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Abstract—Cloud Computing has revolutionized the 

technological landscape, offering a platform for resource 

provisioning where organizations can access computing resources, 

storage, applications, and services. The shared nature of these 

resources introduces complexities in ensuring security and 

privacy. With the advent of edge and fog computing alongside 

cloud technologies, the processing, data storage, and management 

paradigm faces challenges in safeguarding against potential 

intrusions. Attacks on fog computing, IoT cloud, and related 

advancements can have pervasive and detrimental consequences. 

To address these concerns, various security standards and 

schemes have been suggested and deployed to enhance fog 

computing security. In particular, the focus of these security 

measures has become vital due to the involvement of multiple 

networks and numerous fog nodes through which end-users 

interact. These nodes facilitate the transfer of sensitive 

information, amplifying privacy concerns. This paper proposes a 

multi-layered intermittent neural network model tailored 

specifically for enhancing security in fog computing, especially in 

proximity to end-users and IoT devices. Emphasizing the need to 

mitigate privacy risks inherent in extensive network connections, 

the model leverages a customized adaptation of the NSLKDD 

dataset, a challenging dataset commonly applied to evaluate 

intrusion detection systems. A range of current models and feature 

sets are rigorously investigated to quantify the effectiveness of the 

proposed approach. Through comprehensive research findings 

and replication studies, the paper demonstrates the stability and 

robustness of the suggested method versus various performance 

metrics employed for intrusion detection. The assessment 

illustrates the model's superior capability in addressing privacy 

and security challenges in hybrid cloud environments 

incorporating intrusion detection systems, offering a promising 

solution for the evolving landscape of cloud-based computing 

technologies. 

Keywords—Cloud computing; fog computing; intrusion 

detection; privacy protection; neural network 

I. INTRODUCTION 

Cloud computing has gained prominence as a prominent 
technology within the realm of Information Technology (IT) in 
recent years. The inception of cloud computing can be traced 
back to 2006, when Google introduced this groundbreaking 
concept. Subsequently, with the evolution of computer 
technology and novel communication paradigms, the IT 
landscape witnessed a rapid transformation, elevating the 
significance of this innovation for both individuals and 
organizations within the industry [1]. Cloud computing has 
revolutionized the accessibility and management of computing 
resources, enabling organizations to leverage shared services, 
applications, and data storage through remote servers. The 

evolution of cloud technology has expanded to incorporate edge 
and fog computing paradigms, emphasizing decentralized data 
processing and analytics closer to the data source [2]. However, 
this expansion brings forth a myriad of security and privacy 
challenges. Particularly, the intersection of multi-cloud 
environments and the criticality of intrusion detection in fog 
computing is becoming increasingly complex and crucial in 
safeguarding sensitive data and preventing unauthorized access 
[3]. 

The essence of cloud computing lies in its shared 
infrastructure, allowing multiple users to access resources and 
services remotely. However, with the advent of multi-cloud 
architectures, organizations employ services from different 
cloud providers, leading to interconnectivity complexities [4]. 
Multi-cloud setups aim to enhance performance, reduce latency, 
and mitigate risks associated with a single-cloud dependency. 
Nevertheless, integrating multiple clouds amplifies security 
vulnerabilities, requiring robust intrusion detection systems to 
counter potential threats and breaches. Edge and fog computing 
have emerged as pivotal components in the cloud ecosystem, 
focusing on processing data near the data source to reduce 
latency and enhance efficiency. This proximity to end-users and 
IoT devices in fog computing introduces a new set of security 
challenges, especially regarding privacy concerns and intrusion 
risks. The transfer of sensitive data across numerous fog nodes 
poses a significant threat, necessitating sophisticated security 
measures that can protect privacy and detect intrusions 
effectively in these intricate network architectures. 

This paper proposes an Intrusion Detection System (IDS) 
leveraging neural network technologies specifically tailored for 
fog computing to deal with the security and privacy threats in 
multi-cloud environments. The application of neural networks 
in intrusion detection aims to fortify security measures, 
providing a more adaptive and sophisticated approach to 
identifying and mitigating potential threats in multi-cloud and 
fog environments. This research explores developing and 
evaluating a novel IDS framework to tackle the escalating 
security challenges arising from the interconnection of multi-
cloud infrastructures, thereby aiming to ensure data integrity and 
user privacy in fog computing setups. 

II. RELATED WORK 

Within the domain of cloud, IoT, and interconnected 
computing environments, ensuring robust security against 
intrusions is of utmost importance. This section 
comprehensively explores and compares various cutting-edge 
methodologies and approaches employed for IDSs. Each study's 
distinct methodology, datasets utilized, performance metrics, 
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and principal findings are evaluated to provide a comprehensive 
understanding of their efficacy for enhancing security measures 
and minimizing potential threats within these dynamic 
technological landscapes. Table I provides a concise 
comparative overview of various intrusion detection 
methodologies and their respective outcomes. 

