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Abstract—In the context of the rapid expansion of the Internet 

of Things, information security management has become 

particularly crucial. In response to the performance bottleneck of 

traditional Raft consensus algorithms, this study proposes an 

improved Raft algorithm that combines density noise spatial 

clustering algorithm and vote change mechanism, aiming to 

improve the quantity processing efficiency and consistency of 

Internet of Things systems in large-scale environments. Firstly, a 

density noise spatial clustering algorithm is added to the 

traditional Raft algorithm to partition all consensus nodes into 

multiple sub clusters. Subsequently, a vote change mechanism is 

introduced to optimize the leadership election process. Finally, an 

Internet of Things information security management model is 

built using the improved Raft algorithm. The results showed that 

the improved Raft algorithm could complete 500 client requests in 

just 9.5 minutes of consensus trading time. The log replication 

accuracy of the management model built using this algorithm 

under four bandwidth conditions of 0.5Mbps, 5Mbps, 50Mbps, 

and 500Mbps was as high as 0.98, 0.99, 0.98, and 0.97, respectively. 

Therefore, the designed consensus algorithm not only has good 

data processing capabilities, but the model built using this 

algorithm can also achieve good performance in practical 

applications. 

Keywords—Blockchain; consensus algorithm; Internet of 

Things; information; management; raft 

I. INTRODUCTION 

With the popularization of the Internet of Things (IoT), from 
smart home to industrial automation, countless devices are 
connected through the Internet, producing a large amount of 
data. The value of these data is enormous, but it also raises 
serious concerns about security and privacy, such as 
unauthorized data access, data tampering, and device 
manipulation [1-2]. In this context, a powerful and reliable 
Information Security Management (ISM) system is needed to 
protect this data. Consensus algorithms play a crucial role in 
this process, ensuring that multiple nodes in the network reach 
consensus on the authenticity and consistency of data without 
central authority [3]. However, with the surge in the number of 
IoT devices, traditional consensus algorithms such as Raft face 
challenges in processing efficiency and scalability [4-5]. 
Therefore, improving these algorithms and effectively applying 
them to IoT-ISM has become an urgent issue that needs to be 
addressed. In the context of the rapid development of the IoT, 
although the Raft consensus algorithm has been widely used in 
many fields, its efficiency and scalability in large-scale and 
highly dynamic environments still have obvious limitations. 
Most existing research focuses on improving the efficiency and 
security of consensus algorithms, however, these studies often 
only focus on the consensus algorithm itself, without involving 

comprehensive solutions for applying it to IoT-ISM. The aim of 
this study is to enhance the efficiency and consistency of Raft 
consensus algorithm for processing large numbers of data nodes 
in IoT environment by improving it. The objective of this study 
is to design and implement an improved Raft algorithm 
combining Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN) and Vote Change Mechanisms (VCM) 
to improve the processing efficiency and data consistency of 
IoT-ISM. The importance of this paper is that it can 
significantly improve the data processing capabilities and 
security of IoT devices, providing practical solutions and 
theoretical basis for the sustainable development of IoT 
technology. 

The main contribution of this study is to propose an 
improved Raft consensus algorithm combining DBSCAN and 
VCM. This improvement has the dual benefit of optimizing 
data processing efficiency and system consistency in the IoT-
ISM, as well as corroborating the significant effect of the 
algorithm on improving log replication accuracy and reducing 
Consensus Transaction Time (CTT). In addition, this study also 
constructs an improved Raft algorithm based on the IoT-ISM 
model, which demonstrates superior performance in different 
network bandwidths and complex environments. Consequently, 
this study not only offers an efficacious technical solution for 
the ISM of the IoT, but also provides a novel perspective and 
empirical data to support the research of consensus algorithms. 

The structure of this paper is as follows: The first part 
reviews the relevant work, discusses the existing consensus 
algorithm and its application in the IoT-ISM, and points out the 
shortcomings of the existing research. The second part details 
the design of the improved Raft consensus algorithm, including 
the integration of DBSCAN and the introduction of VCM. The 
third part describes the construction process of the IoT-ISM 
model based on the improved Raft algorithm, and shows the 
specific framework of the model. The fourth part verifies the 
performance of the improved algorithm and model through 
experiments, including the evaluation of key indicators such as 
CTT, log replication accuracy and system adaptability. Finally, 
the paper summarizes the full text and discusses the theoretical 
and practical significance of the research results. At the same 
time, the future research direction is prospected. 

