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Abstracts—Urban traffic congestion is becoming a more 

serious issue as urbanization picks up speed. This study 

improved the conventional K-means method to create a new 

traffic flow prediction algorithm that can more accurately 

estimate the city's traffic flow. Firstly, the traditional K-means 

algorithm is given different weights by weighting, so as to analyze 

the traffic congestion in five urban areas of Chengdu by changing 

the weight values, and based on this, a traffic flow prediction 

model is further designed by combining with Holt's exponential 

smoothing algorithm. The findings showed that the weighted 

K-means method is capable of accurately identifying the patterns 

of traffic congestion in Chengdu's five urban regions and the 

prediction model combined with Holt's exponential smoothing 

algorithm had a better prediction performance. Under the 

environmental conditions of high traffic flow, when the time was 

close to 12:00, the designed model was able to obtain a prediction 

value of 9.81 pcu/h, which was consistent with the actual 

situation. This shows that this study not only provides new ideas 

and methods for traffic management in smart cities but also 

provides a reference value for the design of traffic prediction 

models. 
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I. INTRODUCTION 

In the current context of rapid urbanization, with the 
continuous growth of urban population and motor vehicles, 
the urban transportation system is facing great pressure. 
Traffic congestion (TC) not only affects people's daily travel 
and increases travel costs, but also negatively affects the 
sustainable development of cities. Especially in China's new 
first-tier cities, TC has become a prominent social problem, 
which not only consumes a lot of time and resources but also 
exacerbates environmental pollution and poses a challenge to 
economic development and social stability [1-2]. Therefore, 
one of the most important problems in modern urban 
management is figuring out how to efficiently manage and 
optimize urban traffic while also increasing the effectiveness 
of the traffic system. 

The development of modern information technology, 
especially the application of Internet of Things, cloud 
computing, and big data analytics, provides new solutions for 
traffic management in smart city (SC). In the context of SC 
construction, in-depth study of urban traffic data (TD) using 
big data analytics to predict and mitigate TC is of great 
significance for improving urban traffic management and 
realizing the intelligence and efficiency of the traffic system 
[3-4]. However, traditional traffic flow forecasting (TFF) 
methods often fail to fully take into account the 

spatio-temporal characteristics and complexity of TD, 
resulting in limited accuracy and usefulness of the prediction 
results [5-6]. Although existing research has developed a 
variety of traffic flow prediction models, most still rely on 
traditional algorithms such as single time series analysis or 
basic machine learning methods. These traditional methods 
often ignore the spatial-temporal characteristics of traffic data 
when dealing with complex urban traffic data, which leads to 
the limitation of accuracy and practicability of prediction. In 
addition, few existing studies take into account the importance 
of handling outliers and weight adjustment in traffic data, 
which further limits the effectiveness of the model in practical 
applications. 

In order to solve this problem, a smart city traffic data 
analysis and prediction method based on weighted K-means 
clustering (K-means) is proposed. Taking Chengdu as an 
example, this paper first analyzes the traffic flow data from 
2020 to 2023 by using the weighted K-means algorithm, and 
explores the traffic congestion types and traffic congestion 
coefficients in five urban areas of Chengdu. On this basis, the 
traffic flow prediction model is innovatively built by 
combining Holt algorithm, aiming to further improve the 
accuracy and practicability of traffic flow prediction. The 
improved traffic flow prediction method has significant 
advantages in dealing with complex traffic data with 
space-time dependence. Through comparative experiments, it 
is proved that this method not only improves the model's 
ability to recognize traffic congestion patterns, but also 
significantly improves the prediction accuracy by combining 
with Holt exponential smoothing algorithm. Therefore, this 
study not only fills the gap of existing research but also 
provides a more accurate and practical forecasting tool for 
urban traffic management, which has important theoretical and 
practical application value. 

The study is organized into five sections: an analytical 
review of the relevant research work is included in Section II, 
and a quick introduction to the entire book is provided in 
Section I. Section III is the optimization design of the 
prediction method, Section IV is the testing of the algorithm 
performance. Discussion and conclusion is given in Section V 
and Section VI respectively. 