The advent of the IoT has facilitated extensive connectivity 
across many objects and services, leading to a susceptibility to 
IoT and cloud malware infections. Consequently, cybersecurity 
stands as a crucial concern in establishing resilient IoT systems 
[14]. Abd Elaziz, et al. [5] have capitalized on recent 
advancements in swarm intelligence approaches and the 
progress in deep neural networks to develop an effective IDS for 
cloud- and IoT-based scenarios. Initially, deep neural networks 
extract valuable information from IDS data. Subsequently, a 
proficient feature selection method is introduced, leveraging the 
Capuchin Search Algorithm (CapSA), a recently proposed 
swarm intelligence optimizer [6]. The resultant model, termed 
CNN-CapSA, is rigorously tested using four distinct datasets, 
specifically CIC2017, KDD99, BoT-IoT, and NSLKDD. 
Furthermore, comprehensive empirical comparisons are 
conducted against alternative optimization methods, 
encompassing various criteria for classifying results. The 
findings substantiate that the proposed method performs well 
across all analyzed datasets. 

With growing internet traffic and the rise of attacks against 
the cloud ecosystem, intrusion monitoring is becoming more 
complicated. An attacker may gain access to a variety of 
protocol interfaces, such as Hypertext Transfer Protocol 
(HTTP), Domain Name System (DNS), and Message Queue 
Telemetry Transport (MQTT), leading to data breaches and 
security vulnerabilities. Traditional machine learning algorithms 
like neural networks, fuzzy logic, and support vector machines 
have been commonly employed in IDSs. However, these 
methods exhibit limitations such as slow convergence, 
inaccurate results, vanishing gradients, excessive fitting, and 
subpar efficiency. To address these challenges, Geetha and 
Deepa [7] have introduced a novel approach, the Fisher kernel-
based PCA dimensionality reduction algorithm in conjunction 
with a grey wolf optimizer based weight dropped BiLSTM 
classifier (FKPCA-GWO WDBiLSTM) to detect intrusions. 
The PCA algorithm is initially applied with data records, 
utilizing the Fisher kernel and Fisher score to separate 
dimensions linearly. Subsequently, the WDBiLSTM structure 
captures persistent dependencies and extracts features 
bidirectionally. The GWO optimizes the recurrent weights, 
ensuring accurate classification and distinguishing between 
normal and attack instances. The proposed mechanism has been 
rigorously evaluated on four datasets. The findings demonstrate 
superior F-measure, specificity, sensitivity, precision, and 
accuracy performance compared to previous approaches such as 
FCM-SVM, DRIOTIDS, BiCIDS, and Fuzzy-SMO. 

Conventional network IDSs cannot adequately fulfill the 
security requisites of IoT deployments. Addressing this 
limitation, Lin, et al. [8] have integrated machine learning and 
cloud computing into IoT IDS to enhance its detection 
capabilities. Typically, conventional IDSs demand substantial 
training duration and are unsuitable for cloud computing owing 
to cloud nodes' restricted storage and computing capabilities. 

Hence, there is a pressing need to investigate IDSs characterized 
by lightweight, superior detection accuracy, and swift training 
time. Selecting a suitable classification methodology is crucial 
when implementing cloud-based IDSs and is essential for an 
effective defense response to intrusions while mitigating 
intrusions. The authors extensively discussed issues concerning 
IoT intrusion mitigation in cloud computing contexts. They 
employed the Multi-Feature Extraction Extreme Learning 
Machine (MFE-ELM) algorithm, introducing a multi-feature 
extraction procedure within cloud servers. Afterward, MFE-
ELM was used in cloud servers to identify cybersecurity 
breaches. Several tests utilized a classical dataset, involving 
stages including data preprocessing, designing features, training 
the model, and data analysis. The simulation outcomes 
demonstrated the suggested algorithm's effectiveness in 
detecting a substantial percentage of network data packets, 
exhibiting commendable results. It also proved adept at 
efficiently detecting intrusions into heterogeneous IoT data from 
cloud nodes. Moreover, the algorithm facilitates real-time 
identification of nodes posing severe security threats within the 
cloud cluster, enabling the cloud server to take immediate 
security measures. 

The surge in cloud computing has raised persistent concerns 
about privacy and security. Addressing these issues, Al-
Ghuwairi, et al. [9] have introduced a new method aimed at 
immediately identifying malicious activities in cloud computing 
through time series analysis. This innovative technique 
integrates feature selection methods with a predictive technique 
derived from the Facebook Prophet system to determine its 
effectiveness. The feature selection process combines historical 
data analysis with anomaly detection, stationarity, and 
correlation analyses to resolve the complexities of identifying 
relationships among time series variations and potential threats. 
This approach significantly reduces the number of predictors 
used in the predictive model while optimizing various 
parameters like Dynamic Time Warping (DTW), Median 
Absolute Percentage Error (MdAPE), Mean Absolute 
Percentage Error (MAPE), Root Mean Squared Error (RMSE), 
Mean Squared Error (MSE), and Mean Absolute Error (MAE). 
It has also considerably minimized cross-validation, prediction, 
and training times. Although memory consumption is stable, 
utilization time dropped significantly, leading to a significant 
decline in resource usage. This study offers a unified approach 
to effective intrusion detection in cloud computing by exploiting 
time series anomalies, using a collaborative feature selection 
process and the Facebook Prophet prediction engine. The results 
underscore the improved performance and efficiency achieved 
by this approach, enhancing the progress of intrusion detection 
strategies in cloud computing security. 

