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Abstract—Small-scale livestock farmers experience significant 

losses because of decreased productivity caused by decline in 

pasture production brought on by climate change. Technology in 

livestock farming introduced the idea of "smart farming," which 

has simplified pasture management. Internet of Things (IoT), 

Artificial Intelligence (AI) and data analytics are just a few of the 

cutting-edge technology techniques that smart farming 

incorporates. Digital twin technology is proposed in this study to 

alleviate the challenge of changing weather patterns that affect 

pasture management. Digital twin model is developed to predict 

pasture height to ascertain the predicted amount of pasture and 

ensure that the sheep have access to enough food for sustainable 

production. Pasture growth is influenced by temperature, 

rainfall and soil moisture; thus, pasture height predictions 

depend on these factors. Digital twin is made of predictive models 

built on historical and real-time data collected from the IoT 

sensors and stored in ThingSpeak® cloud. Data analysis was 

performed in MATLAB® using the neural network algorithm 

and predictions of the system are modelled in SIMULINK® 

platform.  Digital twin predicted the pasture height to be 52 cm 

while the observed reading was 56 cm. Therefore, with the 

prediction error of -4, the digital twin can serve to enhance 

pasture management through its capabilities and assist farmers 

in decision making. 
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I. INTRODUCTION 

Livestock farming makes a substantial contribution to food 
security. Forage species or pastures are used in livestock 
production systems to feed the animals, and this has become a 
crucial aspect of managing the pastures also known an 
pasture-based livestock production [1]. In South Africa, there 
are many animals that depend on pastures for survival. 
Statistics indicate that sheep farming is most practised in the 
country [2] and the major feed source is utilization of pastures 
[3]. Hence, the focus of the study is on sheep farming. 

Pasture is a grazing area for all ruminants, it also offers 
sheep with a nutritious diet [4]. To ensure profitable livestock 
production, pasture management is a crucial component of 
farm management. Pasture management involves maintaining 
healthy pasture and its companion plants to provide the 
animals with sustainable feed. A well-managed pasture has 
considerable advantages, such as increased forage yields and 
lower feed costs [4], which result in healthy sheep. For 

efficient grazing management, farmers who rely on grazing 
pasture as their main source of animal feed require accurate 
and timely observations of pasture height [5]. Since 
productivity is influenced by the extent of pasture utilization, 
which is a function of enhanced pasture growth, accurate 

measuring of pasture is crucial [6]. 

However, a scarcity of high-quality pasture is the main 
obstacle facing sheep farmers [7]. Poor management 
techniques, uncontrolled grazing systems, and a loss in pasture 
yield due climate variability can all contribute to this issue [8]. 
Nonetheless, smart farming tools are new approaches that are 
emerging to improve pasture-based systems and farming 
conditions which support farmer’s decision making and 
increase productivity [9, 10]. Smart farming is a technology 
that depends on the application of AI and IoT in the 
management of cyber-physical farms [11]. Despite the 
smartness provided by these technological advancements there 
are also negative environmental impacts that cannot be 
ignored. The use of modern technologies poses challenges to 
our environment and pastures are no exception to these 
problems. All these modern devices and machines raise 
concerns about waste, use of non-renewable materials and 
carbon footprint which contributes to climate change [12, 13]. 
However among these challenges, climate change is the main 
focus of this study as it affects the productivity of pasture-
based systems [14]. 

In this study digital twin technology is the proposed 
solution to limit the impact of climate change in pasture 
management. A digital twin is a virtual version of a physical 
asset that is made possible by data and simulators to facilitate 
better decision-making, monitoring, controlling, and real-time 
prediction, optimization, and monitoring[15]. Although digital 
twin technology in livestock farming is still in its infancy, it 
has taken the advantage to use the current smart farming 
technology to improve farm management, animals welfare and 
production of animals products [16]. Digital twin technology 
promises to help farmers with better predictive models by 
combining big data, real-time data from the individual farm, 
and AI models trained by machine learning algorithms [16]. 

