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Abstract—To improve wearing comfort and achieve individual 

recognition, this study designs an ankle exoskeleton that simulates 

natural human movement based on the joint structure of the 

human lower limbs. The function of the sole spring is achieved 

through compression springs on the exoskeleton framework 

coupled with the foot, and a customized insole is designed using 3D 

printing technology. This study uses a gait recognition algorithm 

based on a convolutional gated recurrent unit fully convolutional 

network with a dual attention mechanism to achieve individual 

recognition. The results showed that compared to the natural 

state, when walking with exoskeletons, the integrated 

electromyographic signals of the gastrocnemius and tibialis 

anterior muscles decreased by 5.4% and 3.6%, respectively, and 

the intelligent insole reduced plantar pressure to a certain extent. 

The accuracy of the proposed gait recognition algorithm could 

reach 95.26%, which was 2.03% higher than that of fully 

convolutional networks. In addition, the fuzzy output signals of the 

left and right feet were combined to obtain the proportions of 

single support phase and double support phase during walking, 

which were 92.7% and 7.3%, respectively. This study indicates 

that a body pressure reducing support wearable device that 

integrates 3D printing and gait recognition algorithms can reduce 

lower limb joint pressure, providing a new possibility for 

improving wearing comfort and achieving individual recognition. 

It also helps to improve the quality of life for the target audience. 

Keywords—3D printing; gait recognition; body decompression 

support; wearing devices; electromyographic signal 

I. INTRODUCTION 

A. Research Background 

With the intensification of the aging trend in society, the 
demand for Body Pressure Relief Support Wearable Devices 
(BPRSWDs) is increasing in the elderly and rehabilitation 
medicine fields. This type of device aims to provide 
personalized support and soothing effects through real-time 
monitoring and analysis of the wearer's body, in order to 
improve their quality of life [1]. However, the current 
BPRSWDs still need to be improved in terms of functionality 
and performance. In recent years, Gait Recognition (GR) 
technology, as an emerging biometric recognition method, has 
been widely applied in the field of security due to its advantages 
of non-contact and long-distance monitoring [2]. This 
technology can effectively distinguish gait features between 
different individuals by analyzing gait images. However, the 
current application of GR methods in BPRSWDs is not yet 
sufficient [3]. In addition, the development of Three-
dimensional Printing Technology (3D-PT) has provided the 

possibility for customized and personalized design of 
BPRSWDs [4-5]. However, previous studies have not fully 
considered the impact of human lower limb joint structure on 
wearing comfort, and there is a lack of effective GR algorithms 
to achieve individual recognition. 

B. Research Method and Objectives 

In order to improve wearing comfort and achieve individual 
recognition, this study proposes a BPRSWDs optimization 
method that integrates 3D-PT and GR algorithm. Firstly, the 
design combines customized body support components with 
3D-PT, and then utilizes GR technology to monitor and analyze 
the wearer's gait characteristics in real-time. The contribution 
of the research is the design of a body pressure reducing support 
wearable device based on 3D printing technology, as well as the 
proposal of a gait recognition algorithm based on a 
convolutional gated recurrent unit full convolutional network 
with dual attention mechanism, which achieves individual 
identity recognition. This device provides new design ideas and 
methods for the field of body stress relief support wearable 
devices by improving wearing comfort and algorithm accuracy. 
It is expected to provide a more comfortable and personalized 
experience for the audience, thereby improving the quality of 
life. 

C. Organization Structure 

The research content consists of five sections. Section I is a 
summary of research related to 3D printing, wearable devices, 
and GR. Related works is given in Section II. Section III is the 
design of BPRSWDs and GR algorithms, and application 
analysis is conducted in Section IV. Section V summarizes the 
entire study. 