In IoT environments, foundational to computing services, 
vulnerabilities and cyber threats remain constant concerns. 
Adversaries continuously seek weak points within these 
computing environments to perpetrate damage, posing intricate 
challenges. Consequently, employing intrusion prevention and 
detection solutions becomes essential for securing IoT 
environments. However, recent strategies in this domain 
encounter limitations, notably the inability to detect unknown 
attacks and susceptibility to single points of failure. To address 
these constraints, Javadpour, et al. [10] have introduced a novel 
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approach: a distributed multi-agent IDS, effectively mitigating 
these issues. It uses a six-stage detection procedure to categorize 
network activities as safe or dangerous. The suggested method 
was validated using the NSLKDD and KDD Cup 99 datasets. 
Test outcomes were evaluated against other methodologies in 
terms of f-score, accuracy, and recall metrics. 

To deal with the issue of low accuracy in conventional 
tracking signal detection algorithms within the traditional cloud-
side collaborative computing setting, Zhong and Zhong [11] 
have proposed a novel deep learning-based track signal intrusion 
detection method within the cloud-edge collaborative 
computing setup. The approach involves constructing the core 
framework of the IDS by holistically examining core networks, 
communication links, and infrastructure and integrating edge 
computing into cloud services. The proposed method leverages 
CNN-attention-based BiLSTM (Convolutional Neural 
Networks-attention-based Bi-directional Long Short-Term 
Memory) as a central layer of the method in order to train on 
historical datasets, thereby presenting a deep learning-based 
technique. Additionally, dropout and pooling layers are 
incorporated to avoid overfitting and enhance track signal 
intrusion detection. The pooling layer is integrated to accelerate 
model convergence, eliminate redundant features, and diminish 
feature dimensionality, while the dropout layer aims to prevent 
overfitting. The proposed IDS is compared and analyzed using 
simulation experiments against three other methods under 
identical conditions. Results indicate that the proposed method 
has a higher F1 value than the other techniques across four 
sample datasets. The F1 value varies from 0.94 to 0.96, 
demonstrating superior performance to other comparison 
algorithms. This method proves crucial for resolving IDS signal 
concerns within the cloud-edge cooperative setting and lays the 
conceptual foundation to track signal IDS direction. 

Implementing an anomaly-based IDS is key to maintaining 
the integrity of database records by identifying and isolating 
anomalies, particularly when unexpected changes are detected. 
In advanced networking environments, classification and 
clustering methods based on machine learning serve as an 
effective approach to identifying and categorizing anomalous 
IDS attacks. Machine learning is a swift, cost-effective, and 
flexible tool for constructing intrusion detection schemes 
capable of addressing a wide range of threats. Samunnisa, et al. 
[12] have introduced a proficient hybrid clustering and 
classification model for implementing an anomaly-based IDS, 
particularly for classifying malicious attack types such as 
normal (no intrusion), Denial of Service (DoS), Probe, User to 
Root (U2R), and Remote to Local (R2L) attacks. This approach 
utilizes threshold-based functions and is tested using two 
different threshold values, specifically 0.01 and 0.5, across the 
NSLKDD and KDDcup99 datasets. Performance evaluation 
metrics such as Detection Rate, False Alarm Ratio, and 
Accuracy have been employed to assess the effectiveness of the 
proposed methodology. Results showcase that applying the 
proposed approach, particularly the K-means combined with 
Random Forest at two distinct threshold values, exhibits 
superior classification accuracy. Specifically, it achieved a 
detection rate, false alarm rate, and accuracy of 99.8%, 99.7%, 
and 0.1%, respectively, on the NSLKDD dataset and 98.2%, 
98.1%, and 2% on the KDDcup99 dataset. 

TABLE I.  OVERVIEW OF PREVIOUS IDS METHODOLOGIES 

Study Methodology 
Datasets 

used 

Performance 

metrics 

Abd 

Elaziz, et 
al. [5] 

CNN-CapSA 

utilizing deep neural 

networks for IDS in 
cloud- and IoT-based 

scenarios 

CIC2017, 

KDD99, 

BoT-IoT, 
and 

NSLKDD 

Comparative 

analysis against 

alternative 
optimization 

methods 

Geetha and 

Deepa [7] 

FKPCA-GWO 
WDBiLSTM for 

intrusion detection 

Four 

datasets 

F-measure, 

specificity, 
sensitivity, 

precision, and 

accuracy 

Lin, et al. 