II. RELATED WORKS 

To improve the correctness and immutability of all 
transactions in blockchain, many experts have optimized 
consensus algorithms. Rong B et al. explored the optimization 
strategy of Raft consensus algorithm in the rapid growth of 
distributed clusters and the rapid decline of throughput, and 
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proposed a federal restructuring committee Raft consensus 
algorithm. This algorithm was based on federated 
reconstruction technology, which trained, updated, and 
evaluated the feature dataset model of Raft nodes, selected 
nodes with better performance, constructed a committee 
mechanism, and improved the quality and speed of elections. 
At the same time, to address the inconsistency and security 
issues in federated aggregation, a semi-asynchronous buffering 
mechanism and defense strategies against malicious node 
attacks have been designed. The effectiveness of this algorithm 
has been validated in consensus clusters [6]. Raft consensus 
algorithm is a key technology for state replication in distributed 
systems. The state updates in Raft consensus algorithm are 
influenced by the leader node, and the system response time is 
also affected by the delay between nodes. Choumas K et al. 
proposed a mathematical model to estimate the waiting time 
range that affects the probability of leadership elections in Raft 
consensus algorithm, aiming to reduce the expected response 
time of the system. The performance of the model was validated 
through the open-source Raft testing platform in the article, 
which showed that optimizing the interval time can improve the 
probability of selecting leader nodes in the Raft consensus 
algorithm, thereby optimizing the node selection results [7]. To 
overcome the scalability limitations and high cost issues of 
blockchain applications in IoT systems, Guo H et al. proposed 
a consensus protocol algorithm with a hierarchical structure and 
location awareness, referred to as LH-Raft. It confirmed the 
scalability of LH-Raft in large-scale IoT applications. This 
algorithm could effectively reduce communication costs, 
consensus latency, and protocol time [8]. Aiming at the 
problems of vote falsification and malicious election of 
candidate nodes existing in the traditional Raft consensus 
algorithm, Tian S et al. proposed a new consensus algorithm 
combining zero-trust mechanism and secret sharing technology, 
which was recorded as VSSB-Raft. This algorithm achieved 
zero-trust through monitoring nodes and secret sharing 
algorithms, without relying on hidden trust between nodes. It 
also used the SM2 signature algorithm to strengthen 
authentication before data usage, ensuring data security. In 
addition, by introducing named data network, the 
communication mode between nodes was redesigned to ensure 
the quality of node communication. The results demonstrated 
that VSSB-Raft consensus algorithm achieved high throughput 
and low consensus delay while maintaining algorithm 
complexity, effectively improving system security and 
efficiency [9]. 

IoT environments typically involve a large number of 
devices and sensors that generate, collect, and exchange large 
amounts of data. In this environment, ensuring the security, 
privacy, and integrity of data is a major challenge. Khan A et al. 
proposed a novel blockchain architecture BHI-IoT for 
electronic health data security. This architecture aimed to 
enhance network resources and trust in industrial IoT by 
optimizing data management and distributed layered 
architecture of medical wireless sensor networks. BHI-IoT 
adopted NuCypher threshold re-encryption mechanism to 
protect data, utilizing customized lightweight blockchain and 
digital signatures with multiple proof of work and multiple 
proof of rights to reduce resource consumption and storage 
burden. This framework could effectively improve the security 

and efficiency of IoT systems in the electronic health industry 
[10]. Hasan N et al. proposed a blockchain driven network 
physical system. This system aimed to achieve ISM and 
lightweight data management in IoT systems by utilizing smart 
contracts and peer-to-peer databases. The system solved data 
storage and transmission problems through the integration of 
private blockchain and intelligent device micro-controllers, and 
demonstrated the application effect of the system in food supply 
chain traceability [11]. In the medical field, IoT faced 
challenges in patient information privacy and data integrity. 
ElRahman S A et al. proposed an IoT-Edge framework that 
integrates blockchain technology to securely exchange data, 
ensure data integrity and privacy. This framework allowed IoT 
devices to remotely monitor patient status while ensuring 
secure transmission and storage of patient data. User friendly 
system design provided necessary tools for information 
integrity and confidentiality. After simulation testing, the 
framework has proven its feasibility in medical applications 
[12]. Aiming at the trust management challenges caused by 
limited bandwidth and long latency in underwater IoT, Jiang J 
et al. proposed a dispute adjudication method to deal with trust 
recommendation conflicts, and developed a new trust 
management mechanism based on this. The mechanism 
included three stages: trust calculation, trust recommendation 
and trust evaluation. By collecting trust evidence such as packet 
transmission rate and combining with incentive mechanism 
based on prisoner's dilemma, the neighbor was encouraged to 
participate in trust recommendation. Simulation results showed 
that this mechanism was superior to existing studies in terms of 
accuracy and robustness [13]. 

