitate fitness
calculation. The second code aims to find the private key. It
carries additional logic to compute the private key from the
collision, and employs the tortoise and hare approach, standard
in Pollard’s rho. Its goal is to attack the e-commerce scenario
by finding the private key, a computationally challenging task.

The following image is the UML sequence diagram il-
lustrating the interaction between Entity A (the emulated e-
commerce component) and Entity B (the emulated ERP server),
as shown in Fig. 2.

V. RESULTS, FINDINGS, AND ANALYSIS

To summarize our research findings, we divided the results
into three stages. First, we ran the GA and PSO artificial
intelligence algorithms. Next, we evaluated them within the
e-commerce integration simulation. Finally, we compared the
results between GA and PSO using the ECC Optimization
Criteria detailed in earlier sections of this document.

A. Execution of AI Algorithms for ECC Optimization

Each run of the GA and PSO algorithms generates different
ECC parameters. This is advantageous for implementation in
e-commerce settings or any scenario requiring frequent ECC
parameter changes. Despite these differences, fitness function
values remain remarkably consistent across runs for both
GA and PSO. Below are examples of results from each AI
algorithm, as shown in Tables V and VI:

TABLE V. GA RESULTS

Metric Value
Attack 0
Min 0.0
Max 3.0181340473967544 × 1039

Avg 3.012097779301965 × 1039

Std 1.3484001529034777 × 1038

Best Individual Parameters
Parameter a 25947842270905827897659128039154787816323007

34210114062670831009467205143790
Parameter b 40136988609592599091657658786458099014083781

12405024507582266685792215291693
Parameter p 11572021376927754423644537306382193581670144

1977156565361337888165594796740319
Parameter G 0, 72984392299942030530688653046720760764764

296696688065665888683496380438139149
Parameter n 11572021376927754423644537306382193581670144

1977156565361337888165594796740318
Parameter h 1

As observed, both GA and PSO produce 256-BIT-based pa-
rameters, advantageous for security. However, the fitness func-
tion results appear superior in GA (3.0181340473967544 ×
1039) compared to PSO (1.5946572521224025 × 1039). The
”Fitness Evolution” figures emphasize this distinction by
showcasing a line graph that tracks the fitness progression
over generations or iterations, highlighting the algorithm’s

www.ijacsa.thesai.org 1548 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

Algorithm 15 Pollard’s Rho Attack on Elliptic Curve Cryp-
tography

1: procedure P RHO(init value, G, public key, params, manager dict)
2: Print start message with init value
3: tortoise ← ec scalar multiplication(G, init value, params)
4: hare ← tortoise
5: tortoise scalar ← hare scalar ← init value
6: for i = 1 to 2× params.n + 1 do
7: tortoise, tortoise scalar ← step(tortoise, tortoise scalar,

G, public key, params)
8: hare, hare scalar ← step(hare, hare scalar, G, pub-

lic key, params)
9: hare, hare scalar ← step(hare, hare scalar, G, pub-

lic key, params)
10: if tortoise = hare and tortoise ̸= None then
11: scalar difference ← gmpy2.f mod((tortoise scalar -

hare scalar), params.n)
12: if scalar difference = 0 then
13: continue
14: end if
15: scalar difference inverse ←

gmpy2.invert(scalar difference, params.n)
16: secret key← gmpy2.f mod((scalar difference inverse

* hare scalar), params.n)
17: if ¬ manager dict[’found flag’] then
18: manager dict[’found flag’] ← True
19: Print found secret key
20: end if
21: break
22: end if
23: if manager dict[’found flag’] then
24: break
25: end if
26: end for
27: Print result message
28: end procedure
29: procedure STEP(point, scalar, G, public key, params)
30: Define a function to move and update point and scalar
31: Handle different cases based on x-coordinate of point
32: return new point and corresponding scalar
33: end procedure
34: function GETECCPARAMSFROMSERVER
35: Retrieve ECC parameters from server
36: end function
37: function GETPUBLICKEYFROMENTITYB
38: Retrieve public key from Entity B
39: end function
40: procedure POLLARDSRHOATTACKONENTITYB(params)
41: Carry out Pollard’s rho attack on Entity B in parallel
42: end procedure
43: procedure MAIN
44: Retrieve ECC parameters
45: Initialize parameters
46: Carry out Pollard’s rho attack on Entity B
47: end procedure
48: if name = ”main” then
49: Call Main()
50: end if

