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Abstract—The assessment of bone trabecular quality degrada-
tion is important for the detection of diseases such as osteoporosis.
The gold standard for its diagnosis is the Dual Energy X-
ray Absorptiometry (DXA) image modality. The analysis of
these images is a topic of growing interest, especially with
artificial intelligence techniques. This work proposes the detection
of a degraded bone structure from DXA images using some
approaches based on the learning of Trabecular Bone Score
(TBS) ranges. The proposed models are supported by intelligent
systems based on convolutional neural networks using two kinds
of approaches: ad hoc architectures and knowledge transfer
systems in deep network architectures, such as AlexNet, ResNet,
VGG, SqueezeNet, and DenseNet retrained with DXA images.
For both approaches, experimental studies were made comparing
the proposed models in terms of effectiveness and training time,
achieving an F1-Score result of approximately 0.75 to classify
the bone structure as degraded or normal according to its TBS
range.
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I. INTRODUCTION

Osteoporosis is a skeletal disease characterised by low bone
mineral density (BMD) and deterioration of bone structure and
strength, which increases the risk of fracture and mortality.
Osteoporosis is most prevalent in postmenopausal women,
although the prevalence of this disease is growing in both
genders due to longer life expectancy [1].

BMD measurement calculated using Dual Energy X-ray
Absorptiometry (DXA), is the gold standard test for diagnos-
ing osteoporosis. This modality uses low-intensity beams to
measure BMD, so the radiation dose is much lower than con-
ventional X-ray, but produces low-quality images that are not
useful for diagnosis based on a physician’s visual examination.
An assessment of bone structure is recommended as more than
half of all fragility fractures occur despite normal BMD values
[2], [3].

Regarding bone structure analysis, 3D medical imaging
modalities, such as Computed Tomography (CT) or Magnetic
Resonance Imaging (MRI) provide a three-dimensional, high-
resolution view. Although CT is the best option, the cost and

radiation dose are very high, motivating the exploration of the
use of DXA images [4].

Another method of estimating bone structure is the Tra-
becular Bone Score (TBS), which is an assessment of bone
microarchitecture obtained by texture analysis of DXA images
[5]. A lower TBS is associated with an increased likelihood
of fragility fractures, independently of the BMD value [6].
TBS ranges have been established, with a TBS ≥ 1.350
considered healthy, a TBS between 1.200 and 1.350 considered
partially degraded, and a TBS ≤ 1.200 defining a degraded
microarchitecture [7].

In recent years, there has been a notable expansion in
the utilisation of neural networks and artificial intelligence
in the field of medicine, particularly in the context of med-
ical imaging. These technologies have increased the capacity
of medical professionals to be supported, offering enhanced
accuracy and information about various medical conditions,
including osteoporosis [8].

In particular, convolutional neural networks (CNNs) have
demonstrated remarkable capabilities in the identification of
bone lesions, the estimation of BMD and the prediction of
fracture risk in various medical imaging modalities. Such
systems not only provide clinicians with valuable information
for the early detection and management of disease but also
improve treatments and the quality of life for patients.

The primary challenge in utilising CNNs is the necessity
for a substantial quantity of labelled data for the training
of models. However, in the field of medicine, particularly in
the context of osteoporosis, the availability of a large dataset
is often limited. Transfer learning is a technique whereby
knowledge acquired during pre-training is transferred to a new
task. By fine-tuning pre-trained CNNs on osteoporosis-specific
datasets, the learned features can be leveraged to improve
model performance with limited data, thereby enhancing the
generalisation and robustness of the solution [9]. In this
field, pre-trained CNN architectures such as VGG, AlexNet,
SqueezeNet, ResNet and DenseNet have gained prominence
due to their versatility and effectiveness. These models have
been trained on large-scale image datasets through extensive
training, demonstrating their suitability for this domain [10].
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The main contribution of the proposed work is the develop-
ment of ad hoc architectures and the fine-tuning of pre-trained
CNN models for the detection of Degraded bone architecture
in DXA images. To the best of our knowledge, this is the first
work to classify DXA samples according to bone structure
quality based on TBS values using CNNs.

This article includes a review of related works which is
presented in Section II, followed by a description of the
used image dataset, the pre-processing and augmentation tech-
niques, and the proposed CNN models for the classification in
Section III. Next, Sections IV and V describe and analyse the
results obtained after training and testing each model. Finally,
Section VI presents the conclusions and future works.