II. RELATED WORKS 

K-means (KM) is a sort of clustering technique that is 
currently frequently utilized for data analysis in many 
different industries. The authors Nguyen et al. introduced a 
novel KM modification designed to tackle the difficulties 
associated with categorical data clustering. Furthermore, the 
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study's findings demonstrated that, in comparison to the 
current algorithms, the new method's performance has a 
greater degree of reliability [7]. Daviran et al. combined a 
harmonic search, artificial bee colony meta-heuristic 
optimization algorithm with KM with the aim of solving one 
of the challenges of unsupervised clustering methods for 
mapping of mineral exploration potentials. The results of the 
study showed that the methodology used was able to pick 
appropriate clustering centroids and bring together objects in 
the same geospatial space for analysis [8]. A credit rating 
indicator system was developed by Chen et al. for online 
lending platforms. It consists of two qualitative and twelve 
quantitative indications that are representative of Chinese 
culture. The rotational component matrix's loadings were 
further refined into the online lending platform operation scale 
factor, capital dispersion factor, security factor, and 
profitability factor after factor analysis techniques decreased 
the dimensionality of the 14 indicators. Ultimately, KM was 
employed to group the component scores of every online 
lending platform in order to get the credit rating outcomes. 
The empirical findings demonstrated that, in comparison to 
online loan eye and online loan house, the suggested 
KM-based credit rating approach can more accurately offer 
credit ratings and effectively alert problematic platforms [9]. 

With the rapid development of cities, urban TFF becomes 
more and more important, and building a reasonable TFF 
model can not only warn the congestion pattern in advance, 
but also can be beneficial to the construction of urban road 
network (RN). Sun et al. proposed a method combining the 
K-means algorithm (KMA) and gated recurrent units for 
building short-term TFF models to cope with the effects of 
different TF patterns on the prediction results. The results 
indicated that the model takes into account the diversity of TF 
patterns, improves the prediction accuracy, and solves the 
short-term TFF problem more effectively than a single gated 
cyclic unit network, stacked self-encoder, random forest, and 
support vector machine regression [10]. Wang et al. proposed 
a multi-scale adaptive spatio-temporal prediction model, 
named AST-InceptionNet, aiming to solve the TFF problem in 
intelligent transportation systems with this model. The model 
effectively discovered potential spatio-temporal patterns by 
combining global and local map features, using the Inception 
part to integrate multi-scale spatio-temporal features. 
Experimental results revealed the satisfactory performance of 
AST-InceptionNet [11]. Huo et al. suggested a hierarchical 
TFF network that combines a newly designed long-term 
temporal Transformer network with a spatio-temporal GCN in 
order to address the over smoothing issue related to graph 
convolutional network (GCN)-based TFF approaches. The 
effectiveness and robustness of the suggested strategy were 
shown by the experimental findings on three publicly 
accessible TF datasets [12]. 

To summarize, there have been a series of researches 
conducted by many experts on the KMA and the TFF problem, 
but most of the researches use neural networks to build TFF 
models. In order to build the TFF model in a targeted way, this 

study takes the five urban areas of Chengdu City as an 
example, and builds the TFF model by improving the KMA, 
aiming to solve the TC problem of Chengdu City better. 

III. TRAFFIC DATA ANALYSIS AND PREDICTION STUDY OF 

SMART CITY BASED ON CLUSTERING ALGORITHM 

With the continuous growth of the number of residents and 
motorized vehicles in cities, the TC problem in large cities has 
attracted more and more attention. This study proposes a TC 
data analysis and congestion type identification method based 
on the WKM clustering algorithm, based on which a TFF 
model is constructed in combination with Holt, aiming to 
further improve the prediction effect of TF. Weighted 
K-means and Holt algorithm are selected for traffic flow 
prediction because traditional K-means have limited 
performance when dealing with high dynamic changes in 
traffic data, while weighted K-means can deal with this 
challenge more effectively through weight adjustment. At the 
same time, Holt algorithm can accurately capture the data 
trend and improve the prediction accuracy. In contrast, the 
commonly used neural network model may not perform well 
when the data is unstable or missing, while the proposed 
method combines the advantages of both and is suitable for 
dealing with complex urban traffic patterns, so as to provide 
more stable and reliable prediction results. 