The aim of this study is to investigate how a digital twin 
can predict pasture height and introduce soil moisture 
predictive model to form part of forecast models. Regression 
and artificial neural networks (ANN) machine learning 
algorithms were investigated to determine their performance 
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for prediction. The digital shadow was developed to set the 
grounds and determine if the predictive models could be 
trusted on the digital twin. The digital twin is comprised of 
predictive models built with historical data and updated by 
real-time data from the IoT sensors set-up on the farm. The 
predictive models predicted temperature, rainfall, soil 
moisture and pasture height. The major goal of the study is to 
develop a better pasture management system with early 
detection of predicted scenarios for better risk management 
and decision-making processes. 

II. OVERVIEW OF THE LITERATURE 

In all of South Africa's provinces, sheep farming has a 
significant impact on socioeconomic and cultural life [17]. 
Small-scale businesses that practice sheep farming produce 
meat and wool as a source of revenue. Forage found on 
pastures is what sheep eat [3], hence pasture management 
techniques are used to create high-quality pasture to feed the 
sheep. However, pasture management is impacted by climate 
change, which leads to a decrease in the amount and quality of 
pasture production [18]. Farmers struggle to keep their 
animals alive as a result of the shortage of adequate pasture 
for the sheep to graze on [19]. According to survey data from 
commercial farmers, most farmers withdrew from sheep 
farming altogether over a three-year period, between 2012 and 
2014, because the feeding conditions were too challenging 
owing to the drought [20]. This indicates the depth of climate 
change's influence. 

Climate change has an impact on pasture management and 
could make it even more difficult to manage grazing areas 
[21]. Pasture growth is directly impacted by the interaction of 
temperature, precipitation, and soil moisture. Production of 
pasture is negatively impacted by temperature increases, 
heavy rainfall, and high evaporation rates brought on by 
climate change [21] [22]. There are identified smart farming 
technologies that are already applied to overcome issues 
related to pasture management and utilization, animal 
monitoring and control at sheep farms [9]. Smart farming 
offers farmers with superior decision-making and management 
strategies [23] by merging information and communication 
technologies through AI and IoT sensors for use in 
agricultural and livestock production systems. 

The Internet of Things (IoT) is the technology that allows 
sensors to be linked together and operated automatically using 
internet which includes various sensing methods for 
collecting, processing, analyzing and storing of real-time data 
[11]. Artificial intelligence (AI) is the science of making 
intelligent machines and programs by developing software’s 
and systems using machine learning and deep learning to 
solve problems and make decisions [24]. Just like the human 
brain, these software programs are provided with training data, 
and further, these intelligent devices provide the required 
result for every legitimate input [25]. 

Machine learning and deep learning are the fundamental 
building blocks of AI [24]. Machine learning is the capacity to 
learn something based on the data set without explicit 
programming [26] while deep learning is subcategory of 
machine learning which includes learning of neural networks 
made of neurons having various parameters and layers 

between the input and output [27]. Thus, both IoT and AI 
along with cloud-based technology play a critical role in farm 
management by collecting and analysing sensor’s data to 
perform temperature and rainfall predictions, monitor crop 
growth and soil management [28]. Smart farming has allowed 
new technologies to be implemented in pasture-based systems 
to improve efficiency. These pasture management systems 
include weather stations, capturing pasture measurements and 
soil conditions [5] [9] [10] [29]. However, using these 
technologies has their limitations. 

Soil moisture as one of the key factors influencing pasture 
growth is not considered by forecast models [30]. 
Furthermore, the current systems are unable to accurately 
identify and monitor pasture growth [31]. Due to the 
impossibility to gain a comprehensive view of physical 
systems in real-time, this necessitates time-consuming remote 
monitoring and control [15]. Sensing technologies allow for 
real-time farm monitoring, which presents the chance to create 
farm-specific models that a specific farmer might use to 

schedule activities in response to changing conditions. 