II. RELATED WORKS

The field of research into the detection and diagnosis of
osteoporosis using artificial intelligence techniques has been
a significant area of study in recent years, with numerous
works addressing it from different perspectives. Below, some
CNN-based articles that classify images from different image
modalities into categories related to osteoporosis assessment,
are presented1.

Among the published works on the classification of osteo-
porosis using dental panoramic images, [11] employs ResNet
and EfficientNet CNN models, which are trained exclusively
on images, and are assembled with clinical variables (accuracy
0.845). In contrast, [12] applies transfer learning to AlexNet,
VGG16 and GoogLeNet models, resulting in accuracy values
of 0.74-0.79.

Some studies utilise knee X-ray images, for example [13]
present a classifier based on a CNN with multiple blocks and
skip connections, obtaining an accuracy of 0.826 for classi-
fication into normal or osteoporotic categories. Furthermore,
[14] reports an accuracy of 0.911 using transfer learning of
pre-trained CNNs, including AlexNet, VGG16, VGG19 and
ResNet also for classification into diagnostic categories.

Concerning hip and lumbar spine X-ray image analysis,
[15] focuses on the prediction of osteoporosis by implementing
a segmentation using a U-Net architecture and classification
using DenseNet121. This approach achieves an accuracy of
0.74. Besides, [16] proposes a six-layer CNN architecture,
which achieved sensitivity values of 0.853. Furthermore, [17]
addresses the identification of fractures, the prediction of BMD
and the assessment of fracture risk in X-ray images of the spine
and hip. The study utilises pre-trained CNNs and achieves
accuracy results of 0.862, 0.95 and 0.90, respectively. Although
the aforementioned works do not employ DXA images, the
CNN architectural solutions and fine-tuning have in some way
inspired the solution proposed in this work.

Regarding studies carried out with DXA images, [18]
proposes a CNN architecture to classify images according to
their BMD value, achieving an accuracy of 0.98. [19] attempts
to predict fracture risk, and detect scoliosis, and abnormali-
ties, with an accuracy of 0.52, 0.94, and 0.82, respectively.
Conversely, the objective of [20] is to distinguish images
of healthy bones from those with osteoporosis, achieving a
training accuracy of 0.90. Although [18], [19] and [20] use

1The accuracy is the value shown due is the metric used in most papers.

CNN-based solutions and DXA image modalities, they do not
perform a classification using TBS as a label.

Conversely, the work [21] predicts BMD and TBS values
through the architecture of ResNet50 CNNs using CT images.
The results demonstrate that the obtained BMD values exhibit
a strong correlation, whereas the obtained TBS values exhibit
a moderate correlation.

Considering that to our knowledge there are no works
that perform the classification of DXA images using solutions
based on CNN and TBS as a label, the presented works were
not used in order to compare the results with ours, but have
served as inspiration for the developed strategy.

III. MATERIALS AND METHODS

The following subsections present the dataset, the pre-
processing and the resampling techniques used in this work.
Finally, three neural network approaches are presented. The
first two are based on pre-trained CNN models, while the
last one is based on CNN models but with simple ad hoc
architectures.

A. Dataset

We performed a retrospective study of 1469 patients2, with
a mean age of 64.61 ± 10.7 (standard deviation) years, using
spine DXA images produced using a General Electric Lunar
Prodigy Advance® equipment.

The study set comprises one raw image per patient (from
the total of 1469 images), exported from enCORE v17 software
platform, of which 1098 were labelled as Normal and 371 as
Degraded. This unbalance is expected according to the disease
incidence [22]. The classification was based primarily on the
range of TBS values calculated using TBS iNsight version
3.0.2.0. The ranges were presented in Section I. No images
corresponding to severe scoliosis cases, prosthetics or other
conditions that affected the ROI segmentation performed by
the software were included. The main reason behind this is that
the calculated TBS under such circumstances is unreliable.

The spatial resolution of the images is approximately 300 x
280 pixels and is represented in 8-bit greyscale. The region of
interest is defined as the lumbar vertebrae L1 to L4, as defined
by the same software used to export the images.

Because not all images have the same dimensions, the
images were resized to 224x224 pixels. The lumbar spine area,
including the L1-L4 vertebrae, is positioned in the centre of the
crop to eliminate part of the background and other vertebrae,
thus ensuring that the relevant information (L1-L4) is visible
(Fig. 1).

The dataset was randomly divided into training, validation
and test sets. A total of 181 samples were reserved for testing
the model, of which less than 25% belong to the Degraded
class. The remaining samples were used to train and validate
the model.