II. RELATED WORKS 

3D printing is a technology that uses digital model files as 
the basis and adhesive materials such as powdered metal or 
plastic to construct objects through layer by layer printing. Peki 
et al. used glass fiber reinforced UV cured polymer matrix 
composites for robot 3D printing and optimized parameters 
such as nozzle diameter. Under specific parameter conditions, 
3D printing could achieve high tensile and bending strength [6]. 
Yu's team proposed a novel high current planar inductor with 
heat dissipation fins based on 3D printing, and conducted 
experiments using selective laser melting technology to 3D 
print copper windings. At a current of 100A, this inductor could 
function well, while traditional inductors could not function due 
to high temperatures [7]. Wu's team has prepared a 3D printed 
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conductive polymer ink with high conductivity, flexible 
stretchability, and strain sensing monitoring performance. 
Silane modified conductive polymers have excellent 
printability and strain sensing properties [8]. Zhang et al. 
proposed the latest progress of 3D printing in the field of 
wearable electrochemical energy devices and explored its 
applications and limitations in this field. Although 3D-PT has 
great potential in wearable energy devices, issues such as ink 
formulation and material design still needed to be addressed [9]. 
Liu's team explored the manufacturing of Flexible Strain 
Sensors (FSS) through 3D-PT and conducted in-depth 
discussions on the sensing mechanism of 3D-printed FSSs. 3D-
PT had great potential in manufacturing FSSs and could bring 
revolutionary changes to the development of wearable devices 
and electronic skins [10]. Hong et al. designed a capacitive 
pressure sensor using a biomimetic cheetah leg microstructure, 
optimized the structural parameters using 3D-PT, and achieved 
high sensitivity, wide pressure range, fast response time, and 
excellent durability [11]. 

GR is a technology that identifies human movements such 
as walking and running by analyzing the characteristics of 
human motion trajectory, dynamics, and physiological signals. 
Bianco's team proposed a GR system based on inertial sensors, 
which recognizes gestures, user gait, and identity through 
custom wristbands and recursive neural network-based 
algorithms. The recognition accuracy and user satisfaction of 
the system could reach 90% [12]. Lee et al. employed a method 
based on Inertial Measurement Unit (IMU) and Long Short 
Term Memory (LSTM) machine learning models to identify 
gait under different fatigue states. The LSTM model had the 
highest accuracy in identifying simulated gait, with the 
combination of toe and sacral IMU achieving the highest 
accuracy of 95.71% [13]. Semwal et al. used a hybrid deep 
learning model, combined with data collected by IMU sensors, 
to achieve recognition of various gait activities. The proposed 
hybrid framework based on ensemble learning performed 
excellently in GR, with an accuracy rate of 99.34% [14]. Ma's 
research team has proposed a high-performance GR and 
efficient energy harvesting method. It filtered the impact of 
energy storage on the electrical signal of the piezoelectric 
energy harvester through preprocessing algorithms, and used a 
classifier based on LSTM network to accurately capture time 
information in gait induced power generation. Compared to 
state-of-the-art architectures, this method has improved gait 
recall by 12%, achieved energy harvesting efficiency of up to 
127%, and reduced power consumption by 38% [15]. Hasan's 
team proposed a new stacked auto-encoder method to address 
the impact of perspective changes on human GR in a multi 
camera environment. By learning discriminative perspective 
invariant gait representation, this method could gradually 
convert bone joint coordinates from any view to a common 
normative view while preserving temporal information. The 
average correct class recognition of this method could reach 
33.86% [16]. 

In summary, many researchers have made different designs 
for 3D-PT and GR. However, these studies mainly focus on the 
optimization of materials and processes, with less attention paid 
to performance evaluation and optimization in different 
application scenarios. At the same time, the universality and 

practicality of GR technology still need to be improved, and the 
accuracy in practical applications still needs to be improved. 
Therefore, this study integrates 3D-PT and GR algorithms to 
conduct optimization research on BPRSWDs, with the aim of 
providing users with a more comfortable wearing experience. 

III. OPTIMIZATION DESIGN OF BPRSWDS INTEGRATING 

3D-PT AND GR ALGORITHM 

This section mainly designs the GR algorithm based on 
Convolutional Bi-directional Gated Recurrent Unit Fully 
Convolutional Networks (ConvBiGru-FCN). This algorithm 
extracts discriminative features by analyzing the walking 
patterns of the human body, achieving recognition of individual 
identity. 

A. The Overall Design of BPRSWDs 

The design of BPRSWDs is based on the structure of human 
lower limb joints, simulating natural human movement, aiming 
to reduce joint pressure and improve comfort [17]. 
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Fig. 1. A human walking model within a single support phase. 

In Fig. 1, the unilateral lower limb movement state during 
human walking is divided into support phase and swing phase. 
The Single Support Phase (SSP) model of a single leg simplifies 
the support leg, support phase foot, swing phase thigh, swing 
phase calf, and swing phase foot into members [18]. The model 
contains three degrees of freedom, namely the hip joint of the 
supporting leg, the hip joint of the swinging leg, and the knee 
joint of the swinging leg. The angle between the rod and the 

vertical axis of the human body is iq , the length of the rod is 

iL , the distance between the center of mass of the rod and the 

lower limb joint is ia , and the moment of inertia of the rod is 

iI , 1,2,3i . The foot length is d , and the supporting ankle 
joint is the coordinate origin. The centroid coordinates of the 
supporting leg, upper body, swinging thigh, and swinging calf 

are 0 0 0( , )M x y , 0 1 1( , )M x y , 0 2 2( , )M x y , and 0 3 3( , )M x y , 
respectively. Introducing plantar springs in walking models can 
reduce human energy loss [19]. Based on this principle, an 
ankle exoskeleton is designed, which simulates the function of 
plantar springs through compression springs on the exoskeleton 
framework coupled with the human foot. 
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Fig. 2. The overall structure of ankle exoskeleton. 