In summary, consensus algorithms play a crucial role in 
distributed computing and blockchain technology, and many 
experts have conducted a series of optimization studies on 
consensus algorithms. Currently, most research only focuses on 
the consistency and integrity issues of consensus algorithms, 
and few experts have conducted joint research on consensus 
algorithms and IoT's ISM. Based on this background, this study 
aims to optimize Raft consensus algorithm by combining 
clustering algorithms and VCM, and use optimization 
algorithms to build a complete IoT-ISM model, aiming to 
further improve the storage and privacy issues of IoT big data. 

III. IOT-ISM BASED ON IMPROVED CONSENSUS 

ALGORITHM 

To ensure the privacy and security of IoT information, this 
study first optimizes the traditional Raft consensus algorithm 
by using the DBSCAN algorithm and VCM to change its 
election mechanism. By using a multi-cluster structure to 
increase the number of leaders and distribute the load of the 
entire consensus system, the efficiency of the algorithm is 
improved. On this basis, a complete IoT-ISM model is 
constructed using an improved Raft consensus algorithm. 

A. Improved Raft Consensus Algorithm Design Integrating 

DBSCAN and VCM 

In Raft consensus algorithm, all nodes in the cluster are 
divided into three roles: leader, follower, and candidate. At the 
beginning, all nodes are followers. If the follower does not 
receive information from the leader within a certain period of 
time, it will become a candidate and start a new round of 
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elections. Once a leader is selected, the leader node will be 
responsible for managing client requests and copying them as 
log entries to other nodes. It is only when these log entries are 
stored by the majority of nodes that the operations in question 
can be committed and applied to the state machine of each node. 
In Raft consensus algorithm, term is a very important concept. 

Term is a logical clock used in Raft consensus algorithm to 
distinguish different time periods, mainly used to solve the 
problems of leader election and log replication in distributed 
systems. Fig. 1 shows the term structure and node transition 
process. 

Election Normal operation

Term 1

Election Normal operation

Term 2

No emerging leader

Term 3

Election Normal operation

Term 4

Terms(a) Term of office

FollowerStarts up Candidate

Times out, starts election

Receives votes form 

majority of servers

Discovers server with higher term

Leader

Discovers current leader or new term

(b) Three state transitions of nodes

 

Fig. 1. Term structure and node transition diagram. 

In Fig. 1 (a), each term represents a period of time, such as 
Term1, Term2, Term3, etc. During this period, a node in the 
cluster will act as the leader to coordinate the replication of logs. 
The term of office is identified by consecutive integers, and the 
term number increases every time a new leader election occurs. 
Each leader node has a certain period of tenure, during which 
the leader node will perform leadership actions. During a term, 
only one leader will be elected. If a leader loses contact with 
most nodes for some reason, a new term will begin and a new 
round of leader elections will be held. In Fig. 1 (b), all nodes of 
Raft will default to the follower state at startup. If the follower 
does not receive the leader's information within the scheduled 
time, they will become candidates and initiate a new round of 
elections by increasing their term number and requesting other 
nodes to vote. If the candidate receives a majority of votes, they 
become the leader. If a candidate receives information from the 
current leader or does not receive a majority of votes, the 
candidate will either retreat to their followers or start a new 
round of elections. Considering that traditional Raft consensus 
algorithm heavily relies on the performance of the leader node, 
the performance of traditional Raft consensus algorithm will be 
affected as the number of follower nodes continues to increase. 
Therefore, this study proposes an improved Raft consensus 
algorithm that integrates DBSCAN and VCM, and the 
improved algorithm is referred to as DBSCAN-Raft. The 
flowchart is Fig. 2. 

In Fig. 2, the DBSCAN-Raft algorithm first uses clustering 
methods to divide all consensus nodes into multiple sub clusters. 
Each sub-cluster elects a sub-leader through Raft, with the 
remaining nodes serving as followers. These sub-leaders then 
form the main cluster and execute the Raft algorithm as a whole. 
To avoid deadlock caused by competition among multiple 
candidates, VCM is introduced. When no candidate receives 
more than half of the votes, the candidate with the highest 
number of votes will become the leader. By using a multi-
cluster structure to increase the number of leaders and distribute 
the load of the entire consensus system, algorithm efficiency 
can be improved. 