2The data was obtained from “Instituto de Diagnóstico e Investigaciones
Metabólicas” (IDIM), Buenos Aires, Argentina
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Fig. 1. Example of an image resized to 224x224 pixels by cropping the
L1-L4 zones.

B. Data Augmentation

Data augmentation techniques were applied to the available
training and validation image datasets to increase the number
of samples, thereby reducing the difference between classes.
Training the models with the original dataset can lead to
underfitting and poor generalisation due to the complexity of
the model and the limited number of images.

The augmentation process was made by applying by hori-
zontal flipping, random rotations from -10° to 10°, and random
darkness and brightness (10% to 40%). While there are many
possible transformations, we select and apply those that do
not change the relative relationship between pixel properties
or those that do not alter the texture of the images. This is
because the texture is one of the most used indicators for
analysing bone structure on 2D images, and any change alters
the sample and therefore the final result [23], [7].

As can be seen, no pronounced rotations or vertical flips
were performed, since according to the patient positioning
guides [24], there are no cases where this is possible. Fur-
thermore, no zoom operations have been applied, as the areas
of interest (L1-L4) may be lost. Fig. 2 shows an example of
the result of applying some filters on one of the samples.

Fig. 2. Example of applied filters to data augmentation.

As previously mentioned, the dataset was divided into
three distinct subsets: training, validation, and testing. The data

augmentation techniques presented above were applied only to
the training and validation sets.

The number of samples belonging to the Degraded class
was increased to a greater extent than that of the Normal
class. This was done by applying more filters to improve the
difference in the number of samples between the two classes.
After augmentation, 37% of the samples in the training and
validation datasets belong to the Degraded class. Table I shows
the number of original and augmented samples belonging to
each class, the partitioning of the data into training (Train),
validation (Val) and test, the partial sums of the Normal and
Degraded samples (PS1), and the partial sums of the partitions
(PS2). In addition, it can also be seen that no augmentation
was applied to the test set.

TABLE I. NUMBER OF ORIGINAL AND AUGMENTED SAMPLES FOR EACH
CLASS

Normal
original
samples

Degraded
original
samples

Normal
augmented

samples

Degraded
augmented

samples
PS1

Train 979 148 225 563 1915
Val 140 21 32 80 273
Test 139 42 0 0 181
PS2 1258 211 257 643 2369

C. Approaches 1 and 2: Pre-trained CNN Models

Several pre-trained models have shown good performance
in radiological image classification tasks such as [14], [11].
For this work, five pre-trained models were selected: AlexNet
[25], ResNet-18 [26], VGG-16 [27], DenseNet-121 [28] and
SqueezeNet [29].

Since these models were originally designated to classify
the ImageNet dataset, which contains 1000 classes, it was
necessary to modify the final fully connected (FC) layer to
output two classes and incorporate a softmax function to
generate probabilities for each class (Normal and Degraded).
Additionally, a dropout layer of 0.4 rate value was added for
regularisation purposes. These models were pre-trained on the
ImageNet dataset, meaning their weights were initialised rather
than randomly assigned.

These pre-trained models were retrained using two ap-
proaches. The first one involved retraining all layers to update
the entire set of network weights. The second approach, known
as fine-tuning, entailed retraining only the reshaped layers.

Each model has its own unique architecture, with different
combinations of layers, resulting in varying depths and number
of parameters. The number of trainable parameters for the
models with approach 1 varies from 7.364×105 in the case of
SqueezeNet to 1.343×108 in the case of VGG-16. In contrast,
when training the models with fine-tuning of the second
approach, the trainable parameters vary from 1.026 × 103 in
the case of ResNet-18 to 8.194× 103 in the case of VGG-16
and AlexNet.

All models were retrained using a batch size of 24, the
stochastic gradient descent (SGD) optimiser with a learning
rate (LR) of 0.0001, and a momentum of 0.9. The retraining
of all layers of the models (approach 1) was carried out for
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Fig. 3. Representation of the basis of the proposed models. The model
comprises convolutional blocks which are followed by fully connected

layers.

50 epochs, while the retraining with fine-tuning (approach 2)
was carried out for 20 epochs.