Literature reveals, however, that digital twin technology 
holds the promise of enhancing smart farming for better farm 
management and higher productivity[16]. A digital twin is a 
representation of a physical thing that replicates its behavior 
and states across time in a virtual environment [32]. Utilizing 
both current and past data, a digital twin provides analysis, 
forecasting, and operation optimization [33]. Large volumes 
of data must be able to be received, stored, and processed by 
the digital twin in real-time hence, significant computing, 
storage, and data processing resources are needed for this. 

 Using real-time data from numerous IoT sensors and 
devices, digital twins continuously adjust to operational 
changes to forecast the future of the physical system with the 
help of AI and machine learning [32]. Digital twins are able to 
predict systems’ future behaviours using models that 
incorporate machine learning [34], known as predictive 
modelling. In order to predict future outcomes, predictive 
models employ algorithms that learn and analyse both 
historical and present data. Algorithms for machine learning, 
deep learning and pattern recognition can be used to construct 
predictive analytics, which can help understand how 
operations are changing over time. Regression and Neural 

models are the most used predictive modelling methods [35]. 

Digital twins have the ability to address smart farming 
challenges. This includes the performing of future predictions 
[36] using real-time monitoring systems, control and analysis. 
Digital twins make use of models that accurately depict an 
object's behavior throughout time [37]. To project unforeseen 
events, the models can also be tested with what-if scenarios 
[16]. Additionally, digital twins allow for the merging of 
models by setting up a shared model space that defines the 
correlation between models, enables data flow between 
models, and establishes a connection between the digital twin 
and the physical asset [38]. Moreover, creating connected 
physical objects and a digital twin, the digital twins can 
address the problem of seamless integration between IoT and 
data analytics [39]. 
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Although digital twin technology is still in its early stages, 
literature shows that digital twins have potential to shift the 
animal husbandry’s future by integrating smart farming 
technology which use real-time data manipulated by AI 
analyses, which can then fuel better business decisions, 
improve animal health and well-being, and maximize the 
return from farming resources. 

III. MATERIALS AND METHODS 

Sheep farmers are having a challenge of providing healthy 
pasture for their animals due to climate change. Pasture 
growth depends on climatic conditions therefore the focus of 
this study is to develop a digital twin that predicts pasture 
growth based on predicted temperature, rainfall and soil 
moisture. The research methodology is implemented into three 
phases: 

 Phase A – Developing predictive algorithms through 
data analysis, structure, and processing, and use the 
selected algorithm to develop a digital shadow. 

 Phase B – Monitoring farm conditions on the farm to 
manage variables that affect pasture’s growth. 

 Phase C – Creating a digital twin with predictive 
models that are updated by real-time data to forecast 
pasture height and identify problems in advance, thus 
assisting a farmer to come up with quick solutions. 

A. Phase A – Developing Predictive Algorithms 

Predictive modeling is essential to the study as it forecasts 
future results. Due to unpredictable weather patterns brought 
on by climate change, farming has become more challenging. 
Predictive models are helpful in this situation. To make 
predictions, predictive models are built using previous data 
and new data sets. Predictive models were created in this 
study using regression and ANN machine learning algorithms. 

1) Selecting suitable algorithm. For predicting climate, 

regression and ANN models are frequently employed [40], 

hence these were the only models investigated in the study. 

Developing a prediction model to track climate change 

requires a development of dataset which contains historical 

data of weather information.  Climate change is monitored 

based on decades of the earth’s atmospheric observation. 

Hence, the ten-year historical data of temperature and rainfall 

was used to develop the prediction models. 

The study uses historical data from 2011 to 2020 gathered 
from [41] source, at the area where the farm is located. The 
same set of data was used on both algorithms and analyzed in 
MATLAB® to get insight into the data collected. After 
learning and being trained on data, both algorithms were used 
to create prediction models, and the results were compared to 
see which algorithm could be a better fit. Two predictive 
models on each algorithm were developed to predict average 
temperatures and rainfall for the year 2021. 