Start

Cluster partitioning

Independent elections 
for each cluster

Are there 
multiple nodes competing with

 each other？

Vote change 
mechanism

Select the main leader and 
form the main cluster

Copy log

Y

N

End

 

Fig. 2. Flowchart of the operation of DBSCAN-Raft. 

In cluster analysis, it is assumed that there is a dataset X  
with dimension D  and n  data points. The expression of 
X  is Eq. (1). 

 ,1 ,2 ,3 ,, , , i i i i i jX x x x x x     (1) 

In Eq. (1), ix  represents the data in the dataset,  1,i n . 
j  represents the dimension in which each data is located, 

 1,j D . According to the similarity between data points, the 
data is divided into groups as shown in Eq. (2). 

 1 2, , , kC C C C     (2) 

In Eq. (2), C  represents the data group, and k  
represents the category of the data group. When dividing data 
groups, the constraints in Eq. (3) need to be met. 
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

   
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p

k

P q

C

C C C X

C C p q

   (3) 

In Eq. (3), p  and q  represent two different groups, 

 , 1,p q k , respectively. There are a total of three constraints 
that need to be met in Eq. (3). Firstly, each group is not an empty 
set and must contain at least one data. Secondly, the union of all 
grouped sets is the entire dataset. Thirdly, there is no inclusion 
relationship between each group, meaning that one data belongs 
only to one group. In DBSCAN, assuming the domain of data 

point a  is  N a , its expression can be expressed as Eq. (4). 

    ,   sN a b D d a b    (4) 

In Eq. (4), sD  represents the dataset. b  represents 

another data point.  ,d a b  represents the distance between 

a  and b .   represents the field. The calculation of density 
is Eq. (5). 

    a N a        (5) 

In Eq. (5),   a  represents the density value of a . The 
density value reflects the number of data points included in the 
  domain. The expression for the core point is Eq. (6). 

  MinPts a      (6) 

In Eq. (6), MinPts  represents the density threshold. When 
equation (6) holds, then a  will become the core point. The 
boundary points is expressed as Eq. (7). 

 

 

MinPts



 




a

a N b
     (7) 

In Eq. (7), when a  satisfies the conditions in Eq. (7), a  
becomes a non-core point, i.e. a boundary point. Due to 

 a N b , b  will become the core point at this time. The 
expression of noise points is Eq. (8). 

  MinPts a      (8) 

In Eq. (8), when a  is neither the core point nor the 
boundary point, it is recorded as a noise point. Assuming that 

DBSCAN has a set of lC  that satisfies the clustering 
conditions as shown in Eq. (9). 

,




 
 

l s

l

l

C D

C

a b C

    (9) 

In Eq. (9), when lC  is non-empty and belongs to dataset 

sD , two conditions will be met. Firstly, if  la C  and the 

density from a  to b  can reach, then there exists  lb C . 

Secondly, if ,  la b C , it indicates that a  and b  are 
connected in density. Using kernel density estimation method 
to optimize the value of  , the calculation is Eq. (10). 

   
1

1ˆ



 
n

h h i

i

f x K x x
n

      (10) 

In Eq. (10),  ˆ
hf x  represents the probability density 

function estimated using sample data at data x .  K  
represents the kernel function, which is generally represented 

using a standard Gaussian function [14]. h  represents the 
bandwidth parameter used to control the width of the kernel 
function, and its determination formula is Eq. (11). 

 
   

22 4 4

41

4

     
    

 

 K x dx h f x dx
MISE h h

nh nh
(11) 

In Eq. (11),  MISE h  represents the mean square error 

value of kernel density estimation.  2K x dx  represents the 

square integral of  K , used to measure the smoothing 
characteristics of the kernel function itself.   represents the 

standard deviation of the data.  
2

   f x dx
 represents the 

integral of the square of the second derivative  f x  of the 
probability density function. Using the rule of thumb to 
optimize Eq. (11), the optimal solution formula for   is 
ultimately obtained as shown in Eq. (12). 

1

54

3


 
   

 
h

n
    (12) 

In Eq. (12), h  represents the optimal solution   
obtained. By using the above formula, node clustering can be 
completed, and the topology diagram of node clustering is Fig. 
3. 