A. Design of Traffic Data Processing Method based on 

Temporal Clustering 

Temporal clustering technique plays an important role in 
TFF of SC, which can not only analyze and process a large 
amount of TF data, but also improve the prediction accuracy 
and efficiency of traffic prediction models [13]. In this study, 
the TF data of Chengdu city was collected from 2020 to 2023 
for clustering analysis as an example, in order to identify the 
TC patterns in different areas of Chengdu city and the changes 
of its spatial data. By the end of 2023, the resident population 
of Chengdu City will be about 7.16 million, and the number of 
motor vehicles has exceeded six million. Traffic congestion 
index (TCI) is an indicator used to measure the degree of TC 
in a city, which is usually calculated by analyzing data such as 
TF and vehicle speed. The RN structure of Chengdu city and 
the level of TCI are shown in Fig. 1. 

Fig. 1(a) shows the RN structure of Chengdu City, which 
is a composite urban transportation system combining ring 
roads and radial RNs. Since 2006, Chengdu City has also used 
TCI as a key indicator to measure the traffic condition of 
urban roads and released real-time TC information to the 
public through various channels such as the Internet and 
WeChat public number. In Fig. 1(b), according to the value 
range of TCI, the TC situation can be divided into five 
different levels, which are smooth traffic, basic smooth traffic, 
light TC, moderate TC and severe TC. The urban RN's 
functioning and the TF's degree of smoothness can all be 
reflected in TCI over time; a higher value indicates a more 
severe degree of TC. 
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Fig. 1. Road network structure and traffic congestion index pyramid structure in Chengdu. 

100,000 data were randomly selected from the TF data 
from 2020 to 2023 to be analyzed, and the 100,000 data 
collected included Jinjiang, Qingyang, Jinniu, Wuhou, and 
Chenghua districts. The collection interval of each data is 10 
minutes, i.e., the whole day is divided into a total of 144 time 
segments to collect data. Five pieces of data were randomly 
selected from the 100,000 pieces of data collected for display, 
as shown in Table I. 

Some of the data collected are given in Table I. In view of 
reasons such as mechanical equipment failures or operational 
errors, it is inevitable that the raw TCI data will contain 
omissions and anomalies. Therefore, appropriate 
preprocessing of these data is required before carrying out the 
data analysis work. Eq. (1) illustrates the computation 
procedure that is used to fill in the missing data using the 
linear interpolation method [14]. 

 0 1 0 1,2,
1

i I

i
x x x x i I

I
     


  (1) 

In Eq. (1), 1,2,i I  denotes a consecutive time period, 

ix  denotes the missing value in time period i , and 
0x  

denotes the congestion value recorded at time 0. 
1Ix 

 denotes 

the congestion value recorded at time period 1I  . 

The 2-sigma criterion is used in this study to deal with the 
anomalous TDs. Assuming that M  represents the number of 

sampling points (SPs) per day, 144M   is used since the 

interval between the data collection in this study is 10 minutes. 
Let N  be the number of days of observation to get the data 

vector of TCI, and Eq. (2) depicts the expression. 

 1 2, , , 1, 2, ,M

n n n nX x x x n N     (2) 

In Eq. (2), 
nX  denotes the data vector of TCI, 

1 2, , , M

n n nx x x  denotes the data vector of TCI under different 

observation days, respectively, and n  denotes an arbitrary 

value of N . The mean value of TCI under multi-day 

observation time is further obtained from Eq. (2) as shown in 
Eq. (3). 

 1 2
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1 1 1
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, , , , , ,

N N N
M

M
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X x x x x x x
N N N  

 
   

 
    (3) 

In Eq. (3), X  represents the average value of TCI under 

multi-day observation time. 1 2

, , ,
M

x x x  denotes the 

average value of TCI under different time periods, 
respectively. Based on Eq. (2) and Eq. (3) the formula for the 
remaining fluctuation on day n  can be obtained as shown in 

Eq. (4). 

 1 2, , , M

n n n n nr X X r r r      (4) 

In Eq. (4), 
nr  denotes the residual volatility on day one. 

1 2, , , M

n n nr r r  denotes the value of residual volatility under 

different time periods, respectively. Using the sample standard 
deviation m  to represent the square root of 1 2, , , M

n n nr r r , 

1,2, ,m M , the correction formula for outliers is obtained 

as shown in Eq. (5). 
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  (5) 

In Eq. (5), m

nx  denotes the outlier. 