Root Mean square Error (RMSE) is a measure of accuracy 
to compare forecasting errors of different models [42] and is 
commonly used as an error metric for numeral predictions. 

The lower the RMSE, the higher the accuracy of the model. 
The model performance is also determined by comparison of 
true and predicted response. Fig. 1 demonstrates the RMSE 
values obtained while training temperature predictive models 
using regression and ANN algorithm with the same data set. 

 

Fig. 1. The RMSE values obtained while training temperature predictive 

models with Regression and ANN algorithms. 

After training the models, the predictions were performed 
for the first nine weeks of the year 2021. Nine-week duration 
was selected because pasture is ready for grazing at six to nine 
weeks after sowing. Therefore, having models that could 
precisely predict climatic conditions up to forage life cycle 
would be ideal. 

2) Digital shadow development. The selected algorithm 

was then used to develop a digital shadow. Developing a 

digital shadow is the first stage in creating a digital twin [43]. 

Digital shadow is used to visualize operating, status, or 

process data that is gathered while the product is in use or 

during an ongoing process. Then, the digital shadow replicates 

the digital model, which is made up of all the data from the 

design and production phases and serves as an intelligent link 

to the digital twin [44]. The digital shadow development sets 

the foundation for a digital twin. A digital shadow was made 

of predictive models that predicted temperature, soil moisture, 

rainfall and pasture height. 

The digital shadow was developed using historical data 
and collected data from the farm. The pasture is planted twice 
a year – in Autumn (March to May) and Spring (September – 
November). Thus, digital shadow was trained with data of 
both seasons of the year 2021 and the predictions were 
performed for Autumn season in 2022. The objective was to 
ascertain how temperature, soil moisture, and rainfall 
influence pasture growth. The readings were recorded weekly 
and prepared in spread sheets. Fig. 2 shows sample data 
collected for the month of April. 

The digital shadow was composed of four different 
prediction models. Temperature and rainfall models were 
developed using historical data and were updated by data 
collect in the farm. Soil moisture and pasture height were 
developed by farm data. Fig. 3 shows how the models were 
structured. The soil moisture model is dependent on 
temperature and rainfall models and pasture height model is 
dependent on other three models. 
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Fig. 2. Farm data collected for the month of April. 

 

Fig. 3. Relationship between the models of the digital shadow. 

Digital shadow sets the foundation of the digital twin. The 
results of the prediction models of the digital shadow 
determine whether the models could be trusted when 
implemented in the digital twin. 

B. Phase B – Monitoring Farm Conditions 

For a digital twin to exist there must be a physical system. 
The "smart farm" served as the study's representation of the 
physical system. IoT sensors were identified to monitor 
pasture growth and were integrated to create a smart farm as a 
link between the physical system and the digital counterpart. 
Sensors are also crucial to the development of digital twins as 
they gather information in real time that is utilized to create 
and update the prediction models. In the process of limiting 
factors that cause climate change, the selection of IoT sensors 
was based on devices which do not emit carbon footprint and 
waste. Cloud platform, IoT sensors and a gateway are the 
building blocks of the physical system. 

1) Cloud platform:IoT sensors gather data and transmit it 

to cloud storage. ThingSpeak® was selected for use in this 

study because of its capabilities to transmit sensor data in real-

time to the cloud [45]. The ability to pre-process and analyze 

the data using MATLAB® is another advantage of using 

ThingSpeak® [46]. 

2) IoT sensors: Sensors that monitor pasture growth were 

set up on the farm as part of the physical system. These 

include sensors that measure temperature, rainfall, soil 

moisture and pasture height. The sensors used are as follows: 

 A weather station - measures temperatures and rainfall 
and to log the results in ThingSpeak®. 

 A soil moisture sensor - measures the soil moisture 
content. It was programmed with ESP32 CAM to take 
the readings and send the results to ThingSpeak®. 

 The ESP32 CAM - captures the images of the pasture 
to be interpreted in MATLAB® to calculate pasture 
height 

 Raspberry Pi – runs the image processing script to 
calculate the height of the pasture based on the 
captured images and the result was logged into 
ThingSpeak®. 