Fig. 2. Interaction between Entity A (e-commerce) and Entity B (ERP server).

convergence. In these graphs, the average fitness value for PSO
seems to degrade over time, despite optimizing the Cognitive
and Social parameters using grid search. Conversely, GA
consistently refines its fitness function, demonstrating a more
stable trend.

www.ijacsa.thesai.org 1549 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

TABLE VI. PSO RESULTS

Metric Value
Attack 0
Min 73.92932346203426
Max 1.5946572521224025 × 1039

Avg 3.189314504244805 × 1036

Std 7.1243889397520655 × 1037

Best Particle Parameters
Parameter a 73916884511138539486074209032992425010519602

193355559340498379053138310070272
Parameter b 18466552033214128305449972063322860268226711

9339355500319015917133211107328
Parameter p 83920875675429201076002743705901489967077637

562817356440692877235699677907597
Parameter G 2, 52816158108397424543262331025570826905013

942926608742347720195343450586800572
Parameter n 11577418207255264997910984803085607312498477

0867872005566907726709010164875264
Parameter h 1

The subsequent charts illustrate these trends in Fig. 3 and
4:

Fig. 3. Fitness progression over generations - GA.

It’s worth noting that both algorithms are utilizing the same
fitness function. On the other hand, GA generates results much
faster than PSO, even though PSO has a feature that allows
for early stopping if there’s no improvement in the global best
fitness for 20 iterations. While GA completes its optimization
task in roughly 2 minutes, PSO takes about 22 minutes to finish
its task. The tests were conducted on a 2019 15-inch MacBook
Pro with the following specifications: Processor: 2.3 GHz 8-
Core Intel Core i9; RAM: 16 GB 2400 MHz DDR4; Graphics:
Radeon Pro 560X 4 GB and Intel UHD Graphics 630 1536
MB.

B. Execution of e-commerce Integration Simulation

In the simulation testing the transmission of order informa-
tion in third-party integrations, from the simulated e-commerce
to the ERP, the results are promising for both GA and PSO
when compared to well-known curves like secp256k1.txt and
brainpoolP256r1.txt. The speed of encrypting and decrypting
messages was nearly identical among the four curve types,

Fig. 4. Fitness progression over iterations - PSO.

ranging from fractions of a second to less than 2 seconds.
Moreover, a successful Pollard’s Rho attack could not be
executed in any scenario, given the computationally intensive
task of determining the private key, even when the simulation
ran for a week. This approach emphasizes frequent changes in
ECC parameters. Compared to well-known curves, GA and
PSO offer an advantage by utilizing novel curves without
known values for attackers.

C. Comparison based on ECC Optimization Criteria

The table below displays the winning algorithm based on
the acceptance criteria previously outlined in this paper, as
shown in Table VII:

TABLE VII. COMPARISON BETWEEN GA AND PSO

Efficiency
Criteria Winning Algorithm Justification
Performance GA Faster generation of ECC parameters.
Flexibility GA Consistent evolution of the fitness func-

tion even when increasing the number of
generations.

Robustness GA Greater tolerance to noise in initial con-
stants definition.

Scalability GA Remains faster and more efficient even
when increasing generations and paral-
lelizing calculations.

Comparability GA Lower computational complexity.
Effectiveness

Criteria Winning Algorithm Justification
Security Both GA and PSO Neither faced successful attacks in the

e-commerce integration scenario. How-
ever, during parameter generation, PSO
experienced more successful attacks
than GA when searching for point colli-
sions.

Optimality GA Consistently closer to expected maxi-
mum values and showed improvement
over time.

Generalization Both GA and PSO Quick in both encryption and decryption
processes in the simulated scenario, and
neither faced successful attacks.

Validity Both GA and PSO ECC parameters were free from singular
or anomalous curves.

Practicality GA Superior in performance while being
compatible with real-world existing sys-
tems.

www.ijacsa.thesai.org 1550 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

Based on the previous table and the information in this
section, Genetic Algorithms (GA) outperform Particle Swarm
Optimization (PSO) in ECC parameter optimization, not just
for third-party e-commerce integrations but also, in terms of
efficiency, across any Elliptic Curve Cryptography scenario.