[8] 

MFE-ELM 

algorithm for IoT 

IDS utilizing cloud 
computing 

Classical 

dataset 

Model 
performance 

assessment 

Al-

Ghuwairi, 

et al. [9] 

Early intrusion 

detection in cloud 
computing using 

time series data 

Time series 
data 

Performance 

metrics (MAE, 

MSE, RMSE, etc.) 

Javadpour, 
et al. [10] 

Distributed multi-

agent IDPS 
(DMAIDPS) for IoT 

environments 

KDD Cup 

99 and 

NSLKDD 

Recall, accuracy, 
and F-score 

Zhong and 

Zhong [11] 

Deep learning-based 
track signal intrusion 

detection in cloud-

edge computing 

Simulation 

experiments 

F1 value 

comparison 

Samunnisa, 

et al. [12] 

Hybrid clustering 
and classification 

model for anomaly-

based IDS 

NSLKDD 

and 
KDDcup99 

Detection rate, 

false alarm ratio, 
and accuracy 

As reviewed literature, the current research in the field of 
intrusion detection systems (IDSs) lacks a comprehensive 
understanding of the efficacy of various methodologies and 
approaches, particularly in the context of cloud, IoT, and 
interconnected computing environments. Existing studies often 
focus on specific techniques without providing a comparative 
analysis of their performance across different datasets and 
scenarios. Additionally, there is a need for innovative solutions 
that address the evolving cybersecurity threats posed by cloud 
and IoT malware infections, as well as the challenges associated 
with integrating IDSs into these dynamic technological 
landscapes. Furthermore, the scalability and efficiency of IDSs 
in handling growing internet traffic and complex network 
protocols remain understudied areas. Moreover, conventional 
IDSs may not adequately fulfill the security requirements of IoT 
deployments, necessitating the development of lightweight and 
efficient detection mechanisms tailored for IoT environments. 
Finally, the effectiveness of anomaly-based IDSs in maintaining 
database integrity and identifying novel attack types in advanced 
networking environments requires further exploration and 
validation. 

III. PROPOSED METHOD 

The cloud represents a significant asset for IoT 
environments, offering a comprehensive solution to various IoT 
challenges. However, integrating cloud technology introduces 
several challenges, encompassing security and privacy 
concerns, latency, integrity, and bandwidth limitations. IDSs 
typically operate in non-cloud environments based on a trust-
based cooperative model. Researchers have proposed a trust-
based cooperative IDS that operates through collaboration 
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among local IDS units, identifying new attacks unknown to 
other IDSs. These systems utilize data from diverse IDSs to 
facilitate intrusion detection [15]. A key architectural aspect of 
these cooperative IDSs involves a feedback mechanism for 
reliable data collection. An incentivized communication model 
also encourages IDS nodes to share inputs among known nodes 
to prevent malicious activities. However, limitations exist within 
the current trust-based cooperative IDS framework, particularly 
in soliciting input from numerous IDSs. The proposed 
algorithm, based on relevant theoretical concepts, allows a 
collective group of IDSs to establish their collaboration in a 
manner that enhances their detection accuracy, even in the 
presence of untrusted IDS units. Notably, existing cooperative 
IDSs encounter considerable delays primarily due to the 
algorithmic complexity associated with employing 
comprehensive algorithms. 

The overall strategy requires significant computational time, 
contingent on multiple factors, such as the consulted IDS, the 
expertise of the IDSs, and various trust levels. Uncertainties 
surrounding the receipt of inputs across various levels, 
especially within IDS associations, internet speeds, and other 
ambiguous elements, lead to potential delays in decisions about 
alerting potential threats due to missing input from individual 
IDS. Consequently, cooperative IDS decisions are not feasible 
in time-sensitive settings. In the initial phase, a real-world IoT-
based smart home prototype was built, and the regular activities 
of every device within the IoT network were monitored. 
Subsequently, malicious tests were conducted, inducing 
anomalous network traffic to these devices. These stages 
facilitated the application of an Artificial Intelligence and deep 
learning based approaches using well-prepared training data, 
forming the basis of the intrusion detection model [16]. The 
developed system exhibited superior detection accuracy within 
an acceptable time frame. A logarithmic minimal density ratio 
adjustment was applied to the NSLKDD dataset features to 
achieve enhanced detection capabilities to produce higher-
quality, representative features. Employing SVM to perform 
classification, the experimental findings revealed high accuracy 
and detection rates. Fig. 1 illustrates the structure of the 
proposed cooperative IDS, comprising six cloud providers. 

 
Fig. 1. Cooperative IDS architecture. 

The suggested conceptual framework for IoT security is 
thoroughly examined, outlining an intrusion detection scheme 
composed of two primary processors: one for classification and 
another for traffic analysis. Traffic association logs follow 

processing within traffic handling units, resulting in data 
suitable for deep neural network processing by the classification 
engines, categorizing these associations as normal [13]. The 
model is deployable in fog computing, closely situated near IoT 
devices and end users. It incorporates a recurrent neural network 
based on a modified variant of the backpropagation procedure 
to enhance the predictive capacity of regular/threat 
identification. A recursive process within the network, wherein 
non-linear components' outputs are transformed into linear 
components, ensures rapid reaction and dependable continuous 
security for the IoT network. This recursive architecture serves 
as the core engine for classification-based traffic analysis. Fig. 2 
illustrates the overall architecture of the developed conceptual 
framework for IoT security. 