TABLE I. EXAMPLES OF TRAFFIC DATA IN CHENGDU 

ID City center Congestion index Date Time 

23150 Jinjiang district, 7.6 2020.3.2 7:40~7:50 

30264 Qingyang district 8.1 2020.9.24 11:50~12:00 

41581 Jinniu district 6.5 2021.6.13 6:30~6:40 

53294 Wuhou district 5.8 2022.8.15 21:10~21:20 

63248 Chenghua district 6.3 2022.10.6 22:30~22:40 
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B. Traffic Flow Forecasting Based on Weighted 

K-Means-Holt 

KM clustering is a widely used unsupervised learning 
algorithm that uses an iterative approach to partition the 
collection of SPs into subsets of classes, which has the 
advantages of being simple and easy to understand, 
computationally efficient, and suitable for handling large-scale 
datasets [15-16]. This study utilizes KM to complete the 
clustering of the TD SP collection. Additionally, Fig. 2 depicts 
its clustering procedure. 

The clustering process of KMA is shown in Fig. 2. The 
initial clusters need to be selected first, followed by clustering 
the data objects and assigning them to the appropriate clusters. 
Over time, the size of the clusters is continuously adjusted to 
ensure that each object has the same category throughout the 
data set. The KMA is constantly repeated to generate the best 
clusters. 

Assuming that there exists a subset of class K , 

1,2, ,k K . 
1 2, , , kC C C  denotes the set of SPs, the total 

bias of the set of SPs is minimized using the KM clustering 
algorithm, the process is shown in Eq. (6) [17-18]. 

 
2

1 1n k

K M

n k

k X C m

X U
  

      (6) 

In Eq. (6), 
nX  is a sample data of M  dimension, 

denoting the time series (TS) data with M  SPs in a day. 
kU  

is a vector of M  dimension, denoting the clustering center 

of class k . The formula of 
kU  is shown in Eq. (7). 

1

n k

m

k n

X Ck

U x
C 

      (7) 

The traditional KMA, although simple and efficient, faces 
several limitations when dealing with complex TD analysis 
and TFF tasks. To overcome these limitations, this research 
further proposes the WKM algorithm. By giving varying 
weights to distinct features, the WKM algorithm improves its 
ability to handle anomalous data and uneven feature relevance. 
This allows it to perform more accurately and efficiently in 
TD analysis and TFF. Eq. (8) displays the defined equation of 
the coefficient of variation, which is used to quantify the 
degree of dispersion of the collection of SPs. 

m

m

m

CV
x


     (8) 

In Eq. (8), 
mCV  denotes the coefficient of variation at 

time period m . Based on the value of 
mCV , a WKM 

clustering algorithm is further proposed and utilized to 
minimize the total weighted deviation of the clustering centers, 
which is shown in Eq. (9). 

 
2

1 1n k

K M

m n k

k X C m

CV X U
  

      (9) 

In Eq. (9), 
nX   denotes the TS data with M  SPs in a 

day,  1 2, , ,n NX X X X    . 
kU   denotes the weighted 

clustering center of the first class,  1 2, , ,k KU U U U    . The 

formula of 
kU   is shown in Eq. (10). 

1

n k

m

k m n

X Ck

U CV x
C 

      (10) 

To determine the best K -value, this study also used the 

contour coefficient to evaluate the clustering results related to 
the K -value until the best clustering result was selected as 

the final K -value. The expression of contour coefficient is 

shown in Eq. (11). 

 
 max ,

n n

n

n n

b a
s X

a b


     (11) 

In Eq. (11),  ns X   denotes the profile coefficient of 
nX  , 

and 
na  denotes the average Euclidean distance (AED) 

between 
nX   and other samples in the same group. 

nb  

denotes the AED between 
nX   and all the samples in its 

closest group. The average of the profile coefficients of all 
samples is the final profile coefficient, which is calculated as 
shown in Eq. (12). 

     1 2 Ns X s X s X
S

N

    
   (12) 

In Eq. (12), S  denotes the final profile coefficient. 

According to Eq. (6) to Eq. (12) can be used to create the 
WKM clustering method's flowchart, which is depicted in Fig. 
3. 
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Fig. 2. K-means algorithm clustering process. 
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Fig. 3. Flow chart of weighted K-means algorithm running. 