As shown in Fig. 2, the exoskeleton is mainly composed of 
multiple components, such as the foot side plate, compression 
spring, guide rod, micro bearings, wedges, pedals, backplate, 
and plantar plate. These components are fixed together through 
connectors. The shoes worn by the experimenter are tightly 
attached to the main frame composed of the foot side panel, 
back panel, and sole panel, and are fixed to the front of the shoes 
with straps. The sole plate is responsible for supporting the 
weight of the human body, and aluminium alloy materials with 
high strength and good wear resistance are selected. The pedal 
is made of carbon fiber board and forms a rotating pair 
connection with the foot side panel, with the rotation center 
located in the middle of the foot. There is a vertical plane on the 
foot side plate that bears elastic force, and the strengthening ribs 
on both sides increase the strength of the force bearing surface 
[20-21]. The concave platform below the foot side panel can 
limit the pedal and prevent it from bending outward. The other 
components are made by UV curing printing, using lightweight 
and moderately rigid photosensitive resin materials. The ankle 
exoskeleton is located in the middle and rear of the foot and 
does not affect the force exerted by the human toes when they 
are off the ground. The passive energy storage structure is a 
crucial part of the ankle exoskeleton, which can collect energy 
from the foot following the ground and release it when the heel 
leaves the ground. This structure mainly includes pedals, guide 
rods, compression springs, and wedges. During walking, when 
the vertical distance between the end of the pedal and the 
ground is less than 10mm, the pedal will rotate, driving the 
compression spring of the guide rod [22-23]. During the mid 
support phase, the sole of the foot is completely in contact with 
the ground, and the elastic force is in the vertical direction, 
assisting in ankle dorsiflexion movement. When the heel leaves 
the ground, the elastic potential energy is released, and the 
spring pushes the foot side plate to rotate. In addition, the 
selection and parameter design of compression springs give 
them appropriate stiffness and compression stroke. The 
assembled ankle exoskeleton has a mass of 235g and does not 
affect normal foot movement. It can feel the pulse force when 
the heel is off the ground during walking. The stiffness 
calculation of the unilateral spring is Eq. (1). 

4

38


Gw
k

nD         (1)
 

In Eq. (1), the stiffness of the unilateral spring is k , and the 

shear modulus of elasticity is G . The diameter of the 
compression spring is w , the center diameter is D , and the 
effective number of turns is n . The shape and material 
stiffness of customized insoles have a significant impact on 
plantar pressure. Choosing materials with lower stiffness can 
increase the contact area between the foot and insole, and 
reduce plantar pressure. After damage to the plantar fascia, the 
height of the arch of the foot decreases, increasing the tension 
of the plantar ligaments and the stress on the midfoot and 
metatarsal bones. To prevent foot arch lodging and enhance 
arch stiffness, a support structure that fits the arch of the foot 
has been added to the flat insole. Through 3D-PT, different 
stiffness-filling patterns and unique insole shapes can be 
designed to meet the needs of different wearers. This study 
divides insoles into buffer zones and fit zones. The buffer zone 
includes the forefoot and heel, while the fit zone includes the 
middle of the foot. The buffer zone adopts a porous negative 
Poisson's ratio structure, which has a lightweight buffering 
effect. The fitting area is composed of an Arch Support 
Structure (ASS) and a honeycomb structure, which increases 
the contact surface between the ASS and the sole of the foot. 
The honeycomb structure is lightweight and has high stiffness. 
Finally, the Thermoplastic Polyurethanes (TPU) is selected as 
the insole material, which has good elasticity and wear 
resistance, meeting the comfort and safety requirements of 
medical insoles. 
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Fig. 3. Insole area division. 
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In Fig. 3, the design of the insole buffer zone is mainly 
aimed at the forefoot and heel, using a porous negative 
Poisson's ratio structure to increase contact area and reduce 
internal stress. This structure has special mechanical properties, 
which can cause lateral expansion when subjected to uniaxial 
longitudinal tension and lateral contraction when compressed, 
thereby improving buffering performance. Negative Poisson's 
ratio structures can be divided into two types: concave and 
porous, where concave structures generate two-dimensional 
rotation when subjected to tension. Porous structures achieve 
negative Poisson's ratio effects through the elastic instability of 
the material [24-25]. The structural design of the fitting area of 
the insole mainly adopts honeycomb structure and ASS. 
Honeycomb structure is a porous biomimetic structure with 
high strength and high stiffness ratio, which can effectively 
improve the support capacity of the bonding area. ASS helps to 
reduce shock absorption and disperse the weight transmitted to 
the sole of the foot, reducing excessive tension between the arch 
ligaments and muscles. In the design process, 3D scanning 
technology is first used to capture a realistic foot model of the 
human body, and then ASS is obtained through Boolean 
operations. Finally, ASS and honeycomb structure form the 
insole bonding area [26]. 
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Fig. 4. Design of insole collection system. 