VI. FUTURE IMPROVEMENTS AND KNOWN LIMITATIONS

Here are some areas we believe can be improved in the
future. These improvements can be considered as potential next
steps or future work:

A. Advanced Parameter Tuning

The current scripts employs grid search for fine-tuning
the initial constants. Employing intricate parameter tuning
techniques like random search, Bayesian optimization, or
metaheuristic algorithms might pinpoint superior parameter
values, enhancing the efficacy of the GA and PSO algorithms.

B. Parallelization

For PSO, the fitness evaluation along with position and
velocity updates for individual particles can be executed
concurrently, given their independence. Incorporating parallel
processing could drastically curtail computational duration,
particularly with larger swarms or increased iteration counts.

C. Hybrid Algorithms

Merging PSO with alternative optimization algorithms can
spawn a hybrid model that capitalizes on the strengths of each
algorithm. For instance, integrating GA to evolve the swarm
while utilizing PSO for refining solutions could augment
solution quality and the robustness of the optimization.

D. Exploration of Alternative AI Techniques

In light of the promising results yielded by the GA and
PSO algorithms in this research, it stands to reason that the ex-
ploration of alternative artificial intelligence techniques could
further optimize ECC parameter generation. Leveraging the
same fitness function and utility components established in this
study would serve as a foundational bedrock for the integration
of techniques such as deep learning, reinforcement learning, or
swarm intelligence variations different from PSO, facilitating
a seamless transition and a consistent basis for performance
evaluation. Such endeavors could potentially unearth novel
approaches that are more efficient, secure, and robust, pushing
the boundaries of what can be achieved in cryptographic
parameter optimization and ensuring a forward momentum in
ECC security research.

E. Improved Fitness Function

The ai ecc utils.evaluate function, employed as the script’s
fitness function, ascertains the security of an elliptic curve.
This function could undergo enhancement or be supplanted
with an alternate fitness function to steer the PSO algorithm
search more effectively. For instance, the fitness function
might integrate additional security parameters or be tailored
to prioritize specific elliptic curve types.

F. Integrating Diverse Cryptographic Threat Evaluations

In the future, addressing diverse threats to elliptic curves
beyond just Pollard’s rho attack is crucial. With historical
cryptographic vulnerabilities exposed by techniques like the
Pohlig-Hellman method and Baby-step Giant-step [45], and the
impending rise of quantum computing introducing threats like
Shor’s algorithm, modern ECC methods may be at risk [35].
Integrating and evaluating these varied attacks in the fitness
function will be essential for fortified defenses.

G. Quantum Computing Implications

It’s crucial to consider the advent of quantum computers
and their potential impact on cryptographic algorithms [35].
As quantum computing technology evolves, both GA and
PSO algorithms’ performance and security measures need re-
evaluation to ensure they remain resilient against quantum
threats. Additionally, the designed fitness function for this
study, which evaluates the security and efficiency of ECC
parameters, could be implemented in quantum environments
since it is based on optimization through artificial intelligence,
allowing for the study of its behavior in such contexts.

VII. CONCLUSIONS

In light of our comprehensive research and systematic eval-
uation, it is clear that Genetic Algorithms (GA) are more effi-
cient than Particle Swarm Optimization (PSO) in the optimiza-
tion of Elliptic Curve Cryptography (ECC) parameters. This
assertion is based on the adept fitness function we designed and
utilized in our research. GA’s superiority is evident in third-
party e-commerce integrations. Both algorithms are robust,
successfully withstanding attacks in e-commerce integration
tests. Nevertheless, GA consistently delivers quicker and more
reliable performance, integrating seamlessly with real-world
systems. This benefit, along with its efficient evolution and
rapid ECC parameter generation, underscores GA’s dominance
in this field. While PSO does offer distinct advantages, its
potential is hampered by its relative inefficiency, especially
regarding computational speed. Consequently, we strongly
advise stakeholders aiming to optimize ECC parameters to
prioritize the GA approach.

REFERENCES

[1] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computa-
tion, vol. 48, pp. 203-209, Jan 1987.

[2] V. S. Miller, “Use of Elliptic Curves in Cryptography,” in LNCS,
Advances in Cryptology - CRYPTO ’85: Proceedings, ed: Springer
Berlin / Heidelberg, 1986, p. 417.

[3] L. C. Washington, Elliptic Curves: Number Theory and Cryptography,
2nd ed, 2008.

[4] Lenstra, Arjen & Verheul, Eric, “Selecting Cryptographic Key
Sizes,” Journal of Cryptology, vol. 14, pp. 255-293, 2001.
https://doi.org/10.1007/s00145-001-0009-4.