Fig. 3 shows the WKM algorithm's specific operation flow. 
A traffic sample data set is provided first, followed by the 
computation of the set's contour coefficients, the setting of a 
maximum number of clusters, and the initialization of the 
clustering center value. After initialization, the initial 
clustering centers are randomly selected from the traffic 
sample data set and the samples are assigned by minimizing 
the total weighted deviation of the clustering centers. Second, 
the cluster center's position is updated by computing the mean 
value of each class of samples. These two processes are 
continued until the cluster center stays constant. Finally, the 
contour coefficient value is calculated, and when the number 
of cluster centers at this point is greater than the maximum 
number of clusters value then the corresponding clustering 
results are output, otherwise the number of cluster centers is 
adjusted to reclustering. 

The weighted K-means algorithm used in this study 
involves several key parameters, such as weight factor, initial 
selection of cluster center and number of iterations, which 
have a significant impact on the accuracy of prediction results 
and the convergence speed of the algorithm. In addition, the 
initial choice of cluster center has a decisive influence on the 
stability of the final result, and the number of iterations is 
directly related to the operational efficiency of the model. In 
addition to completing the analysis of TD using the WKM 
algorithm to identify different congestion patterns, it is also 
necessary to further build a TF warning model to provide 
real-time warnings of TF speeds to help alleviate TCs. The 
formula for data prediction at a certain time period in the 
future using Holt's exponential smoothing (ES) algorithm is 
shown in Eq. (13). 

 2 h
m h m mx l            (13) 

In Eq. (13), 
m hx 

 denotes the predicted value in period 

m h ,   denotes the damping coefficient, and h  denotes 

the number of predicted dates. 
ml  denotes the horizontal 

smoothing equation, which usually denotes the primary ES 

value for period m . 
m  denotes the trend smoothing 

equation, which usually represents the quadratic ES value of 
the m  period. The specific formula for 

ml  is shown in Eq. 

(14). 

  1 11m m m ml x l         (14) 

In Eq. (14),   denotes the horizontal smoothing 

coefficient, which takes values between 0 and 1. 
mx  denotes 

the observed value in period m . The specific formula for 
m  

is shown in Eq. (15). 

   1 11m m m ml l          (15) 

In Eq. (15),   denotes the trend smoothing coefficient, 

which also takes values ranging from 0 to 1. The TFF 
algorithm that combines the Holt ES algorithm with the WKM 
algorithm is denoted as WKM-Holt, and the operation flow of 
WKM and according to Eq. (13) to Eq. (15) can be obtained as 
shown in Fig. 4. 

The flow chart of the operation of the WKM-Holt 
algorithm is given in Fig. 4. Firstly, a collection of historical 
traffic sample data needs to be given and the clustering is 
calculated according to the WKM algorithm, and secondly, the 
clustering samples and clustering center values are obtained 
and the temporal characteristics of the clustering results are 
summarized. Next, the historical traffic sample data set is used 
as a training set for the Holt ES model to obtain the level 
smoothing coefficients and trend smoothing coefficients that 
minimize the prediction error. Select a known moment of 
real-time sample data and use the prediction model to make 
predictions, match the predicted values and historical values 
and use the two-fold standard deviation solution for numerical 
anomaly warning. If the value is within a reasonable threshold 
then the data is normal, otherwise the prediction is alarmed, 
after detecting all the data to complete the prediction process 
of the WKM-Holt algorithm. 
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Fig. 4. Operation flow chart of weighted k-mean-holt algorithm. 

IV. PERFORMANCE ANALYSIS OF CLUSTERING 

ALGORITHMS AND APPLICATION EFFECT ANALYSIS 

The capability of the WKM algorithm to analyze TD and 
identify TC patterns is tested through case studies, while the 
WKM-Holt prediction algorithm's prediction performance and 
the impact of its practical application are tested through case 
studies in the latter case. 

A. Weighted K-Means based Traffic Congestion Pattern 

Recognition Results 

The processed TF data of Chengdu City in subsection 2.1 
is used as the experimental dataset for this case study, and 
98,548 valid data are left after 100,000 data are preprocessed. 
The WKM method is used to cluster analyze the collected 
valid data, and the contour coefficients of the TF data of the 
five urban areas of Chengdu City under different number of 
clusters are obtained as shown in Table II. 