In the insole collection system shown in Fig. 4, eight thin 
film sensors are distributed on the medical insole to collect 
pressure information. These sensors convert analog signals into 
digital signals through their built-in analog-to-digital converters. 
The wireless transmission module transmits digital signals to 
the upper computer powered by a 12V mobile power supply. 
The upper computer calculates the pressure value based on the 
load voltage fitting curve of sensors at different positions, and 
records the pressure peak, displays the plantar pressure curve, 
and saves data on the computer end. The output of the signal 
conditioning circuit is Eq. (2). 

 out ref ref

s c

R F
V V RV

R K
      (2)

 

In Eq. (2), the output of the signal conditioning circuit is 

outV . The reference voltage is refV . The reference resistance is 
R . The resistance value of the pressure sensor under positive 

pressure F  is sR . The sensor coefficient is cK . 

B. Design of GR Algorithm 

The main purpose of the GR algorithm is to extract 
discriminative features by analyzing the walking patterns of the 

human body to achieve individual identity recognition. Its key 
technologies include Gait Feature Extraction (GFE) and feature 
similarity calculation [27]. During the registration phase, users 
wear BPRSWDs while walking, and sensors collect data and 
upload it to the server. The server uses a Feature Extraction 
Network (FEN) to extract walking gait features and analyze the 
body's stress relief support. In the authentication stage, the 
server extracts the current walking features and calculates the 
similarity with the registration template [28]. 
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Fig. 5. Identity recognition system based on GR. 

In Fig. 5, FEN is the core of the identity recognition system, 
responsible for extracting unique walking features from the 
swinging acceleration and angular velocity time series [29]. 
The characteristic of Full Convolutional Networks (FCN) based 
on time series features is that it does not include local pooling 
layers during the convolution process and maintains the length 
of the time series unchanged [30]. On this basis, this study 
proposes ConvBiGru-FCN for GFE. Convolutional Neural 
Network (CNN) is based on convolutional computation and 
constructs features by integrating spatial and channel 
information between levels. Previous studies have mainly 
focused on improving the quality of spatial coding and 
enhancing feature expression capabilities [31]. The Squeeze 
Excitation (SE) module focuses on the interdependence 
between channels and adaptively calibrates channel 
characteristic responses. This study improves the SE module to 
make it suitable for time-series feature extraction and 
implements a one-dimensional channel attention mechanism to 
distinguish the focus points and channel feature contributions 
of different convolutional kernels, thereby improving the 
effectiveness of gait identity recognition. The compression 
calculation in the SE module is Eq. (3). 

1

1
( ) ( )



  
T

c sq c c

i

z F u u i
T

      (3) 

In Eq. (3), the compressed value of the channel is 
cz , the 

compression operation is sqF , the input feature map is 
cu , and 

the time length is T . The calculation of incentive operation is 
Eq. (4). 

2 1( , ) ( ( ))  exs F z W W W z

      (4) 

In Eq. (4), the channel weight vector is s  and the 

excitation operation is exF . The vector obtained from the 

previous layer is z . The weight information obtained through 

learning is W . The parameter matrices are 
1W  and 

2W , 
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respectively. The Sigmoid and Relu activation functions are   

and  . The weight update calculation is Eq. (5). 