[5] I. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptog-
raphy, LMS Lecture Notes 265, Cambridge University Press, 1999.
https://doi.org/10.1017/CBO9781107360211.

[6] D. Hankerson, A. Menezes, S. Vanstone, “Elliptic curve arithmetic,”
in Guide to Elliptic Curve Cryptography, Springer, New York, 2004.
https://doi.org/10.1007/0-387-21846-7 3.

www.ijacsa.thesai.org 1551 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

[7] Z. Liu, H. Seo, J. Großschädl, and H. Kim, “Efficient Imple-
mentation of NIST-Compliant Elliptic Curve Cryptography for 8-
bit AVR-Based Sensor Nodes,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 7, pp. 1385-1397, July 2016.
https://doi.org/10.1109/TIFS.2015.2491261.

[8] M. Lochter, J. Merkle, J. Schmidt, and T. Schütze, “Requirements for
Elliptic Curves for High-Assurance Applications,” 2015.

[9] S. R. Singh, A. K. Khan, and T. S. Singh, “On the per-
formance of Elliptic Curve public cryptosystem,” 2016 Inter-
national Conference on Automatic Control and Dynamic Opti-
mization Techniques (ICACDOT), Pune, India, 2016, pp. 24-29.
https://doi.org/10.1109/ICACDOT.2016.7877545.

[10] D. Kobrle and R. Lorencz, “Optimization of elliptic curve operations for
ECM using double & add algorithm,” 2015 Forth International Confer-
ence on e-Technologies and Networks for Development (ICeND), Lodz,
Poland, 2015, pp. 1-4. https://doi.org/10.1109/ICeND.2015.7328534.

[11] H. Lv, H. Li, J. Yi, and H. Lu, “Optimal implementation of elliptic curve
cryptography,” Proceedings of 2013 IEEE International Conference on
Service Operations and Logistics, and Informatics, Dongguan, China,
2013, pp. 35-39. https://doi.org/10.1109/SOLI.2013.6611377.

[12] T. Ribaric and S. Houghten, “Genetic programming for improved
cryptanalysis of elliptic curve cryptosystems,” 2017 IEEE Congress on
Evolutionary Computation (CEC), Donostia, Spain, 2017, pp. 419-426.
https://doi.org/10.1109/CEC.2017.7969342.

[13] S. Selvi, M. Gobi, M. Kanchana, and S. Mary, “Hyper elliptic curve
cryptography in multi cloud-security using DNA (genetic) techniques,”
2017, pp. 934-939. https://doi.org/10.1109/ICCMC.2017.8282604.

[14] P. Sethuraman, P. S. Tamizharasan, and K. Arputharaj, “Fuzzy Genetic
Elliptic Curve Diffie Hellman Algorithm for Secured Communication
in Networks,” Wireless Pers Commun, vol. 105, pp. 993–1007, 2019.
https://doi.org/10.1007/s11277-019-06132-4.

[15] N. Chandnani and C. N. Khairnar, “A Novel Secure Data
Aggregation in IoT using Particle Swarm Optimization Algo-
rithm,” 2018 International Conference on Advanced Computation
and Telecommunication (ICACAT), Bhopal, India, 2018, pp. 1-6.
https://doi.org/10.1109/ICACAT.2018.8933784.

[16] Mullai, A. & Mani, K., “Enhancing the security in RSA and el-
liptic curve cryptography based on addition chain using simplified
Swarm Optimization and Particle Swarm Optimization for mobile
devices,” International Journal of Information Technology, vol. 13,
2020. https://doi.org/10.1007/s41870-019-00413-8.

[17] Kota, S., Padmanabhuni, V.N., Budda, K. et al., “Authentication and
Encryption Using Modified Elliptic Curve Cryptography with Particle
Swarm Optimization and Cuckoo Search Algorithm,” J. Inst. Eng. India
Ser. B, vol. 99, pp. 343–351, 2018. https://doi.org/10.1007/s40031-018-
0324-x.

[18] Holland, J. H., Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence, University of Michigan Press, 1975.

[19] Eberhart, R., & Kennedy, J., “A new optimizer using particle swarm
theory,” in Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, pp. 39-43, Nagoya, Japan: IEEE, 1995.

[20] Silambarasan, S., & Savitha Devi, M., “Hybrid Simulated Annealing
with Lion Swarm Optimization Algorithm with Modified Elliptic Curve
Cryptography for Secured Data Transmission Over Wireless Sensor
Networks (WSN),” 2022.