 

Fig. 2. The conceptual framework of IoT security. 

The traffic handling engine employs the NSLKDD dataset 
to train, test, and validate models. This dataset comprises 
information that characterizes the network traffic of the 
networking system, often exhibiting inconsistencies. The pre-
treatment of acquired traffic data becomes a crucial filter for the 
classification engine. Raw traffic data is preprocessed in four 
key steps within traffic preprocessors. These steps encompass 
symbolic-to-numerical conversion, data feature reduction, min-
max standardization, and data sampling. The symbolic-to-
numerical mapping and label representation are visually 
represented, facilitating the conversion of representative values 
(properties) of the NSLKDD dataset into numerical values. Flag 
features are denoted as {pstr = 4, …, s2 = 14}0, service features 
such as private = {private = 16, Netsat = 20}, and protocol 
features are denoted as Protocol = (tcp = 1, udp = 2, icmp = 3}. 
Numeric values for each characteristic are assigned based on the 
frequency of occurrence. As the frequency increases, the 
corresponding numerical value decreases, ensuring that 
attributes with the least frequency are not overshadowed by 
attributes with the highest frequency values. Fig. 3 displays an 
overview of the NSLKDD dataset. The different subclasses of 
attacks are encapsulated and categorized into their main classes 
as the last step of dataset coding. Table II offers classification 
details for the NSLKDD dataset. 

 

Fig. 3. NSLKDD dataset. 
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TABLE II.  CLASSIFICATION OF THE NSLKDD DATASET 

Classes Sub-classes Numeric code 

U2R Buffer flow, Xterm, Ps, Perl, load module 1 

R2L 
Warezmater, multi-hop, PHF, ftp-write, and 

guess password 
2 

Probe Mscan, Nmap, Ipswd, and Satan 3 

DoS 
Worm, Mailbomb, Teardrop, Smurf, 
Neptune, Back, and Land 

4 

Table II presents two types of engine-parallel 
encapsulations, where all training dataset records are 
encapsulated into normal. This table lists 40 attack names 
encapsulated into four significant classifications. In the feature 
reduction process, all consistent-valued attributes that do not 
impact the analytical outcomes post-neural network analysis are 
eliminated from all records in the traffic data. Within this work, 
features have been removed where zero values reduce the data 
volume from 41 to 25 attributes. To ensure the traffic data values 
fall within a standardized range appropriate for neural network 
inputs, data values are scaled for min-max normalization. Direct 
data transformation involving min-max standardization has been 
employed in this work to achieve this aim. 

𝑆′ =
(𝑆 − 𝑚𝑖𝑛𝑓)

(𝑚𝑎𝑥𝑓 − 𝑚𝑖𝑛𝑓)
( 𝑚𝑎𝑥𝑓

′ − 𝑚𝑖𝑛𝑓
′ )

+ ( 𝑚𝑖𝑛𝑓
′ ) 

(1) 

Due to the infrequent occurrence of R2L and U2R attacks, 
the neural network tends to identify them as noisy signals, given 
their minimal impact on weight updating. Consequently, this 
leads to a significant weakness in detecting these particular 
attacks. To address this issue, both U2R and R2L attacks are 
multiplied by incorporating numerous instances of these attacks 
into various data points. This oversampling process generates 
new instances and a more widespread representation of these 
rare attack types. The proposed intrusion detection engine 
consists of two distinct detection stages with two deep recursive 
neural networks that have different internal structures, 
configuration parameters, and hyperparameters. The primary 
layer focuses on detecting DoS attempts, known as one of the 
primary threats that disrupt IoT systems, in addition to 
identifying other attack types. For heightened security measures, 
the output from the primary layer is further filtered by a 
secondary layer, featuring a different internal structure, 
configuration parameters, and selection criteria specifically 
tuned to detect attacks overlooked by the base layer, especially 
U2R and R2L attacks. To enable accurate detection, the second 
layer was trained using a dataset derived from the primary layer, 
excluding the DoS attacks. 

Fig. 4 depicts a block diagram of the IDS system employing 
the creation of non-linear embeddings from the previous state 
through a deep recursive structure. The h (t - 1) represents the 
previous state, while h(t) represents the current state, including 
the incorporation of recursive gain. Traditional backpropagation 
encountered a gradient problem within the conventional network 
structure. The problem is mitigated by introducing a feedback 
mechanism that connects the prior state with the present state, 
elevating the current state. The proposed model is decomposed 
into four key steps: backpropagation to the hidden layer, 
backpropagation to the output layer, weight adjustment, and 

feedback propagation. An Artificial Neural Network (ANN) 
comprises basic computational elements called neurons, 
interconnected by weights. The structure of neurons is layered, 
ensuring complete connectivity between the preceding and 
subsequent layers. 