In Fig. 3, after completing cluster partitioning, the core 
points and their associated boundary points form a separate 
cluster, and Raft consensus algorithm is used for consensus 
operation. For noise points that have not been classified into 
any specific cluster, this study incorporates them into the main 
cluster to participate in the consensus process. In addition, 
during the voting stage of leader elections, to solve the situation 
of deadlock among multiple candidate nodes, this study designs 
a VCM strategy, through which the candidate node with the 
most votes can obtain the leader position. 

B. Construction of IoT-ISM Model Based on DBSCAN-Raft 

After optimizing the Raft algorithm using DBSCAN and 
VCM, this study further builds an IoT-ISM model based on the 
improved DBSCAN-Raft. It aims to protect user data privacy 
and store user information through this model. Fig. 4 shows the 
constructed IoT-ISM model framework. 
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Fig. 3. Node clustering topology. 

In Fig. 4, a complete IoT-ISM model mainly consists of a 
Data Processing Layer (DPL), Clustering and Annotation Layer 
(C/AL), Consensus Mechanism Layer (CML), Secure 
Communication Layer (SCL), Main Cluster Management 
Layer (MCML), Decision and Response Layer (D/RL), and 
Monitoring and Maintenance Layer (M/ML) [15-16]. DPL is 
segmented into data collection and pre-processing. Firstly, it 
deploys device nodes on IoT devices, collects data through the 
devices, processes input data from sensors, removes noise and 
outliers, and standardizes data formats. Finally, meaningful 
information is extracted from the raw data as features. C/AL 
mainly clusters preprocessed data to determine core points, 
boundary points, and noise points. In addition, this layer also 
needs to annotate the data points in the clustering results to 
identify key and non key data. CML executes DBSCAN-Raft 
and selects the leading node to complete log replication. SCL 
aims to ensure the encryption and security of data during 
transmission, ensuring that only authorized nodes can 
participate in the consensus process. MCML aims to 
incorporate all sub-leader nodes into the main cluster and elect 
the main leader through DBSCAN-Raft. The main leader then 
coordinates with each sub-leader node to synchronize the status 
information of each sub-cluster. D/RL will automatically 
execute business logic based on consensus results, and execute 
corresponding security measures based on decisions, such as 
data backup, recovery, and intrusion response. M/ML will 
monitor the real-time operation status of the IoT environment, 
regularly maintain and update the system to adapt to 
environmental changes and new security threats [17]. 

Within the consensus layer composed of DBSCAN-Raft, 
data is stored between nodes through logs. The leader node is 
responsible for various requests initiated by the client and 
carries out a series of log copying and confirmation processes. 
The core purpose of this process is to ensure that the data of all 
nodes in the cluster remains synchronized. When a client 
initiates a transaction request, it is first processed by the leader 
node, which is then responsible for propagating these log 
entries to the follower node. To maintain data consistency in the 
system, the leader node will follow two basic principles: First, 
it will not delete any client request records, and second, the 
follower node will only synchronize log data from the leader 
node. The process of log replication is Fig. 5. 

The log replication in Fig. 5 needs to follow the following 
steps. Firstly, the request initiated by the client contains pending 
commands to be executed. Next, the leader adds the command 
as a new log entry to their log file and broadcasts it to other 
follower nodes through remote procedure call communication, 
requesting them to copy the entry. After the follower node 
completes replication, it will provide feedback to the leader on 
its replication status. Once the leader receives confirmation of 
successful replication from most nodes, it can be considered 
that the log entry replication is complete [18-19]. The leader 
then updates their state machine and reports success to the client. 
On the contrary, if no majority response is received, a failure is 
reported to the client [20-21]. The node state changes under 
normal log replication and the log replication state under 
conflict state are shown in Fig. 6. 

Data Processing 
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Clustering and 
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Consensus 
mechanism layer

Secure communication 
layer

Host group 
management layer

Decision and 
Response Layer

Monitoring and 
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Fig. 4. IoT-ISM model. 
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Fig. 5. Log replication flowchart. 
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Fig. 6. Log replication in node state and conflict state. 