3) IoT gateway: The connection between IoT sensors and 

the cloud must be made through an IoT gateway. IoT gateway 

serves as a network router that directs data between IoT 

sensors and the cloud which enable internet connectivity. 4G 

LTE Wi-Fi router was selected as a gateway. 

The complete physical system was the integration of IoT 
sensors, gateway and ThingSpeak®. The design of the physical 
system is shown in Fig. 4. 

 

Fig. 4. Structural design of the physical system. 

C. Phase C – Creating a Digital Twin Model 

To test the chosen algorithm on the physical system and 
determine if it can be trusted when deployed on the physical 
system, creating a digital shadow was the first stage in 
creating a digital twin. The design of the digital shadow 
clarified the scenarios of the physical system. Set of digital 
shadow models were helpful to understand the structure and 
the behaviour of the system in the physical world as these 
models were used to create a digital twin to perform 
predictions for the future. 

The design of the digital twin facilitates the activities, 
monitoring and digital control of operations in all the 
connections of the system [47]. The digital twin development 
is comprised of two platforms [47] - a physical system and the 
digital platform. Physical system is basically the setup of IoT 
sensors that collect data and store the result on a cloud 
platform. Running systems in real-time distinguishes the 
digital twin from the digital shadow [48]. The digital twin is 
developed in three phases, namely [49]:  

 data collection and monitoring;  

 data storage, and 
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 data analytics and predictive modelling. 

IoT sensors allow real-time monitoring and store data in 
ThingSpeak® which enable the link between the physical 
system and digital platform. The real-time data is used to 
update the prediction models in MATLAB® and the updated 
models are used to perform the predictions in SIMULINK®  
platform. The process in demonstrated in Fig. 5. 

 

Fig. 5. Digital twin development process. 

The digital twin is made up of four predictive models 
which are updated by sensor data which is retrieved in 
ThingSpeak® in in real-time. The models are built and trained 
in MATLAB® platform. The link between MATLAB® and 
SIMULINK® allow smooth transfer of data to update models 
and enable predictions.  Fig. 6 summarizes the process of 
analysing sensor data and using the data to keep prediction 
models up to date. 

 

Fig. 6. Data analysis and predictive modelling in the digital twin. 

The digital twin model is developed with models from the 
digital shadow, the difference is that digital twin models are 
kept updated with real time data from IoT sensors. Fig. 6 
shows that sensors gather live data and store it in ThingSpeak® 
cloud. This data is then analyzed to get weekly statistics 
because pasture height is measured weekly. SUMLINK® 
platform makes it easy to transfer data from ThingSpeak® and 
update the predictive models. The digital twin model portrays 
the dependencies between models. 

To perform the predictions, the digital twin accepts the 
duration of the prediction as the input (year and the week). 
The temperature, rainfall and soil moisture prediction models 
will then perform predictions for the specified duration. 
Pasture height prediction model will make predictions based 
on the output of the three models (temperature, rainfall and 
soil moisture). Fig. 7 demonstrates how digital twin is 
modelled in SIMULINK®. 

 

Fig. 7. Digital twin modelled in SIMULINK® . 

IV. RESULTS AND DISCUSSIONS 

This section shows the results obtained in the process of 
developing the digital twin to predict the pasture height, 
starting from algorithm section, digital shadow development 
until the digital twin development.  The analysis of the results 
will also be discussed. 

A. Comparison of the Algorithms 

Both regression and ANN algorithms were investigated to 
determine which one performs predictions better. RMSE was 
used as a measure of accuracy to compare prediction errors on 
temperature and rainfall predictive models. After obtaining the 
predicted values from the prediction models, these values 
were compared with the observed values to evaluate the 
performance of the model. 