[21] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P., “Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.
https://doi.org/10.1126/science.220.4598.671.

[22] M. Wang, G. Dai, H. Hu and L. Pen, “Selection of Security Elliptic
Curve Based on Evolution Algorithm,” 2009 International Conference
on Computational Intelligence and Natural Computing, Wuhan, China,
2009, pp. 55-57. https://doi.org/10.1109/CINC.2009.205.

[23] X. Zhou, “Elliptic Curves Cryptosystem Based Electronic Cash Scheme
with Parameter Optimization,” 2009 Pacific-Asia Conference on Knowl-
edge Engineering and Software Engineering, Shenzhen, China, 2009,
pp. 182-185. https://doi.org/10.1109/KESE.2009.55.

[24] G. Vostrov and I. Dermenzhy, “The Concept of Machine Learning
and Elliptic Curves United Approach in Solving of the Factorization

Problem,” 2019 XIth International Scientific and Practical Conference
on Electronics and Information Technologies (ELIT), Lviv, Ukraine,
2019, pp. 87-91. https://doi.org/10.1109/ELIT.2019.8892318.

[25] Laue, R., Huss, S.A., “Parallel Memory Architecture for Elliptic
Curve Cryptography over GF(p) Aimed at Efficient FPGA Implemen-
tation,” J Sign Process Syst Sign Image, vol. 51, pp. 39–55, 2008.
https://doi.org/10.1007/s11265-007-0135-9.

[26] N. Jayapandian, “Cloud Dynamic Scheduling for Multimedia Data
Encryption Using Tabu Search Algorithm,” Wirel. Pers. Commun., vol.
120, no. 3, pp. 2427–2447, Oct 2021. https://doi.org/10.1007/s11277-
021-08562-5.

[27] Bin, P., Tao, Z., & Yu, W., “The Integration Strategy of E-commerce
Platform and ERP Based on Cooperative Application,” 2010 Interna-
tional Conference on E-Business and E-Government, IEEE, 2010.

[28] Krithika, L. B., Prabadevi, B., Deepa, N., & Bhavanasi, S., “Integration
of E-Commerce System with Various ERP Tools,” 2020 International
Conference on Emerging Trends in Information Technology and Engi-
neering (ic-ETITE), IEEE, 2020.

[29] Kuno, H., Lemon, M., & Karp, A., “Transformational interactions for
P2P e-commerce,” Proceedings of the 35th Annual Hawaii International
Conference on System Sciences, IEEE, 2002.

[30] H. Wang and Q. Hu, ”Research and Application of an Integration
Platform for E-Commerce System Based on SOA,” 2009 International
Conference on Management of e-Commerce and e-Government, IEEE,
2009.

[31] J. Daigler, S. Shen, P. Gillespie, M. Lowndes, A.
Vasudevan, and Y. Dharmasthira, ”Gartner Magic Quadrant
for Digital Commerce,” Aug. 2022. [Online]. Avail-
able: https://www.gartner.com/en/documents/4017524 and
https://greywolf.com/wp-content/uploads/2022/09/Magic-Quadrant-
for-Digital-Commerce.pdf

[32] A. Fujii, M. Nakayama, K. Tanaka, and K. Nagamura, ”EDI support
system over RESTful Web API,” IEEE 8th International Symposium on
Intelligent Systems and Informatics, IEEE, 2010.

[33] N. Kulkarni, S. Kumar, K. Mani, and S. Padmanabhuni, ”Web services:
e-commerce partner integration,” IT Professional, vol. 7, no. 2, IEEE,
2005.

[34] G. Shen and X. Zheng, ”Research on Implementation of Elliptic Curve
Cryptosystem in E-Commerce,” Proceedings of the 2008 International
Symposium on Electronic Commerce and Security, IEEE, 2008.

[35] H. Zhang, Z. Ji, H. Wang, and W. Wu, ”Survey on quantum information
security,” China Communications, vol. 16, no. 10, Magazine Article,
IEEE, 2019.

[36] P. L. Montgomery, ”Speeding the pollard and elliptic curve methods of
factorization,” Math. Comput., vol. 48, pp. 243–264, 1987.

[37] C. K. Koc, ”Analysis of sliding window techniques for exponentiation,”
Computers and Mathematics with Applications, vol. 30, no. 10, pp.
17–24, Nov. 1995.