Fig. 6 (a) and (b) show the node state changes under normal 
and abnormal log replication states. In Fig. 6 (a), nodes a and c 
have the longest logs and are eligible to become leaders, while 
nodes b and d are synchronizing logs, while node e stops 
operating due to anomalies. In this consensus model, the log 
with index 7 has been consensus among three nodes, and the 
number of confirmed nodes exceeds more than half of the nodes 
in the cluster [22-23]. Therefore, log entries below number 7 
are considered as consensus and cannot be modified. In 6 (b), 
the logs of each node may not be consistent with the logs of the 
new leader. The task of a leader is to restore consistency by 
having followers abandon conflicting logs and synchronize 
their logs. The newly selected leader first aligns with the logs 
of other nodes. If a mismatch is found, consistency checks are 
performed in the additional log request. If it fails, the log 
number is not updated and is gradually rolled back to find a 
matching point. Once it is found, followers will remove the 
conflict log, adopt the leader's log, and reach a consensus. In 
the example shown in Fig. 6 (b), node a as the leader does not 
need to change, node b remains in its current state, node c 
deletes the last log entry, node d deletes two logs with a term of 
4, and node e deletes one log with a term of 4. After completing 
their respective deletion tasks, each node will synchronize the 
remaining logs of the leader to ensure data consistency and 
system security. 

IV. PERFORMANCE TESTING OF DBSCAN-RAFT AND 

ANALYSIS OF THE APPLICATION EFFECT OF ISM MODEL 

To demonstrate the effectiveness of the designed Raft 
consensus algorithm and ISM models, this study first tests the 
performance of DBSCAN-Raft. On this basis, the application 
effect of the ISM model built using DBSCAN-Raft in practical 
problems is further verified. 

A. DBSCAN-Raft Performance Testing 

To ensure that all consensus algorithms can be tested in the 

same experimental environment and effectively avoid 
experimental errors, the experimental testing environment 
shown in Table I is constructed in this study. 

TABLE I. EXPERIMENTAL TEST ENVIRONMENT 

Experimental equipment Value 

CPU Intel Core i9-10900K 

GPU NVIDIA RTX 3080 

Memory 4GB RAM 100GB SSD 

Graphics Memory Ubuntu14.04 64-bit 

Systems Windows 10 Python 3.8 

Software Hyperledger Fabric and Caliper 

Table I provides the specific settings of the experimental 
testing environment. The experiment involves setting up 500 
client requests and requesting consensus from the cluster at a 
speed of 200tps. Traditional Raft and Practical Byzantine Fault 
Tolerance (PBFT) are used as comparative algorithms to obtain 
the election and CTT of Raft, PBFT, and DBSCAN-Raft under 
the same experimental conditions, as shown in Fig. 7. 

Fig. 7 (a) and 7 (b) show the Election Elapsed Time (EET) 
and CTT of the three algorithms, respectively. In Fig. 7 (a), as 
the Number of Nodes (NN) gradually increases from 0 to 50, 
the EET of Raft, PBFT, and DBSCAN-Raft all show a 
continuous upward trend. Compared to PBFT and DBSCAN-
Raft, Raft has the largest increase in amplitude. When the NN 
is 50, the EET of Raft, PBFT, and DBSCAN-Raft are 36.8ms, 
28.9ms, and 19.7ms, respectively. In Fig. 7 (b), when Raft, 
PBFT, and DBSCAN-Raft finally completes 500 client requests, 
the CTTs used are 26.6 minutes, 18.4 minutes, and 9.5 minutes, 
respectively. 
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Fig. 7. EET and CTT for different consensus algorithms. 

Fig. 8 shows the throughput of Raft, PBFT, and DBSCAN-
Raft when processing different NNs. When NN increases from 
10 to 100, the throughput values of Raft, PBFT, and DBSCAN-
Raft all decrease, but the decrease in DBSCAN-Raft is the 
smallest. When the NN is 10/100, the throughput sizes of Raft, 
PBFT, and DBSCAN-Raft are 23.6tps/6.9tps, 27.1tps/11.4tps, 
and 28.8tps/17.5tps, respectively. 

Fig. 9 (a) and 9 (b) show the energy consumption and 
stability curves of the three consensus algorithms, respectively. 
In Fig. 9 (a), when NN increases from 0 to 100, the energy 
consumption values of Raft, PBFT, and DBSCAN-Raft will 
fluctuate continuously in different ranges. Compared to Raft 
and PBFT, DBSCAN-Raf has the smallest range of energy 
consumption fluctuations, within 20J. The energy consumption 
fluctuations of Raft and PBFT are within 50J and 40J, 
respectively. In Fig. 9 (b), the three algorithms gradually reach 

a stable state after multiple training. The training times for Raft, 
PBFT, and DBSCAN-Raft to reach a stable state are 74, 46, and 
31, respectively. 
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Fig. 8. Throughput of different consensus algorithms. 
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Fig. 9. Energy consumption and stability of different consensus algorithms. 