It is important to perform model evaluation because it 
helps to assess the efficiency of the model during the initial 
research phases. The model evaluation was therefore 
conducted using two evaluation metrics, namely: correlation 
coefficient and estimated error. Correlation coefficient 
measures the relationship between two variables [50]. The 
values range is between -1 and 1. The closer the calculated 
value moves to 1, the stronger the relationship between two 
values and vice versa. Prediction error is the difference 
between the observed value and the predicted value [51]. The 
smaller the difference, the better. The results are shown in 
Table I. 
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TABLE I. COMPARISON ON REGRESSION AND ANN ALGORITHMS WHILE 

DEVELOPING TEMPERATURE AND RAINFALL PREDICTION MODELS 

 Temperature model Rainfall model 

Metric Regression ANN Regression ANN 

RSME 1,985 1,225 5,557 1,746 

Correlation 0,645 0,966 0,945 0,976 

Estimation Error ±5,03 ±1,76 ±22,21 ±9,31 

Table I shows the results obtained while developing 
temperature and rainfall prediction models using both 
prediction algorithms. The outcome demonstrates ANN 
algorithm performing better with lower RMSE and lower 
estimation error. It further proves itself with a higher 
correlation value which symbolize a strong relationship 
between the predicted and observed values. Therefore, ANN 
algorithm was selected as an algorithm to develop prediction 
models on the study. 

B. Digital Shadow Development 

Developing a digital shadow is an important stage towards 
developing a digital twin. The effectiveness of the digital twin 
to be created is determined by the results from the digital 
shadow, as the digital twin will employ the same algorithm as 
the digital shadow. Thus, ANN algorithm was used to develop 
a digital shadow. The digital shadow was made up of four 
prediction models – temperature, rainfall, soil moisture, and 
pasture height prediction models which were developed using 
gathered farm data. The digital shadow model predicted the 
expected pasture height based on the predicted temperature, 
rainfall and soil moisture. Table II demonstrates the results 
obtained. 

TABLE II. DIGITAL SHADOW PREDICTION RESULTS 

Prediction model Prediction error 

Temperature ±1.67 °C 

Rainfall ±5.9mm 

Soil moisture ≤4si 

Pasture height 13cm (max) 

Table II demonstrates the results obtained in the 
predictions of the digital shadow. Pasture height prediction 
model depends on the temperature, rainfall and soil moisture 
models to perform predictions. The ANN algorithm proved to 
perform better than regression for predictions, however there 
are uncertainties related ANN prediction models. The problem 
with ANNs is that is no clear understanding on how they 
analyze patterns of data to give the output on the predictions; 
they give final result [52]. This is proved with the outcome of 
the digital shadow model. Temperature and rainfall prediction 
model are expected to perform better than the other models as 
they were trained with more data than others. Nonetheless, 
soil moisture prediction model still had a lower prediction 
error than the rainfall prediction model. Hence this could be 
justified about changing rainfall patterns which makes the 
training of the models difficult to analyze data. 

The other problem is that ANNs need a lot of data to train 

the models for them to work efficiently. Pasture height 
prediction model in the digital shadow anticipated the final 
pasture height of 59cm. The observed pasture height was 
72 cm, and the highest prediction error was 13 cm. The reason 
of a higher prediction error in pasture height prediction model 
is that, the model was only trained with two seasons worth 
data. Thus more data was needed to improve its efficiency, 
including the soil moisture prediction model. Even though the 
model predicted a lower pasture height but the overall data 
seems promising. Therefore these models could be trusted in 
the digital twin, more data is to improve the models efficiency. 

C. Digital Twin Development 

Digital twin is made up of a physical system and a digital 
platform. The digital twin development was composed of 
three phases which are: data collection, data storage, and 
predictive modelling. 

1) Data collection. The physical system was made up of 

IoT sensors which were set up on the farm to gather data. The 

structure of the physical system in shown on Fig. 8. 

 

Fig. 8. Structure of the physical system on the farm. 