( , ) c scale c c c cx F u s s u       (5)
 

In Eq. (5), the feature map obtained by updating the feature 

map with the weight vector is 
cx , and the update operation is 

scaleF . By introducing the SE module, weight coefficients are 

assigned to each channel feature to achieve a channel based 
attention mechanism. This makes the model focus more on 
features that contribute significantly to GR, suppresses channel 
features that contribute less or no, and improves the model's 
identification ability for each channel feature. Another attention 
mechanism obtains weight vectors and updates feature map 
weights through the Dense layer and Softmax function. The 
ConvBiGru-FCN network obtained by combining the above 
two attention mechanisms is Fig. 6. 
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Fig. 6. Structure of ConvBiGru-FCN networks. 

ConvBiGru-FCN uses FCN and Bidirectional Gated 
Recurrent Unit (BiGru) to extract feature information in parallel. 
FCN consists of three convolutional blocks and excels in time 
series classification. The BiGru module enhances the feature 
extraction ability of FCN, with a simpler structure, fewer 
parameters, and easier training convergence. To match the input 
dimension, a one-dimensional convolutional layer is added 
before BiGru instead of a permutation layer, as it has a certain 
degree of time series noise suppression ability, which helps to 
improve the feature extraction ability of the model. 

ConvBiGru-FCN introduces attention mechanism on the basis 
of the original structure to improve feature extraction ability. To 
add Attention Mechanism 1 in the FCN section, focusing on 
important features. To add Attention Mechanism 2 to the BiGru 
section to enhance the ability to capture bidirectional time 
series information. After dual channel feature extraction and 
feature layer fusion, the network outputs gait features through 
a fully connected layer. One of the key technologies of GR is to 
calculate the similarity between the current user's walking 
characteristics and the user feature template. The calculation 
process of the feature vector template is Eq. (6). 

1

1
( )



 
n

i ij

j

T F s
n        (6) 

In Eq. (6), the feature vector template of the i -th user is 

iT . The GFE network is F . The j -th walking sequence of 

user i  during the registration process is ijs . The number of 

time series in the registration phase is n . The calculation of 

gait similarity is Eq. (7). 

2 2
( , )



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x y
d x y

x y x y       (7) 

In Eq. (7), the eigenvectors of two time series are x  and 

y  respectively, and the distance between the two is ( , )d x y . 

The normalization function converts distance values into 
similarity probabilities, and the calculation process is Eq. (8). 

( ( , )) NP F d x y        (8) 

In Eq. (8), the similarity probability is P  and the 

normalization function is 
NF . To improve the generalization 

ability of GFE network and improve the accuracy of identity 
recognition system, this study uses Time-series Generative 
Adversarial Network (TimeGAN) to enhance the gait temporal 
dataset to solve the problem of small data volume and 
insufficient samples in practical scenarios. The TimeGAN 
structure is Fig. 7. 
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Fig. 7. TimeGAN structure. 
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TimeGAN is a temporal data generation enhancement 
method that combines unsupervised GAN and supervised auto-
regressive models. It mainly consists of embedding function, 
recovery function, sequence generator, and sequence 
discriminator. The characteristic of TimeGAN is the joint 
training of automatic encoding components (embedding 
function and recovery function) and adversarial components 
(sequence generator and sequence discriminator), enabling it to 
simultaneously learn encoding features, generate sequence 
representations, and iterate across time, thereby maintaining 
temporal dynamic characteristics. The TimeGAN 
reconstruction loss function is Eq. (9). 

( ( ), )RL MSE G m m       (9) 

In Eq. (9), the reconstruction loss function is 
RL , and the 

original input timing data is m . The timing data generated by 

the generator is ( )G m , and the mean square error is calculated 

as MSE . The unsupervised loss calculation is Eq. (10). 

1

( ( [ ])* ( [ 1]))


   
n

U

i

L G m q G m q     (10) 

In Eq. (10), the unsupervised loss function is 
UL , the 

regularization function is  , and a certain position in the 

sequence is q . The calculation of the supervised loss function 

is Eq. (11). 

[ *log( ( ( )))] SL r p r g m      (11) 

In Eq. (11), the supervised loss function is 
SL , and the true 

label is r . The probability distribution corresponding to the 

time series data generated by the generator is ( ( ))p r g m . The 

optimization function of TimeGAN is Eq. (12). 