Table II presents the fitness values of three consensus 
algorithms under extremely low bandwidth (<1Mbps), low 
bandwidth (1-10Mbps), medium bandwidth (10-100Mbps), and 
high bandwidth (>100Mbps). The fitness values of Raft under 
four bandwidth conditions are 0.93, 0.87, 0.82, 0.78, PBFT is 
0.96, 0.91, 0.88, 0.82, and DBSCAN-Raft is 0.92, 0.95, 0.96, 
and 0.94, respectively. 

B. Analysis of the Application Effect of Iot-ISM Model 

Three different IoT-ISM models are constructed using Raft, 
PBFT, and DBSCAN-Raft algorithms. The application 
performance of the log replication module in the model is tested, 

and the accuracy and latency of log replication for three ISM 
models are shown in Fig. 10. 

Fig. 10 (a) and 10 (b) show the log replication accuracy and 
latency of three ISM models under different bandwidths, 
respectively. In Fig. 10 (a), when the actual network bandwidth 
is 0.5Mbps, 5Mbps, 50Mbps, and 500Mbps, the ISM model 
designed by DBSCAN-Raft performs the best in log replication 
accuracy and has the lowest latency. The replication accuracy 
is as high as 0.98, 0.99, 0.98, and 0.97, with delays of 1.89ms, 
3.04ms, 4.72ms, and 6.95ms, respectively. The comparison 
results in Fig. 10 show that DBSCAN-Raft model has better log 
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replication accuracy and response time than Raft and PBFT 
model at low bandwidth. This is because the DBSCAN-Raft 
algorithm performs better in bandwidth-constrained 
environments by optimizing node election and clustering 
management, reducing unnecessary data transfers and re-
elections. When the bandwidth is increased to 50Mbps and 
500Mbps, the performance of all models improves, but 
DBSCAN-Raft still maintains the highest accuracy and low 
latency. This indicates that DBSCAN-Raft algorithm can 
effectively utilize high bandwidth and reduce data loss and 
errors when processing large amounts of data transmission, thus 
maintaining high operational efficiency and system stability. It 
indicates that DBSCAN-Raft algorithm is particularly suitable 
for environments with large bandwidth variations and can 
maintain high performance under different network conditions. 
For the unstable network environment common in IoT 
applications, the ISM model using DBSCAN-Raft algorithm 
can provide more reliable and efficient data processing 
capabilities. 

TABLE II. ADAPTATION OF DIFFERENT CONSENSUS ALGORITHMS UNDER 

DIFFERENT BANDWIDTHS 

Type Bandwidth range Adaptation value 

Raft 

<1Mbps 0.93 

1~10Mbps 0.87 

10~100Mbps 0.82 

>100Mbps 0.78 

PBFT 

<1Mbps 0.96 

1~10Mbps 0.91 

10~100Mbps 0.88 

>100Mbps 0.82 

DBSCAN-Raft 

<1Mbps 0.92 

1~10Mbps 0.95 

10~100Mbps 0.96 

>100Mbps 0.94 

 

Bandwidths/Mbps
(a) Log replication accuracy for different models 

at different bandwidths

0.70

A
cc

u
ra

cy

0.80

0.90

L
at

en
cy

/m
s

0.85

0.75

Raft PBFT DBSCAN-Raft

20

40

60

50

30

10

5050.5 500

(b) Log replication delay for different models 

at different bandwidths

0

Bandwidths/Mbps

0.95

1.00

Raft PBFT DBSCAN-Raft

5050.5 500

 

Fig. 10. Accuracy and latency of log replication for three ISM models. 

Table Ⅲ shows the performance of three management 
models obtained by selecting two network types, Personal Area 
Network (PAN) and Wireless Local Area Network (WLAN), 
under different network types. 