D. Approach 3: Proposed CNN Model

In addition to the pre-trained models detailed above, four
distinct architectures of CNNs were proposed. The four models
presented below were based on the architecture shown in Fig.
3, with varying numbers of blocks. The blocks are composed
of a convolutional layer (Conv), batch normalisation (BN) and
a rectified linear unit (ReLu) activation function, followed
by a max pooling layer to reduce the dimensions. After the
flattening operation, fully connected layers are added with
varying numbers of neurons. Finally, a single output neuron is
added where a sigmoid function is applied to obtain a binary
classification. The hyperparameter tuning for all models was
performed using Ray Tune library algorithms. The selected
hyperparameters are shown in the respective model description.

The architectures and hyperparameters of each model are
described in Table II. This table presents the number of
convolutional blocks along with the number of filters in each
block, as well as the number of FC layers and the number of
neurons in each. Additionally, it details the batch size used
to train each model. All models were trained using the SGD
optimizer, and the table specifies the learning rate (LR) and
momentum values used for each model. The kernel size for
all convolutional layers in all models is 3x3, with a stride of
1. A flattening layer was also added before the FC layers.
All models were trained for a maximum of 200 epochs, with
early stopping triggered if the loss did not improve after 15
consecutive epochs.

IV. RESULTS

This section presents the results of testing all the models
after training. Considering the positive class as Degraded and
the negative as Normal, the following metrics were calculated
for each model: True Positives (TP), False Positives (FP), True
Negatives (TN), False Negatives (FN), Accuracy, Sensitivity,
Specificity, F1-Score and Area Under the Receiving Operator-
Curve (AUC) [30]. Furthermore, the time required in seconds
to train for 10 epochs is given for each model.

Taking into account the imbalance of the dataset, men-
tioned above, we choose F1-Score as the metric that better
shows how well the models correctly predict the Degraded
class considering at the same time the prediction of the Normal
class.

Table III shows the results of testing the pre-trained CNN
models after retraining the whole layers (approach 1). It can
be seen that all models show high values for F1-Score, being
SqueezeNet the model that reached the maximum value of
0.759.

The results obtained testing the pre-trained CNN models
after retraining only the reshaped layers (approach 2) are
shown in Table IV. It can be observed that the F1-Score
values are lower than those achieved from models trained with
approach 1. Furthermore, the training time drops considerably
due to the smaller number of trainable parameters. In this
instance, the DenseNet-121 model exhibited the most optimal
performance in terms of the F1-Score, achieving a value of
0.658.

Finally, Table V shows the results of testing the proposed
architectures (approach 3). It can be seen that in general good
metric values were obtained, with Model 4 exhibiting the
highest performance, achieving an F1-Score of 0.747.

The results of the best models (in terms of F1-Score greater
than 0.7) are resumed in Fig. 4, which shows the F1-Score
along with Sensitivity and training time. The best models are
the ones that are located in the upper-right corner. It can be
seen that the best is SqueezeNet followed by Model 4.

All the results were obtained after training and testing
all the models using Python (version 3.7.16) language and
PyTorch (version 1.13.1) framework running on an Ubuntu
20.04.6 LTS computer with GTX 1070 GPU and Intel(R)
Core i7-7700K × 4.20 GHz CPU, under comparable Operating
System load conditions.

V. DISCUSSION

Observing the results, it can be seen at first sight that pre-
trained CNN models that were re-trained with approach 1 have
a very good performance in terms of F1-Score while they have
high sensitivity values. Between these models, SqueezeNet has
the best F1-Score and the time needed for train 10 epochs
was relatively low in comparison with the times achieved by
VGG16 or DenseNet-121.

When the retraining is done only in the reshaped CNNs
(approach 2), DenseNet-121 had the best F1-Score, but it can
be seen that the general performance, in terms of F1-Score,
is poorer compared with all the models of approach 1, with
a similar training time to that obtained retraining SqueezeNet
entirely.

Among the simpler architectures proposed, model 4
achieved the best performance. This model could stand out due
to its architecture and the selected hyperparameters. A slightly
higher number of filters in the last layers could have helped
to capture important texture features. In addition, having a
larger number of neurons in the FC layer with a simpler
structure could reduce complexity and the risk of overfitting.
Consequently, the model also has the largest number of train-
able parameters, which means it has the ability to learn more
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TABLE II. SUMMARY OF AD-HOC ARCHITECTURE DETAILS AND HYPERPARAMETERS FOR EACH PROPOSED MODEL (APPROACH 3)

Model 1 Model 2 Model 3 Model 4

Convolutional blocks 5 3 3 3

Filters per block 8, 16, 32, 64, 128 8, 16, 32 8, 16, 32 8, 28, 36

FC layers 3 3 2 2

Neurons per layer 1000, 100, 1 500, 100, 1 100, 1 1000,1

Batch size 24 24 24 48

LR 0.001 0.0001 0.001 0.0001

Momentum 0.6 0.7 0.9 0.9

Trainable parameters 3.400 × 106 1.087 × 107 2.169 × 106 2.434 × 107

Fig. 4. Classification results of models that achieved an F1-score value greater than 0.7. The X and Y axes represent sensitivity and F1-Score values,
respectively, while the diameter of the circles represents the training time of 10 epochs.

