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Abstract—The evolution of data management systems has 

witnessed a paradigm shift towards dynamic and temporal 

representations of relationships. Graph databases, positioned as 

key players in managing highly-connected data with a 

fundamental requirement for relationship analysis, have 

recognized the need for incorporating temporal features. These 

features are crucial for capturing the temporal dynamics 

inherent in various applications, offering a more comprehensive 

understanding of relationships over time. This theoretical 

exploration emphasizes the importance of incorporating 

temporal dimensions into graph data warehousing for 

contemporary applications. Temporal features introduce a 

dynamic dimension to graph data, enabling a more nuanced 

understanding of relationships and patterns over time. The 

integration of temporal features in graph data management and 

analysis not only addresses the dynamic nature of contemporary 

applications but also contributes to enhanced modeling and 

analytical capabilities. 

Keywords—Data warehousing; graph database; graph 

warehousing; social computing; temporal data 

I. INTRODUCTION 

The pervasive expansion of social media platforms has led 
to the establishment of a global conduit, as explored in study 
[8], amalgamating a plethora of data, insights, and principles 
concerning product details, societal norms, and leisure 
suggestions. Consequently, this proliferation has facilitated the 
emergence of influential online personalities within the digital 
community. Comprehending the dynamics of this cyber-
community is imperative for addressing societal challenges 
such as counter-terrorism, cyber warfare, and cyberbullying, 
while concurrently fostering adept management practices 
conducive to human welfare. Hence, an internal framework for 
delineating social networks is indispensable for advancing 
scholarly understanding and practical engagement with the 
complexities of the digital realm [10]. The evolution of data 
management systems has seen a paradigm shift towards 
dynamic and temporal representations of relationships.  

Graph databases are aimed at dealing with highly-
connected data that comes with an intrinsic need for 
relationship analysis [1] [2]. Being a prominent player in this 
landscape, they have increasingly recognized the need for 
temporal features to capture the temporal dynamics inherent in 
various applications. When we have a specific starting point or 
at least a set of points to start with (nodes with the same label), 
they are well equipped to traverse relationships. And the 
obtained graph structures have given rise to numerous business 
opportunities and applications leveraging the networking 

infrastructure [14] [18]. Instances comprise customer 
relationship management (CRM), cloud computing and its 
services, enterprise resource planning (ERP), supply chain 
management (SCM), and business intelligence (BI). 

In the realm of contemporary data management, the 
inclusion of temporal features has emerged as a critical aspect 
[7][9][11][12][15][16][19][22][25][30][31][32], especially in 
the context of graph data [34][35]. Incorporating temporal 
features in graph data management and analysis allows for a 
more accurate modeling of influence dynamics, capturing 
changes in social structures and information dissemination 
patterns. We give some examples to explain this point: 

1) Social networks and influence dynamics: Social 

networks are inherently temporal, with relationships evolving 

over time. Incorporating temporal features in graph data 

allows for a more accurate modeling of influence dynamics, 

capturing changes in social structures and information 

dissemination patterns. 

2) Financial systems and transactional analysis: In 

financial applications, understanding the temporal aspects of 

transactions is crucial. Temporal features enable the 

identification of patterns related to fraudulent activities, 

market trends, and the evaluation of investment strategies. 

3) Healthcare and patient journey analysis: Temporal 

features play a pivotal role in healthcare analytics by 

providing insights into the temporal progression of diseases, 

treatment effectiveness, and patient outcomes. This temporal 

perspective enhances the precision of predictive modeling and 

decision support systems. 

This theoretical exploration delves into the importance of 
incorporating temporal dimensions into graph data 
warehousing for contemporary applications. Temporal features 
provide a dynamic dimension to graph data, enabling a more 
nuanced understanding of relationships and patterns over time. 
This paper discusses the implications of temporal features for 
various domains, outlines challenges in their integration, and 
highlights potential benefits for on-line analytical processing. 

II. RELATED WORKS 

The primary distinction between relational and graph 
databases lies in their respective methodologies for storing 
relationships among entities or objects. Traditionally, relational 
databases use predefined relationship type structures (i.e., by 
relationship table definitions) to store relationships, while in a 
graph database, relationships are stored at the individual object 
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level [33]. The data in a relational database can be deduced to 
create a graph database as we have discussed in [29]. 
Commercial graph database vendors, like Neo4j 
(http://neo4j.com), also offer ETL (Extraction, Transformation, 
and Loading) tools for transforming relational database into 
their graph database products (e.g., https://neo4j.com/labs/etl-
tool/1.5.0/) [17]. 

For example, in Fig. 1(a), there is a relational database 
modeled by the traditional Entity-Relationship Model (E-R 
Model), which concerns the relationship type <Enroll> (in the 
relation Enroll) between entity types Student and Course.  