TABLE III. PERFORMANCE OF DIFFERENT MANAGEMENT MODELS IN TWO 

NETWORK TYPES 

Type 
Performance 

evaluation index 
Raft PBFT DBSCAN-Raft 

PAN 

Packet loss rate/% 0.106 0.053 0.012 

Throughput/bps 108 132 196 

Transmission 

delay/ms 
1.25 0.68 0.15 

WLAN 

Packet loss rate/% 0.068 0.039 0.008 

Throughput/bps 121 164 238 

Transmission 

delay/ms 
0.87 0.34 0.02 

Table III presents the packet loss rate, throughput, and 
transmission delay of three models under two network types. 
Both in PAN and WLAN, DBSCAN-Raft has lower packet loss 
rate and transmission delay values than Raft and PBFT, and its 
throughput is greater than Raft and PBFT. Among them, 
DBSCAN-Raft performs better in WLAN, with a packet loss 
rate as low as 0.008%, a transmission delay as low as 0.02ms, 

and a throughput of up to 238bps. 

V. DISCUSSION 

Aiming at the limitations of Raft consensus algorithm in 
processing efficiency and scalability in IoT environment, an 
improved Raft algorithm combining DBSCAN and VCM is 
designed to improve the quantity processing efficiency and data 
consistency of IoT system. Compared with literature [24], 
although the system proposed in literature [24] performs well 
in enhancing data security, scalability and efficiency still need 
to be improved when dealing with large-scale nodes and highly 
dynamic network environments. In this study, the improved 
DBSCAN-Raft algorithm not only optimizes the coordination 
mechanism between nodes, but also effectively reduces election 
conflicts through the VCM, making it more stable and efficient 
under dynamic network conditions. In addition, Showkat and 
Qureshi have extensively discussed the security architecture of 
IoT through blockchain technology in the literature [25], which 
provides a variety of security strategies but lacks specific 
algorithm implementation and performance testing. This study 
not only proposed the specific algorithm design, but also 
verified the effectiveness of the algorithm through the actual 
simulation test. The results showed that the improved Raft 
algorithm had excellent performance in log replication accuracy. 
For example, under the bandwidth conditions of 0.5Mbps, 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

161 | P a g e  

www.ijacsa.thesai.org 

5Mbps, 50Mbps and 500Mbps, the log replication accuracy 
reached 0.98, 0.99, 0.98 and 0.97 respectively, which was 
significantly better than the traditional Raft algorithm. At the 
same time, the CTT of the algorithm was only 9.5 minutes when 
processing 500 client requests, which was much faster than the 
traditional method. The improvement of these performance 
indicators not only showed the advanced nature of DBSCAN-
Raft algorithm in theory, but also showed its high efficiency and 
high reliability in practical applications. In addition, this study 
also found that through the VCM, the DBSCAN-Raft algorithm 
can effectively maintain the stability and response speed of the 
system even in the network environment with intense node 
competition. 

In summary, the proposed DBSCAN-Raft algorithm 
provides a new idea and solution for solving the performance 
bottleneck of consensus algorithm in the IoT environment. 
Future research could further investigate the impact of different 
types of IoT devices and network conditions on the consensus 
algorithm, as well as the potential for enhancing the algorithm's 
efficiency and scalability while maintaining security. 

VI. CONCLUSION 

To address the ISM challenge of massive IoT data, this 
study optimized the traditional Raft consensus algorithm and 
proposed a new DBSCAN-Raft algorithm, which was then used 
to build an IoT-ISM model. Experiments have shown that 
DBSCAN-Raft performed better than Raft and PBFT in 
indicators such as EET, CTT, and throughput. When NN was 
50, the EET of DBSCAN-Raft was 19.7ms, and when NN was 
500, the CTT of DBSCAN-Raft was 9.5min. When NN 
increased from 10 to 100, the throughput of DBSCAN-Raft 
decreased from 28.8tps to 17.5tps, and the energy consumption 
fluctuated consistently within 20J, with a much smaller 
decrease than Raft and PBFT. In addition, DBSCAN-Raft had 
the highest fitness values at low bandwidth, medium bandwidth, 
and high bandwidth. The model built using DBSCAN-Raft 
could achieve log replication accuracy of 0.98, 0.99, 0.98, and 
0.97 at four bandwidth values of 0.5Mbps, 5Mbps, 50Mbps, 
and 500Mbps, respectively. Moreover, the model could achieve 
a packet loss rate of 0.008%, a transmission delay of 0.02ms, 
and a throughput of 238bps in WLAN. Considering the energy 
limitations and computing power of IoT devices, future 
research should further explore the impact of different types of 
IoT devices and network conditions on consensus algorithms. 
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