 

Fig. 4. Block diagram of the proposed IDS model. 

Feature selection is crucial in eliminating irrelevant features 
to enhance the model's performance. The primary aim of feature 
selection is to identify a subset of features that result in higher 
classification accuracy. The model employs the gain rate 
ranking-based feature selection scheme, which overcomes 
biases and aids in feature subset selection by considering split 
data and normalizing information gain accordingly. The 
attribute selected with the maximum gain ratio is the splitting 
attribute. However, to prevent instability due to split 
information, a constraint is introduced, mandating that each test 
must gain more information than the average gain of all tests. A 
three-layered system governed by feedforward computation 
aims to streamline complexity and enhance training algorithms. 
These layers consist of the input, hidden, and output layers. The 
primary goal of training is to optimize network parameters to 
enable effective classification. In a network with an input vector 
for configuration, hidden nodes, and output nodes, connections 
between the input layer and hidden nodes are known as 
"weights." Similar connections between hidden nodes and 
output units are also named accordingly. The weighted response 
of a given sample ξ is computed back to the input summation 
unit, executed as an added weighted edge. Considering the bias, 
the length of the input vector is expanded by two layers, 
encompassing bias and the weighted edge, affecting all layers. 
Eq. (2) presents the linear output from the linear part, while Eq. 
(3) demonstrates output from the hidden layer, utilizing a 
sigmoidal function as a transfer function. These equations can 
be extended and applied to networks with multiple layers. OjSS 
denotes the hidden layer output, and Olin represents the linear 
output. 

𝑂𝑙𝑖𝑛 = ∑ 𝑊𝑖,𝑗
𝑛+2
𝑡=1 𝑂𝑖  (2) 

𝑂𝑗𝑆𝑆 = 𝑓[∑ 𝑊𝑖,𝑗
𝑛+1
𝑡=1 𝑂𝑖]  (3) 

During the backpropagation process in the output layer, the 
primary objective is to determine partial derivatives of the error 
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signal Er concerning Wi,j. Error signals are a fundamental 
component in all typical versions of backpropagation neural 
networks. The summation outputs are obtained, and this 
difference measures the desired outputs. 

𝐸𝑟𝑗 = ∑(𝑜𝑗
𝑝

− 𝑜𝑗
𝐸𝑝

)2

𝑝

𝑝=1

 (4) 

In Eq. (4), Erj represents the error signal of the jth neuron in 

the output layer. 𝑜𝑗
𝑝
 signifies the desired output of the jth neuron 

for the pth pattern, 𝑜𝑗
𝐸𝑝

 while indicating a possible output of the 

jth neuron for the pth design; here, p denotes the pattern or data 
instance. Specifically, when mentioning p = 1, it refers to the 
representation at pattern 1. This training method encountered a 
problem where the estimation of one-layer output relied on the 
information received from the previous layer. At the start of the 
training, the previous layer remained untrained, leading to 
inaccurate estimations. 

IV. RESULTS AND PERFORMANCE EVALUATION 

An in-depth examination of the results and discussions from 
the experimentation is presented in this section. We tested our 
intrusion detection model with different operational 
configurations and compared the results to previous research 
findings. An Intel CoreTM i7 3.2 processor and 16 GB RAM 
running on Windows 8 were utilized within the MATLAB 
2020b environment to develop the proposed IDS model. While 
the KDD-Cup-99 dataset is commonly employed for such 
purposes, a substantial redundancy within this dataset presents a 
significant challenge. Due to the high repetition of records, 
many AI-based IDSs trained on the KDD-Cup-99 dataset 
produced exceptional results across various evaluation metrics 
without significant compromises or integrated tuning 
procedures. Thus, we decided to employ the KDD-Cup-99 
dataset as the primary source to compare various AI models 
according to their detection performance. Analytical systems 
discovered that these redundant records were being used. To 
address this, these systems were validated and examined using 
redundant records, enhancing inaccurate and inconsistent 
detection performance. While the NSLKDD collection was 
chosen to overcome the redundancy in the KDD-Cup-99 
collection, it resolved the imbalance resulting from highly and 
less frequent U2R and R2L attacks. Our work employed an 
oversampling technique, as previously mentioned in the outlined 
scheme. Within the multiple-layer structure, the confusion 
matrix is the cornerstone of every performance measurement, 
constructed separately. It contains essential output class 
information. Key metrics within the confusion matrix include 
True, False Negative (FN), False Positive (FP), and True 
Negative (TN). 

A value denoting normal instances within a dataset is 
expressed as true. TN refers to the correct identification of 
normal instances correctly. On the other hand, FP and FN 
indicate misclassifications in the classification results. When 
attack records are incorrectly labeled as normal instances, it 
results in a False Positive, posing a significant issue for the 
privacy and accessibility of organizational resources as attackers 
often bypass intrusion detection systems. Conversely, a False 
Negative occurs when instances of attacks are incorrectly 

labeled as normal. An FP essentially indicates appropriate 
behavior, commonly recognized as a false alert rate in intrusion 
detection scenarios. 