Conversely, in a graph database, relationships between any 
two instances of objects can be dynamically encoded. 
Illustrated in Fig. 1(b), beyond the relationships encompassed 
within the <Enroll> relationship type, a graph database permits 
users to introduce relationships such as "roommate" between 
John and Alex, "classmate" between Tom and Joe, "friend" 
between Mary and Alex, and a directed relationship labeled 
"prerequisite" from Algorithm to Fintech. 

The relationships depicted in Fig. 1(a) exhibit a greater 
degree of "staticity," as they remain unchanged throughout the 
entirety of the semester. In contrast, Fig. 1(b) encompasses a 
greater diversity of "dynamic" relationships, reflecting various 
aspects that may evolve or change over time. Based on Fig. 
1(b), suppose the relationships have been extended with 
temporal features and transformed into the temporal graph as 
shown in Fig. 2, where Tom studied the Fintech at t3 (a course 
offered by Dr. Liu), but Alex studied the course at t8 (offered 
by Dr. Li). Rigorously speaking, the system should not deduce 
Tom and Alex as classmates even though they have studied the 
same course Fintech, as they did not meet each other in their 
classes (different class timings). 
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Fig. 1. (a) Conventional relational database models relationships between 

entity types. (b) Graph database models relationships between object 

instances. 

A graph consists of two fundamental components:  

1) A set of vertices (also known as nodes): Representing 

selected objects.  

2) A set of edges (also called links): Representing 

relationships between objects. Directed edges are represented 

as arcs, while undirected edges are depicted as edges. 
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Fig. 2. A temporal graph database used to model the relationships between 

object instances. 

Traditionally, social networks are depicted using a graph 
structure that encompasses data relating to all participating 
objects and their interconnections. These foundational concepts 
establish the framework for describing the structure of a social 
network using a graph. Additional information pertaining to 
vertices and edges, acquired through assignment or derived 
from measurement, is referred to as properties (or attributes). 
Properties can be assigned by humans or calculated from the 
graph or other properties.  

As posited by Vicknair et al. (2010) [33] and Ho, Wu, & 
Liu (2012) [15], the interactions and engagements of netizens 
within social networks can be effectively represented within 
established graph database management systems. When cyber-
communities are structured within a graph database 
framework, the identification of opinion leaders across various 
domains or cyber warriors can be facilitated through analytical 
inquiries, comparing their interstitial behaviors and 
relationships. Moreover, given the maturity of relational data 
warehousing technologies, synergizing these methodologies 
enables the exploration of business intelligence inherent within 
social networks. This convergence, known as social business 
intelligence, harnesses the combined capabilities of graph 
databases and relational data warehousing technologies to 
conduct online analytical processing (OLAP) and unveil 
hidden insights within social networks. 

Sahu, et al. (2019) [20] performed an extensive survey 
study on how graphs are used in practice, and revealed 
surprising facts of the increasing prevalence across many 
application domains. Zhao et al. (2011)[36] introduced the 
concept of graph cube, and presented a novel data warehousing 
model designed to facilitate OLAP (On-Line Analytical 
Processing) queries on extensive multidimensional networks. 
Sakr et al. (2021) [21] even posited that the future of data 
processing is a big graph. Through the incorporation of 
temporal features into graph databases, we posit that graph-
related systems will emerge as highly potent tools for 
managing interconnected data in modern applications. 

Different from the traditional model of social networks, we 
assume there are temporal properties in some vertices and 
lines, and then propose a rigorous model for the challenge of 
consistent graph management and graph data warehousing by 
the following observations: 
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1) Temporal graph data are indispensable in social 

substance and related contexts [29], as social networks form 

and evolve gradually through the operations of social 

processes along the timeline of every participant [3]. The 

contextual frameworks in which social networks are formed 

play a pivotal role in comprehending the dynamics of network 

inception and the ensuing implications for individuals, groups, 

and organizations. For example, Brodka et al. (2011, 2013) [5] 

[6] utilize temporal data to devise a methodology aimed at 

elucidating the evolutionary trajectories of groups within 

social networks. This approach enables the discernment of 

group dynamics encompassing formation, growing, splitting, 

shrinking, continuing, merging, and dissolution.  

2) Currently, most of the research on social networks has 

been studied without considering time and the dynamically 

changing status of objects (and their relationships). 

3) Since there is already well-developed temporal data 

management in contemporary relational database management 

systems, it is the right time to embark on the study of business 

intelligence hidden in temporal graphs. 

Graph warehouses, distinct from graph database 
management systems, encompass rich semantics pertaining to 
object relationships, facilitate efficient feature extraction and 
indexing functionalities, and offer flexible summarization 
approaches from diverse perspectives. This enables the 
grouping or clustering of subgraphs, thereby providing 
nuanced access to business intelligence pertaining to network 
types. Through a comprehensive integration of attribute 
aggregation and structural summarization within 
multidimensional networks, their approach yields insights and 
structure-enriched aggregate networks across varied 
multidimensional spaces. 