,
min( )
 

 
e r

S RL L
      (12) 

In Eq. (12), the embedded and restored network parameters 

are e
 and r

, respectively, and the coefficient of the 

supervised loss function is  . The second optimization 

function of TimeGAN is Eq. (13). 

min( max )
 

 
g d

S UL L
      (13) 

In Eq. (13), the network parameters of the generator and 

discriminator are g  and d
, respectively, and the coefficient 

of the supervised loss function is  . This study uses TimeGAN 

to generate gait time series data to supplement the existing 
collected gait dataset and verify the effectiveness of identity GR. 
During the GR process, the pressure signals of the four sensors 

are 
1F , 

2F , 
3F , and 

4F . The proportion calculation of 

pressure information is Eq. (14). 
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In Eq. (14), the proportion of pressure at the heel, arch, and 

sole in the total is 
AF , 

BF , and 
CF . The constant parameter 

is N . The proportion of a constant in the total is 
NF . Before 

dealing with fuzzification, it is necessary to determine the fuzzy 
membership function and rule table. Fuzzy sets include two 
states: Positive Big (PB) and Zero Small (ZS). When the 
pressure ratio value is greater than the threshold, the fuzzy set 
is PB, and vice versa, it is ZS. Based on this, the fuzzy rule 
setting includes four states: early support, middle support, late 
support, and swing phase. 

IV. RESULTS AND DISCUSSION 

The experiment uses 3D-PT to manufacture insoles with 
pressure reducing effects. By comparing the 
Electromyographic Signals (EMGS) of natural walking and 
wearing exoskeleton walking, the pressure reducing effect of 
intelligent insoles is verified. The GR algorithm is trained using 
ConvBiGru-FCN and compared with other networks in terms 
of performance. 

A. Manufacturing and Forming of BPRSWDs 

The experiment uses a Makerpi K5 Plus 3D printer to print 
BPRSWDs insoles. The printing process is divided into two 
parts: front and back. The front and rear parts of the insole are 
connected by two wedge-shaped blocks. The experiment 
explores 3D printing parameters, and Table I shows the final 
optimized parameters. 

TABLE I. 3D PRINTING PARAMETERS 

Serial number Parameter Numerical value Unit 

1 Layer thickness 0.2 mm 

2 Fill rate 20 % 

3 Printing speed 40 mm/s 

4 Nozzle temperature 210 ℃ 

5 Hot bed temperature 75 ℃ 

6 Consumable diameter 1.75 mm 

After the 3D printing parameters are set, they are imported 
into the Cura printing processing software. After printing, glue 
is used to stick the front and rear parts, and waiting for the glue 
to settle and solidify before use. The 3D printer and physical 
image are shown in Fig. 8. 
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(a) Makerpi K5 Plus 3D printer (b) Physical image of insole

 

Fig. 8. 3D printers and physical images. 

To collect plantar pressure from the human body, a 
Flexiforce A201 thin film pressure sensor is used in the 
experiment and installed on the surface of the insole. Four force 
measurement areas have been set on the insole, located at the 
first metatarsal bone, the third metatarsal bone, the arch of the 
foot, and the heel bone. Among them, sensors 1, 2, and 4 are 
used to reflect areas with high stress on the soles of the feet, and 
the magnitude of the pressure peak reflects the health of the feet. 
Sensor 3 is located on the arch fitting structure of the foot to 

verify its ability to withstand human weight. The experiment 
uses a dual track treadmill platform to provide different walking 
speeds and ground slopes for people wearing exoskeletons 
indoors. The experimental environment mainly includes a 
treadmill, muscle electrodes, sensor system, and upper 
computer. In the experiment, researchers compares the EMGS 
of natural walking and wearing exoskeletons to evaluate the 
decompression support effect of ankle exoskeletons. The 
EMGS of natural walking and walking with exoskeletons after 
bandpass filtering are displayed in Fig. 9. 

Fig. 9(a) shows the EMGS during natural walking. The 
plantar and dorsiflexion movements of the foot involve the 
muscles on the anterior and posterior sides of the calf, and the 
EMGS fluctuate violently after being flat, with a significant 
phase difference between the two signals. Fig. 9(b) shows the 
EMGS of walking with an exoskeleton. Changes in the 
characteristics of EMGS can help muscles enhance strength and 
reduce fatigue, but may affect natural contraction and relaxation. 
The integrated value of EMGS is Fig. 10. 
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Fig. 9. The EMGS of human natural walking and walking with exoskeletons after bandpass filtering. 
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Fig. 10. Integrated value of EMGS. 
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Fig. 10(a) and 10(b) show the integrated values of 
gastrocnemius EMGS and anterior tibial EMGS for natural 
walking and walking with exoskeletons. When the human body 
wears exoskeletons, the EMGS integral values of the 
gastrocnemius and tibialis anterior muscles in the lower leg 
decrease. Compared to the natural state, when walking with 
exoskeletons, the EMGS integral values of the gastrocnemius 
and tibialis anterior muscles decreases by 5.4% and 3.6%, 
respectively. This indicates that the contraction characteristics 
of the lower limb muscles have been weakened, thereby 