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 (5) 

𝑃𝑟 𝑒 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑃)
  (6) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
  

(7) 

𝐴𝑐𝑐 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
  (8) 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
  (9) 

𝐷𝑅 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
𝜆  (10) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
  

(11) 

𝐹𝑃𝑅 =
(𝐹𝑃)

(𝐹𝑃+𝑇𝑁)
  (12) 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
(𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

(𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
  

(13) 

𝐹𝑃𝑅 =
(𝐹𝑁)

(𝐹𝑁+𝑇𝑃)
  (14) 

𝐹1 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2

1

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑟𝑎𝑡𝑒
+

1

𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛

  (15) 

Eq. (16) yields the Matthews Correlation Coefficient 
(MCC), the phi coefficient, based on the aforementioned 
equations. 

𝑝ℎ𝑖

=
(𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑁)
 

(16) 

While many performance assessments typically focus on 
detection rate and accuracy within the proposed model, two new 
performance metrics have been introduced: MCC and Kappa. 
The primary reason behind this additional variation is to 
measure recursive network performance robustness. The MCC 
value varies from -1 to 1. In predictive modeling, performance 
metrics alone may not comprehensively depict the classification, 
particularly in highly imbalanced datasets. Sixty-eight thousand 
training records were employed as input to the first layer 
simulation, and 40,000 records were utilized as test data. 
Performance measurements are presented in Table III. 

TABLE III.  PERFORMANCE RESULTS 

Detection 

layers 
Metrics 

 CCM FP rate Detection rate Precision Accuracy 

First layer 0.87% 9.9% 96.6% 90.1% 91.5% 

Second 
layer 

0.93% 9.3% 95.2% 91.3% 93.7% 
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Fig. 5. Performance improvement vs. iteration. 

Fig. 5 illustrates model performance evaluation concerning 
detection accuracy, precision, and rate. The graph demonstrates 
that precision, accuracy, and detection rate change as the number 
of iterations increases. A detection accuracy of 91.9% is 
observed at iteration 500. Considering the recursive nature of the 
organization, it remains unclear whether the number of iterations 
during the training stage influences the detection of unusual and 
hard-to-detect intrusions. Fig. 6 illustrates how recursive gain 
affects model performance. With increasing recursive gain, 
detection rates tend to decrease. 

 
Fig. 6. Performance improvement vs. recursive gain. 

 
Fig. 7. Runtime vs. number of tasks. 

Similarly, detected accuracy declines as the recursive gain 
rises. Furthermore, Fig. 7 presents a runtime comparison among 

models, including IoT-NIDS, F1-score, Kappa, and phi 
coefficient. The data indicates that as the number of tasks 
increases, the runtimes of these models also increase. For a task 
comprising 550 iterations, the runtime percentages are as 
follows: IoT-NIDS 91%, F1-score 92%, Kappa 94%, and phi 
coefficient 98%. 

V. DISCUSSION 

The proposed Intrusion Detection System (IDS) leveraging 
neural network technologies specifically tailored for fog 
computing offers several advantages over previous approaches. 
Firstly, by utilizing neural networks, the proposed method can 
provide a more adaptive and sophisticated approach to intrusion 
detection compared to traditional methods. Neural networks 
excel at learning complex patterns and relationships in data, 
enabling them to effectively detect novel and sophisticated 
attack patterns that may evade conventional signature-based 
detection systems. 

Secondly, the proposed IDS framework is specifically 
designed for fog computing environments, which present unique 
security challenges due to the distributed and dynamic nature of 
fog infrastructures. Unlike traditional IDSs that may struggle to 
scale and adapt to the complexities of fog environments, the 
proposed method is tailored to handle the intricacies of multi-
cloud setups, ensuring robust security measures across 
interconnected fog nodes. 

Furthermore, the research aims to tackle escalating security 
challenges arising from the interconnection of multi-cloud 
infrastructures. By developing and evaluating a novel IDS 
framework, the proposed method addresses the limitations of 
previous approaches by providing comprehensive coverage and 
protection against emerging threats in fog computing setups. 
This includes ensuring data integrity and user privacy, which are 
paramount in fog computing environments where sensitive data 
is often processed and transmitted across distributed nodes. 

The assessment of computational complexity and scalability 
of the model, particularly in large-scale fog computing 
deployments, is crucial due to the inherent nature of fog 
computing environments where numerous devices and 
significant network traffic are involved. Our theoretical analysis 
underscores the potential benefits and challenges of increasing 
the number of fog nodes and handling higher network traffic. 
Distributed processing, a hallmark of fog computing, enables the 
division of tasks among multiple nodes, which enhances system 
robustness and performance. As the number of fog nodes 
increases, the workload distribution becomes more efficient, 
potentially leading to improved detection rates and reduced 
processing times per node. However, this advantage must be 
balanced against the increased communication overhead 
required for synchronization and data exchange between nodes. 
Effective load balancing and fault tolerance mechanisms are 
essential to leverage the benefits of additional nodes without 
succumbing to these challenges. 