[38] R. Tabbussum and A. Q. Dar, ”Performance evaluation of artificial
intelligence paradigms—artificial neural networks, fuzzy logic, and
adaptive neuro-fuzzy inference system for flood prediction,” Environ
Sci Pollut Res, vol. 28, pp. 25265–25282, 2021. [Online]. Available:
https://doi.org/10.1007/s11356-021-12410-1

[39] Zhang, T., Xiao, W., & Hu, P. ”Design of Online Learning
Early Warning Model Based on Artificial Intelligence”. Wireless
Communications and Mobile Computing, 2022(1), 1-11. Hindawi.
https://doi.org/10.1155/2022/3973665

[40] A. He et al., ”A Survey of Artificial Intelligence for Cognitive Radios,”
IEEE Transactions on Vehicular Technology, vol. 59, no. 4, pp. 1578-
1592, May 2010, doi: 10.1109/TVT.2010.2043968.

[41] R. Hamon, H. Junklewitz, and I. Sanchez, ”Robustness and explain-
ability of Artificial Intelligence,” Publ. Off. Eur. Union, Luxembourg,
2020.

[42] Y. Bengio, A. Courville, and P. Vincent, ”Representation Learning: A
Review and New Perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828, Aug. 2013,
doi: 10.1109/TPAMI.2013.50.

[43] J. Demsar, ”Statistical Comparisons of Classifiers over Multiple Data
Sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

www.ijacsa.thesai.org 1552 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

[44] T. Icart, ”How to Hash into Elliptic Curves,” in Advances in Cryptology
- CRYPTO 2009, S. Halevi, Ed. Lecture Notes in Computer Science, vol
5677, Springer, Berlin, Heidelberg, 2009, https://doi.org/10.1007/978-
3-642-03356-8 18.

[45] S. Ullah, J. Zheng, N. Din, M. T. Hussain, F. Ullah, and M. Yousaf, ”El-
liptic Curve Cryptography; Applications, challenges, recent advances,
and future trends: A comprehensive survey,” Computer Science Review,
vol. 47, 100530, 2023, https://doi.org/10.1016/j.cosrev.2022.100530.

[46] M. Kramer, F. Gerstmayer, and J. Hausladen, ”Evaluation of Libraries
and Typical Embedded Systems for ECDSA Signature Verification for
Car2X Communication,” in 2018 IEEE 23rd International Conference
on Emerging Technologies and Factory Automation (ETFA), Turin, Italy,
2018, pp. 1123-1126, doi: 10.1109/ETFA.2018.8502595.

[47] ”Online Retail,” UCI Machine Learning Repository, 2015,
https://doi.org/10.24432/C5BW33.

www.ijacsa.thesai.org 1553 | P a g e

	Introduction
	Background
	Objective
	Scope and Limitations
	Structure and Contributions

	Literature Review
	ECC Parameter Optimization
	AI Techniques for ECC Parameter Optimization
	E-commerce and Third-party Integrations
	Types of e-commerce integrations
	The Role of AI in ECC and Third-Party Integrations

	Pre-Quantum Developments in ECC Optimization
	Limitations of Similar Research

	Materials and Methods
	ECC Optimization Parameters
	Choice of elliptic curve
	Field size
	Generator point G
	Scalar multiplication
	Group order n
	Cofactor h

	ECC Optimization Criteria
	Evaluation of the AI Algorithms (efficiency)
	Evaluation of the ECC Parameters Generated (effectiveness)

	Simulation Environment Design and Implementation
	ECC Params Optimization Group
	Genetic algorithm
	Particle swarm optimization
	ga_ecc_params.txt
	pso_ecc_params.txt
	ai_ecc_utils.py

	E-commerce Simulation Group
	well-known_curves_params.txt
	ecc.py
	Orders dataset
	EntityA.py
	EntityB.py
	pollards_rho_attack.py

	Results, Findings, and Analysis
	Execution of AI Algorithms for ECC Optimization
	Execution of e-commerce Integration Simulation
	Comparison based on ECC Optimization Criteria

	Future Improvements and Known Limitations
	Advanced Parameter Tuning
	Parallelization
	Hybrid Algorithms
	Exploration of Alternative AI Techniques
	Improved Fitness Function
	Integrating Diverse Cryptographic Threat Evaluations
	Quantum Computing Implications

	Conclusions
	References