TABLE II. CONTOUR COEFFICIENTS OF FIVE URBAN DISTRICTS IN CHENGDU UNDER DIFFERENT CLUSTERING NUMBERS 

Number of clusters 
District 

Jinjiang district Wuhou district Jinniu district Qingyang district Chenghua district 

2 0.31 0.24 0.23 0.34 0.17 

3 0.35 0.32 0.20 0.31 0.15 

4 0.32 0.28 0.18 0.29 0.11 

5 0.28 0.27 0.19 0.26 0.08 

6 0.23 0.24 0.17 0.25 0.06 

7 0.18 0.21 0.15 0.19 0.05 

8 0.16 0.17 0.12 0.17 0.03 

9 0.13 0.13 0.13 0.18 0.04 

10 0.11 0.10 0.08 0.14 0.05 
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Table II lists the contour coefficient values for Chengdu's 
five urban zones under various clustering numbers. When the 
clusters is 3, the contour coefficients of Jinjiang and Wuhou 
districts are able to reach the maximum value, which are 0.35 
and 0.32, respectively. When the clusters is 2, the contour 
coefficients of Jinniu, Qingyang, and Chenghua districts are 
able to reach the maximum value, which are 0.23, 0.34, and 
0.17, respectively. The TC modes of the five urban areas 
exhibit spatial correlation, as evidenced by the variations in 
the contour coefficients in Table II. Jinjiang and Wuhou 
districts, which are close to the main urban area, have three 
congestion patterns, while Jinniu, Qingyang and Chenghua 
districts, which are slightly away from the main urban area, 
have two congestion patterns. The detailed changes of TCI in 
the five urban areas under different congestion patterns are 
shown in Fig. 5. 

The variation of TCI with different congestion patterns in 
five urban areas is given in Fig. 5. In Fig. 5, Mode 1, Mode 2, 
and Mode 3 represent three different congestion patterns, 
where Mode 1 has the best congestion, which usually occurs 
in the middle portion of weekdays. Mode 2 has moderate 
congestion and usually occurs at the beginning and end of the 
weekday, such as Mondays and Fridays. Mode 3 has the worst 
congestion and usually corresponds to holidays. Taking Fig. 

5(a) of the two congestion modes as an example, the 
maximum TCIs of Jinniu district in Fig. 5(a) are 6.73 and 7.98 
under mode 1 and mode 2, respectively. In addition, Wuhou 
district in Fig. 5(d) is selected from Fig. 5(d) and Fig. 5(e) for 
the analysis, and it is found that the maximum TCIs of Wuhou 
district are 7.81, 8.00, and 9.75 under modes 1, 2, and 3, 
respectively. By comparing the congestion indices of each 
district under different modes in Fig. 5, it can be seen that the 
congestion mode of each district corresponds to the number of 
its optimal clustering number, which shows that the 
congestion indices of each district are clustered in space. The 
results of exploring the effect of different linear numbers of 
motor vehicles on TCI in five urban areas are shown in Table 
III. 

In Table III, when the restriction numbers are 4 and 9, the 
average congestion index at this time is 3.42, which is larger 
than the average congestion index under other restriction 
numbers. When the restriction numbers are 1 and 6, the 
average congestion index is the smallest, which is only 2.98. It 
can be seen that the number of license plates ending in 4 and 9 
is small, while the number of license plates ending in 1 and 6 
is large. The test findings in Table IV are produced by using a 
t-test to determine whether there were any significant 
differences in congestion between license plate numbers. 
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(b) Qingyang district

0
0

Mode 1 Mode 2

4

2

4

6

8

10

Time

T
ra

ff
ic

 c
o
n
g
e
st

io
n
 i

n
d
e
x

8 12 16 20 24

(c) Chenghua district
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Fig. 5. Change of traffic congestion index in five urban areas of Chengdu. 

TABLE III. STATISTICAL RESULTS OF TRAFFIC CONGESTION INDEX IN FIVE URBAN AREAS UNDER THE CONDITION OF VEHICLE LICENSE RESTRICTION 

Motor vehicle restriction 

number 

District 
Average congestion 

index Wuhou 

district 

Jinjiang 

district 

Jinniu 

district 

Qingyang 

district 

Chenghua 

district 

0 and 5 4.21 4.27 2.45 2.31 2.41 3.13 

1 and 6 4.01 3.89 2.39 2.33 2.28 2.98 

2 and 7 4.37 4.29 2.48 2.69 1.92 3.15 

3 and 8 4.15 3.89 2.36 2.42 2.28 3.02 

4 and 9 4.48 4.32 2.86 2.79 2.65 3.42 
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In Table IV, when the restriction numbers are 4 and 9, at 
this time the restriction numbers are statistically significantly 
different from the other four groups of restriction numbers 
(P<0.05), which shows that the motor vehicle restriction 
policy has a certain significance on the TC pattern, and most 
of the cities can utilize the restriction strategy to alleviate the 
TC. 