Furthermore, our experiments simulate various scenarios to 
evaluate the model’s performance metrics, including detection 
rate, precision, accuracy, and runtime, under different 
configurations of fog nodes and network traffic levels. In 
scenarios with a limited number of fog nodes, the system might 
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struggle with high network traffic, leading to potential 
degradation in detection rate and increased false positives due to 
resource constraints. Conversely, with a higher number of fog 
nodes, the system can distribute the processing load more 
evenly, thereby improving overall detection performance. 
However, high network traffic poses a significant challenge 
regardless of node count. The system must process an increased 
volume of packets, which can strain computational resources 
and potentially lead to higher misclassification rates. This 
necessitates the implementation of efficient algorithms and 
possibly hardware accelerators, such as GPUs, to maintain high 
detection accuracy and low false positive rates. 

In addition to theoretical analysis and simulations, our future 
work will involve real-world deployment and testing of the 
model in an actual fog computing setup. This will validate our 
simulation results and provide insights into real-world 
performance and challenges. Optimizing the model to handle 
high network traffic effectively will be a critical focus, ensuring 
it remains robust and efficient under varying conditions. 
Implementing advanced optimization strategies, such as 
dynamic load balancing, adaptive traffic management, and real-
time processing enhancements, will further bolster the model’s 
scalability and reliability. Moreover, incorporating additional 
performance metrics like latency, jitter, and energy consumption 
will provide a comprehensive assessment, enabling a deeper 
understanding of the model's operational efficiency and impact 
on overall system performance. Through these detailed 
assessments, the model can be fine-tuned to meet the demands 
of large-scale fog computing deployments, ensuring it remains 
a viable solution for intrusion detection in complex, distributed 
environments. Moreover, evaluating the model's performance 
on additional datasets beyond the NSLKDD, such as the KDD 
Cup 99 and more recent IoT-specific datasets, is imperative to 
strengthen the generalizability and robustness of the research 
findings. The KDD Cup 99 dataset, being a widely used 
benchmark for network intrusion detection, offers a broader 
range of attack types and network conditions, providing a more 
comprehensive evaluation platform for the model. For future 
work, we will conduct evaluations of the model's performance 
on additional datasets, such as the KDD Cup 99 and recent IoT-
specific datasets. This will help to further validate the model's 
generalizability and robustness. By testing on these diverse 
datasets, we aim to assess the model's effectiveness in detecting 
a wider range of intrusion types and its adaptability to different 
network environments. 

Integrating the proposed intrusion detection system (IDS) 
with other security mechanisms common in fog computing, such 
as encryption, access control, and secure communication 
protocols, is essential for creating a comprehensive and robust 
security framework. In fog computing environments, data often 
travels across various nodes and layers, making it susceptible to 
interception and unauthorized access. By incorporating 
encryption, data integrity and confidentiality can be maintained, 
ensuring that even if data packets are intercepted, they cannot be 
easily deciphered by malicious entities. 

Access control mechanisms further enhance security by 
ensuring that only authorized users and devices can access 
specific resources and data within the fog network. This limits 
the potential attack surface and reduces the risk of unauthorized 

access, thereby complementing the IDS by providing an 
additional layer of defense. Secure communication protocols are 
crucial for safeguarding data as it moves between fog nodes and 
from edge devices to the cloud. These protocols prevent man-in-
the-middle attacks and ensure that data remains secure during 
transit. 

By integrating the IDS into a holistic security framework that 
includes these mechanisms, the overall security posture of the 
fog computing environment is significantly strengthened. The 
IDS can provide real-time monitoring and detection of intrusion 
attempts, while encryption, access control, and secure 
communication protocols work together to protect against data 
breaches and unauthorized access. This multi-layered approach 
ensures comprehensive protection, addressing various security 
challenges inherent in fog computing. Such integration not only 
enhances the effectiveness of the IDS but also demonstrates its 
practical applicability in real-world scenarios, making the 
research more impactful and relevant. This extended approach 
would be a valuable addition to the paper, showcasing a 
thorough and practical security solution for fog environments. 

VI. CONCLUSION 

This paper introduced a sophisticated, multi-layered neural 
network model designed to bolster fog computing security, 
particularly concerning end-users and IoT devices. It proposes 
an intrusion detection model aligned with fog networking to 
enhance the security of IoT networks. The model suggests a 
discontinuous neural structure refined using a modified 
backpropagation algorithm. The evaluation of its efficiency 
highlights the superiority of this adaptable structure, employing 
a recursive neural network, where each network is dynamically 
adjusted across various parameters to enhance intrusion 
detection. The proposed IDS model presented in this study can 
identify high-sensitivity task assaults, particularly those 
disrupting the IoT network, apart from recognizing various 
classes of attacks. Consequently, the model is designed to 
operate effectively and efficiently under continuous operational 
scenarios. 
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