proving that the ankle exoskeleton has a certain assisting effect. 
To verify the pressure reducing effect of intelligent insoles, a 
static plantar pressure measurement experiment is designed. 
The experiment uses a laser cutting machine to make acrylic 
boards of the same size as insoles, and divides them into eight 
areas. Volunteers stand on acrylic boards in different scenarios 
(wearing socks, flat insoles, medical insoles) and measure 
plantar pressure through thin film pressure sensors placed in 
each area. Table II shows the mean pressure in static plantar 
experiments. 

TABLE II. MEAN PRESSURE IN STATIC PLANTAR EXPERIMENTS 

Experimental method 1 2 3 4 5 6 7 8 

Wearing socks 12.9 39.3 37.5 32.6 0.9 16.2 48.1 42.5 

Ordinary insoles 5.4 34.4 24.5 27.3 0.9 11.8 34.5 36.2 

Intelligent insoles 6.5 31.3 14.9 16.8 19.3 19.9 35.2 29.7 

 

In Table II, labels 1-8 represent the first metatarsal region, 
the first metatarsal region, the second and third metatarsal 
regions, the fourth and fifth metatarsal regions, the lateral 
midfoot region, the arch region, the medial heel region, and the 
lateral heel region, respectively. Compared to the control group 
wearing socks and the regular insole, wearing smart insoles 
effectively reduces plantar pressure. The intelligent insole 
specifically optimizes the pressure distribution in the second 
and third metatarsal regions, fourth and fifth metatarsal regions, 
and the lateral side of the heel, while increasing pressure in the 
arch and medial areas of the foot. This indicates that the ASS 
and multi stiffness characteristics of intelligent insoles have to 
some extent reduced plantar pressure, but the pressure relief 
effect on the inner side of the sole can still be further improved. 

B. Application Analysis of GR Algorithm 

Fifteen subjects are selected for gait data collection in the 
experiment to form a dataset consisting of different time series 
lengths. The experiment divides the dataset into training, 

validation, and testing sets in a 6:2:2 ratio. The experiment uses 
ConvBiGru-FCN to train the data and achieve recognition of 
different gaits. To verify the effectiveness of ConvBiGru-FCN, 
Multi-layer Perceptron (MLP), Time-CNN, and FCN are used 
as contrast networks in the experiment. The convolution kernel 
size of ConvBiGru-FCN convolutional layer is 3 × 3, with a 
step size of 1. The hidden state size of the BiGru layer is 128, 
and in the fully convolutional layer, the number of output 
channels is the corresponding number of categories. The 
number of neurons in the fully connected layer between the 
MLP input layer and output layer is 128. The ReLU activation 
function is used, and the Softmax function is used for multi 
classification in the output layer. The convolutional kernel size 
of the Time CNN convolutional layer is 3×3 with a step size of 
1, and the pooling kernel size of the pooling layer is 2×2 with a 
step size of 2. The experiment set the time series length to 60, 
and the performance comparison results of different networks 
are shown in Fig. 11. 
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Fig. 11. Performance comparison results of different networks. 
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In Fig. 11, there are significant differences in the 
performance of various models in identifying subject identities 
when the sequence length is 60. ConvBiGru-FCN outperforms 
other networks in terms of accuracy, precision, recall, and F1 
score. The accuracy of ConvBiGru-FCN reaches 95.26%, 
which is 2.03% higher than FCN, while its parameter count is 
only 3.42M, slightly higher than FCN. This indicates that 
ConvBiGru-FCN is an effective feature extraction method and 
exhibits good performance in GR tasks. The visualization 
results of network feature extraction are shown in Fig. 12. 

In Fig. 12, the numbers 1-15 represent the features of 15 
users, respectively. Fig. 12(a) to (d) show the visualization 
results of feature extraction for MLP, Time-CNN, FCN, and 
ConvBiGru-FCN networks, respectively. ConvBiGru-FCN has 
a good discriminative effect in identifying different gait identity 
categories. In contrast, MLP, Time-CNN, and FCN have poorer 
performance in distinguishing identity categories. This 
indicates that ConvBiGru-FCN has a high feature extraction 
ability in GR tasks and can effectively extract gait information 
from subjects. The relative error of ConvBiGru-FCN gait 
prediction in both stationary and walking states of the human 
body is Fig. 13. 