B. K-Means-Holt based Traffic Flow Forecasting Results 

The 98,548 valid data are divided into training set and test 
set according to the ratio of 9:1, and Mini Batch K-Means 
Clustering (Mini-Batch-K-means), traditional KMA, and 
WKM algorithm are chosen as the comparison algorithms, and 
the prediction error performances of different algorithms 
under test set are obtained as shown in Fig. 6. 

For KM, WKM, Mini-Batch-KM, and K-means-Holt 
(KMH) in the test set, the mean absolute error (MAE) and root 
mean square error (RMSE) are displayed in Fig. 6(a), (b), (c), 
and (d), respectively. Combined with Fig. 6, it can be noted 
that the error ranges of KM, WKM, Mini-Batch-KM, and 

KMH are -4~6, -1~2, -1~1, and -0.1~0.1, respectively, which 
shows that KMH performs best in terms of error. The 
prediction of KMH in different TF environments is shown in 
Fig. 7. 

Fig. 7(a) and (b) display the KMH prediction findings for 
TF in high TF and low TF situations, respectively. The 
predicted values of KMH in both TF environments overlap 
well with the actual values. In both TF environments, when 
the time is close to 12:00, the TF is able to reach the peak 
value, which is 9.81 pcu/h and 9.75 pcu/h, respectively, and 
the prediction at this time basically coincides with the actual 
situation. The effect of KMH in the actual TFF is shown in 
Fig. 8. 

Fig. 8(a) and 8(b) show the actual TF and the TF under 
KMH prediction at a certain time, respectively. In Fig. 8(a), 
the flow rate of the actual TF is mainly centered under 100 
pcu/min, which is consistent with the TF under KMH 
prediction in Fig. 8(b), and it can be illustrated that KMH is 
able to effectively predict the TF. 

TABLE IV. P-VALUE RESULTS OF T-TEST UNDER DIFFERENT VEHICLE LICENSE NUMBER RESTRICTION POLICIES 

Motor vehicle restriction number 0 and 5 1 and 6 2 and 7 3 and 8 4 and 9 

0 and 5 / 0.17 0.23 0.06 0.01 

1 and 6 / / 0.00 0.91 0.00 

2 and 7 / / / 0.01 0.01 

3 and 8 / / / / 0.02 

4 and 9 / / / / / 
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Fig. 6. Error performance of different prediction algorithms. 
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Fig. 7. Prediction effect of K-means Holt under different traffic flow environments 
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Fig. 8. Prediction results of actual traffic flow by K-means-Holt. 

In order to further evaluate the validity and scalability of 
the method proposed in this study, traffic data sets of 
Shanghai and Beijing were introduced to make predictions. 
Data sets collected from Chengdu, Beijing and Shanghai from 
January to March 2024 are recorded as data sets 1, 2 and 3 
respectively. The collected data includes multi-dimensional 
information such as daily vehicle flow, speed and traffic 
density at different time periods. The three datasets cover all 
major urban areas of the three cities, totaling more than 
500,000 data records. The prediction accuracy and prediction 
time of KMH in three types of data sets are shown in Table V. 

TABLE V. PREDICTION EFFECT OF KMH IN THREE TYPES OF DATA SETS 

Data set Prediction accuracy Prediction time 

Data set 1 98.59% 1.05min 

Data set 2 97.24% 1.21min 

Data set 3 98.70% 1.18min 

Table V shows the prediction effect of KMH in three types 
of data sets. As can be seen from Table V, the prediction 
accuracy of KMH in dataset 1, dataset 2 and dataset 3 is 
98.59%, 97.24% and 98.70%, respectively, and the prediction 
time is 1.05min, 1.21min and 1.18min, respectively. It can be 
seen that the KMH designed in this research has a good 
forecasting effect on the traffic flow data of different cities, 
which can prove that the method has a good scalability. 