Fig. 8 presents the physical system made up of IoT sensors 
that build a smart farm. Label 1 is the weather station which is 
responsible for collecting temperature and rainfall data. Label 
2 is the ESP32 CAM which captures pasture images for height 
calculations. Label 3 is the soil moisture sensor that measures 
the moisture content. Label 4 is the pole which is helpful in 
image processing script that interprets image properties for 
pasture height calculations. The pole had a fixed height of 
90 cm. As the pasture grows, the portion of red pole was 
covered by green pasture from the ground. On the captured 
image, the height of the red portion that was not covered by 
the pasture was calculated (Y coordinate), and the result was 
subtracted from the fixed height of the pole (90 cm) to get the 
actual height of the pasture. The captured image was 
processed in MATLAB® run on the Raspberry Pi. The Wi-Fi 
modem acted as IoT gateway to enable data transfer and 
connection on the devices. The modem, Raspberry Pi and 
power supply were placed in the container on label 5. 

2) Data storage. Live data was retrieved from the sensors 

and stored in ThingSpeak®. This data was then analysed 

weekly and stored in a different channel. Weekly data was 

important in the study as it was used to update the prediction 

models. The weekly data is shown in Fig. 9. 
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Fig. 9. Weekly data in ThingSpeak®. 

3) Predictive modelling. The digital twin was composed of 

four prediction models from the digital shadow which are now 

updated by sensor data. Pasture height prediction model 

depends on three parameters which are temperature, rainfall 

and soil moisture. Thus, the pasture height prediction model 

was provided with new data of predicted average 

temperatures, predicted total rainfall, and predicted average 

soil moisture to perform the predictions of the next season. 

The predictions were done for the year 2022 for Spring 

season. The prediction started from the 38th week and looped 

through until the 46th week, since the pasture growth takes 

nine weeks.  The prediction results are shown in Fig. 10. 

 

Fig. 10. Prediction results of the digital twin models. 

On the presented outcomes, temperature and soil moisture 
prediction models showed good performance with a prediction 
error of ±1.62 and -1.7, respectively. Rainfall prediction 
model had a prediction error of ± 6.03, which was slightly 
higher as compared to other prediction models. The results on 

the rainfall prediction model signify the impact of changing 
weather patterns. However, the results of this model 
demonstrated a good outcome as predicted values and 
observed results showed a close correlation. 

Based on the predicted temperature, rainfall, and soil 
moisture, the prediction of the pasture height was conducted 
for the duration of pasture growth. The aim was to predict the 
expected pasture height which was tracked from the plantation 
date. The analysis is demonstrated on Table III. 

Table III shows that the prediction error of the model 
ranging between 0 and -4. Even though the observed pasture 
height was higher than the predicted outcome, the predicted 
pasture height represents a good outcome from the model, 
meaning there will be enough feed for the sheep. Thus the 
digital twin successfully predicted pasture height by 
integrating temperature, rainfall and soil moisture prediction 
models. 

TABLE III. ANALYSIS OF PREDICTED PASTURE HEIGHT RESULTS 

Week 
Predicted pasture 

height (cm) 

Observed pasture 

height (cm) 

Prediction 

error 

38 0 0 0 

39 0 2 -2 

40 12 15 -3 

41 22 24 -2 

42 29 32 -3 

43 42 45 -3 

44 48 52 -4 

45 51 54 -3 

46 52 56 -4 

V. CONCLUSION 

The aim of the digital twin development was to predict 
pasture height for the future to determine if there will be 
enough feed for the sheep. The digital twin model was 
proposed after determining that sheep farmers struggle to keep 
their animals alive due to improper pasture management 
caused by changing farming seasons due to climate change. 
Soil moisture predictive model was successfully implemented 
and integrated with temperature and rainfall predictive models 
to acquire anticipated pasture height. ANN machine learning 
was helpful in developing predictive models for forecasting. 
The study also shows how AI and IoT technologies are 
collaborated to develop real-time systems with predictive 
models. Thus, the results show a digital twin made of real-
time monitoring of the pasture growth with predictive models 
can assist the farmer in taking proper decision on time thus 
improving management strategies. 
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