TABLE III. RESULTS OF TESTING PRE-TRAINED MODELS AFTER RETRAINING THE WHOLE LAYERS (APPROACH 1)

TP FP TN FN Accuracy Sensitivity Specificity F1-Score AUC Time(s) 10 epochs

ResNet-18 30 9 130 12 0.884 0.714 0.935 0.741 0.816 83.69

AlexNet 31 14 125 11 0.862 0.738 0.899 0.713 0.815 60.49

VGG-16 29 17 122 13 0.834 0.690 0.878 0.659 0.784 400.03

DenseNet-121 30 13 126 12 0.862 0.714 0.906 0.706 0.810 220.43

SqueezeNet 33 12 127 9 0.884 0.786 0.914 0.759 0.828 86.18

representations and features from the data. Finally, a larger
batch size, together with a lower learning rate and higher
momentum, could cause more stable and gradual learning,
facilitating convergence to optimal values for the weights.

Comparing the different strategies, it can be seen that
ad hoc CNN models performed around 14% better than the
retrained models with approach 2, and the time is about 40%
lower comparing the best results of both approaches.

Finally, the proposed ad hoc CNNs performed almost
the same as pre-trained models trained with approach 1 and
reduced the time needed for training by around 35%. Further-
more, it should be noted that the proposed ad hoc models were
trained entirely with the images from the dataset proposed in
this work, while the architectures of approaches 1 and 2 have
a complex pre-training with a large dataset such as ImageNet.
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TABLE IV. RESULTS OF TESTING PRE-TRAINED MODELS AFTER RETRAINING ONLY THE RESHAPED LAYERS (APPROACH 2)

TP FP TN FN Accuracy Sensitivity Specificity F1-Score AUC Time(s) 10 epochs

ResNet-18 22 10 129 20 0.834 0.524 0.928 0.594 0.726 39.25

AlexNet 25 14 125 17 0.829 0.595 0.899 0.617 0.747 28.14

VGG-16 19 6 133 23 0.840 0.452 0.957 0.567 0.705 148.2

DenseNet-121 25 9 130 17 0.856 0.595 0.935 0.658 0.765 93.59

SqueezeNet 21 2 137 21 0.873 0.500 0.986 0.646 0.743 44.73

TABLE V. RESULTS OF TESTING AD HOC ARCHITECTURE MODELS (APPROACH 3)

TP FP TN FN Accuracy Sensitivity Specificity F1-Score AUC Time(s) 10 epochs

Model 1 28 6 133 14 0.889 0.667 0.957 0.737 0.934 41.00

Model 2 29 14 125 13 0.850 0.690 0.899 0.682 0.888 44.62

Model 3 23 7 132 19 0.856 0.548 0.950 0.639 0.828 36.80

Model 4 31 10 129 11 0.884 0.738 0.928 0.747 0.936 55.61

VI. CONCLUSIONS AND FUTURE WORKS

Several CNN-based strategies to distinguish between Nor-
mal and Degraded trabecular bone structure from DXA images
have been presented.

Among the different approaches proposed, simpler archi-
tecture CNNs were more adequate in comparison with pre-
trained CNN models, since they reached the same perfor-
mance as the best pre-trained CNN, requiring considerably less
training effort and hence less computational resources. This is
consistent with the fact that in previous works, algorithms for
basic texture patterns search worked better than those related
to complex textures [31], [32].

Considering future works, at first, we plan to develop
an automatic method to segment vertebrae and compare the
effectiveness of this segmentation with the one made by the
software, which in some cases requires manual adjustments.
Also, individual (L1-L4) vertebrae training is planned in order
to assess the trabecular bone quality for each vertebra. As part
of the ongoing project in which this work was done, more
classes will be included, besides Degraded and Normal, to have
more detailed information about the intermediate conditions of
bone quality degradation. At last, regarding data augmentation,
we plan to study the rotational invariance of the texture in order
to increase the rotation range.
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