To sum up, in order to cope with the growing challenges of 
urban traffic management, this study not only proposed the 
theoretical improvement of K-means algorithm, but also tested 
its practical application effect. Finally, the improved weighted 
K-means method was specially designed to cope with the 
dynamic and complex traffic patterns in five urban areas of 
Chengdu. The predictive model can not only accurately 

identify traffic congestion patterns, help urban planners and 
traffic management departments to take forward-looking 
measures, but also improve traffic flow and reduce traffic 
congestion. Finally, the traffic prediction model is deployed in 
the traffic control center of the city to predict the peak traffic 
flow and formulate more effective dispersal strategies. 

V. DISCUSSION 

In order to improve the accuracy and practicability of 
urban traffic prediction, this study designed a traffic flow 
prediction model combining weighted K-means and Holt 
algorithm. Compared with the short-term traffic prediction 
method proposed by Cheng et al in literature [19], although its 
method has excellent performance in spatial-temporal pattern 
mining, it may have limitations when dealing with extreme 
traffic conditions and unconventional data. By introducing a 
weighting mechanism, this study effectively improves the 
adaptability and accuracy of the model in processing 
high-dimensional data and complex network environments. 
The results show that the prediction error of this method is 
significantly lower than that of the traditional method, and the 
average error is reduced by 20%, especially in the traffic 
prediction of peak hours and holidays. In addition, Liao and Li 
proposed a traffic anomaly detection model using k-means and 
active learning methods in literature [20], which has good 
performance on multi-level data sets. However, the model still 
has room for improvement in real-time and computational 
efficiency. The prediction model combined with weighted 
K-means and Holt algorithm adopted in this study, while 
maintaining a high accuracy, significantly improves the 
computational efficiency, making the model more suitable for 
real-time large-scale traffic data processing. Through ablation 
test, it is found that the performance of this research method 
on multiple traffic data sets is better than that of the 
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comparison model, especially in complex traffic scenarios, 
such as urban holidays and special events, its accuracy and 
response speed are significantly improved. In addition, the 
potential of the model in practical applications is also explored. 
For example, in the application test in Chengdu, the accuracy 
of the model in predicting the traffic flow during the peak 
period reached 98.5%, and the system response time was as 
low as 0.2 seconds, which has important reference value for 
the traffic management department to implement traffic 
control and diversion during the peak period. Finally, the CPU 
time of the method in this study is significantly lower than that 
of the traditional model when completing the traffic prediction 
task, which further validates its application efficiency and 
practicability in the actual traffic system. 

In summary, by combining weighted K-means and Holt 
algorithm, this study proposes an efficient and accurate urban 
traffic flow prediction model. This not only provides new 
ideas and technical means for future urban traffic management 
but also has a positive impact on improving the overall 
efficiency and responsiveness of the urban traffic systems. 

VI. CONCLUSION 

The KMH algorithm was created in this work to complete 
the TFF task in an effort to enhance the performance of the 
existing TFF model even further. The results of the study 
indicated that the TDs of the five urban areas in Chengdu were 
analyzed as examples, and it was found that when the 
clustering number of the WKM algorithm was 3, the contour 
coefficients of Jinjiang and Wuhou districts reached the 
maximum values of 0.35 and 0.32, respectively. When the 
number of clusters was 2, the contour coefficients of Jinniu 
District, Qingyang District, and Chenghua District reached the 
maximum values of 0.23, 0.34, and 0.17, respectively, and at 
this time, the number of clusters just corresponded to the type 
of TC in each urban area, which indicated the spatial 
correlation of the TC patterns of the five urban areas. In 
addition, the average congestion index under different motor 
vehicle restriction numbers was also counted, and it was found 
that when the tail numbers were 4 and 9, the average 
congestion index was the largest, which was 3.42, and there 
was a statistically significant difference between this group of 
tail numbers and the other four groups of tail numbers 
(P<0.05). Finally, the TFF performance of the KMH 
algorithm was tested, and it was found that the prediction error 
of the KMH algorithm was as low as in the range of -0.1 to 0.1, 
and the TF under the prediction of the algorithm was basically 
the same as the actual situation. In summary, it can be 
concluded that the designed WKM algorithm can well analyze 
the clustering of TDs in space for the five urban areas, while 
the KMH algorithm is able to carry out accurate TFFs. 
Although the designed prediction method has a better 
performance, it should be followed up with a test of the 
method's prediction for TFs of other cities as a way of proving 
that the method has a better generalizability. 
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