In Fig. 13, under both stationary and walking states, the 

calculated curve of user GR in ConvBiGru-FCN is generally 
close to the true value, and the relative error of user GR 
prediction is mostly in the range of 0% -8%, indicating a good 
overall fitting effect. To verify the effectiveness of the proposed 
GR algorithm combined with BPRSWDs, the pressure curve is 
used as the validation object for the GR algorithm in the 
experiment. The variation curves of proportional signal and 
fuzzy output signal are shown in Fig. 14. 

Fig. 14 (a) (b) shows the variation curves of the proportional 
signal and the fuzzy output signal. The fuzzy output signals u1, 
u2, and u3 are used to divide the early and middle stages of the 
support phase, the middle and late stages of the support phase, 
and the support phase and swing phase, respectively. There is a 
difference in the proportion of left and right feet in each stage 
of the gait cycle. The initial proportion of support for the left 
foot is too long, which may be related to the high support 
structure of the left foot insole, resulting in a prolonged force 
on the heel and a reduced contact time between the forefoot and 
the ground. The proportion of SSP and double support phases 
during walking is obtained by combining the fuzzy output 
signals of the left and right feet, which are 92.7% and 7.3%, 
respectively. 
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Fig. 12. Visualization of network feature extraction results. 
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Fig. 13. Relative error of user gait recognition. 
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Fig. 14. Visualization of network feature extraction results. 

C. Discussion 

Research has been conducted to manufacture intelligent 
insoles with pressure reduction effects through 3D printing 
technology, and the pressure reduction effect of intelligent 
insoles has been verified by comparing the EMGS of natural 
walking and walking with exoskeletons. When training the GR 
algorithm, ConvBiGru-FCN was studied and compared with 
other networks. In the process of manufacturing and forming 
BPRSWDs, the 3D printing parameters were optimized 
experimentally, and the pressure distribution of the feet was 
measured using the Flexiforce A201 thin pressure sensor. The 
experimental results show that compared to the natural state, 
when walking with smart insoles, the pressure distribution of 
the feet is effectively optimized, especially in the second and 
third metatarsal regions, fourth and fifth metatarsal regions, as 
well as the pressure distribution in the arch and medial heel 
regions. ConvBiGru-FCN has high accuracy, precision, recall, 
and F1 score in identifying different walking postures, with an 
accuracy rate of 95.26%. In addition, we also visualized the 
network feature extraction, and the results showed that 

ConvBiGru-FCN has good discriminative performance and can 
effectively extract walking information from subjects. When 
standing and walking, the calculated curve of ConvBiGru-FCN 
is approximately close to the true value, with a relative error 
between 0% and 8%, indicating a good overall fitting effect. 
This study provides a new method for the design and 
manufacturing of intelligent insoles. By combining the GR 
algorithm, it can achieve recognition of walking posture and 
optimization of pressure distribution, thereby improving 
walking comfort and reducing foot pressure. 

V. CONCLUSION 

This study optimized BPRSWDs, including insoles and 
ankle exoskeletons, through 3D-PT design, and combined them 
with the GR algorithm to achieve individual identity 
recognition and gait analysis. This study used a dual track 
treadmill platform and evaluated the decompression support 
effect of ankle exoskeletons through comparative experiments 
with EMGS. Meanwhile, the pressure reducing effect of the 
intelligent insole was verified through static plantar pressure 
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experiments. The results showed that compared to the natural 
state, the EMGS integral values of the gastrocnemius and 
tibialis anterior muscles decreased by 5.4% and 3.6% 
respectively when walking with exoskeletons. This indicated 
that the contraction characteristics of the lower limb muscles 
had been weakened, and the ankle exoskeleton had a certain 
assisting effect. In addition, the ASS and multi stiffness 
characteristics of smart insoles to some extent reduced plantar 
pressure. In terms of GR algorithm, the accuracy of 
ConvBiGru-FCN reached 95.26%, which was 2.03% higher 
than FCN. Moreover, the study also processed the plantar 
pressure signal through fuzzy logic, achieving an analysis of the 
proportion of SSP and double support phases during walking. 
In summary, this study achieved the optimization design of 
BPRSWDs through the fusion of 3D-PT and GR algorithms, 
providing useful references for research in the fields of GR and 
body decompression support. However, there are still some 
limitations to this study, such as a small sample size and the 
need to improve the generalization ability of the GR algorithm. 
Future research can further expand the sample size, enhance the 
generalization ability of the GR algorithm, and explore more 
optimization design solutions to achieve more precise and 
intelligent design of BPRSWDs. 
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