However, despite the advancements in relational temporal 
technologies, their formal extension or adaptation to the 
domain of graph databases remains largely unexplored. 
Consequently, temporal considerations have been largely 
overlooked in the majority of related studies. 

In this paper, we elucidate several scenarios to underscore 
the potential for imprecise analytical outcomes stemming from 
the absence of temporal considerations. Subsequently, we 
endeavor to present a formal definition for a temporal graph 
database model, extending the temporal data warehousing 
concept into the domain of temporal graph warehousing. 
Additionally, we provide formal definitions for the 
fundamental elements of a temporal graph warehouse. 

Although temporal graph databases are powerful for 
dealing with interconnected data, they are not suited for 
traversing the whole graph when it contains tremendous 
vertices and relationships from performance viewpoints. 
Therefore, when we need to analyze temporal graph data based 
on some criteria, a network or graph is usually generated (for a 
specific time slot or interval) through a graph query posed on 
the temporal graph database. 

Our principal focus lies in delving into temporal graphs 
beyond mere structural delineations, aiming instead to 
encapsulate their evolutionary trajectories over time and 

discern the underlying social dynamics propelling their 
transformations. This endeavor is geared towards 
comprehending the temporal evolution of social networks and 
elucidating the processes involved in their formation, 
persistence, and dissolution. 

III. A FORMAL DEFINITION OF THE TEMPORAL GRAPH 

MODEL 

By conceptualizing vertices and edges (including directed 
arcs and undirected edges) as entities and connections 
respectively, objects sharing similar characteristics can be 
grouped into object types, and their connections of similar 
nature into relationship types. If the historical evolution of 
object types can be meticulously recorded and managed, these 
object types can be elevated to temporal object types. Through 
such temporal object types, it is envisaged that precise online 
analytical processing of interlinked object relationships can be 
facilitated. 

Furthermore, given the potential existence of multiple 
relationships between two objects within a temporal graph, the 
model ought to manifest as a labeled multi-digraph. Each label 
corresponds to a distinct relationship imbued with associated 
attribute values, while each object possesses its own set of 
attribute values. Labels of identical nature can be categorized 
under the same relationship types, a framework that can be 
established through an extension of prior research endeavors 
[28]. 

Definition 1: A temporal graph is a multi-digraph with 
labeled vertices and lines (including directed arcs and 

undirected edges). Formally, it is an 8-tuple GT = (O, R, T, 
O, R, fs, ft, ), where 

1) O is a set of vertices, representing universal unique 

identifiers (UUIDs) of all the object instances in GT. 

2) R is a set of lines, generally denoted (p, q) (or l(p, q) 

with label l), which include directed arcs of UUID pairs 

(p→q) and undirected edges of UUID pairs (pq) of every 

instance of relationship, such that p, q  O. 

3) T = {t1, t2, …, ti,…} is a set of time points. 

4) O = { 𝑂1

𝑡𝑗 (A1), 𝑂2

𝑡𝑗 (A2), …, 𝑂𝑖

𝑡𝑗 (Ai), …, 𝑂𝑛

𝑡𝑗 (An)} 

represents a set of temporal object types 𝑂𝑖

𝑡𝑗
 with schema Ai = 

(Ai,1, Ai,2, , Ai,d(i)) of degree d(i), such that each 𝑂𝑖

𝑡𝑗(Ai) = 

{𝑜𝑖,1

𝑡𝑗
, 𝑜𝑖,2

𝑡𝑗 , … , 𝑜𝑖,𝑘

𝑡𝑗
} contains a set of temporal objects of type 𝑂𝑖

𝑡𝑗, 

where 𝑜𝑖,𝑘

𝑡𝑗  = (ai,1, ai,2, …, ai,d(i)) represents an object instance of 

type Oi, at time tj with the universal unique identifier (UUID) 

k. Practically, object instances of the same type in a graph 

database are allowed to have different schemas. 

5) R = {R1(BR1
), R2(BR2

), …, Ri(BRi
), …, Rm(BRm

)} 

represents a collection of relationship types Ri with a schema 

BRi
 = (Bi,1, Bi,2, …, Bi,e(i)) of degree e(i), such that each Ri(BRi

) 

=⋃ {𝑟(𝑝,𝑞)}𝑝,𝑞 𝑂
 denotes a set of relationships of type Ri and r(p, 

q) = (p, q, bi,1, bi,2, …, bi,e(i)), bi,k
Bi,k, is a relationship instance 

for a pair of UUIDs (p, q), p and q  O. BRi
 can be empty, 

which implies that Ri lacks attributes and can also be 

represented as Ri(). For temporal applications, some BRi
 may 

have at least one attribute, e.g., time-points, used to store the 

active time points of a (p, q) relationship. 
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6) fs: R→O and ft: R→O are two mappings indicating 

the source and target object UUIDs of a relationship UUID 

pair. 

7)  = {R1
, R2

, …, Ri
, …, Rm

} represents a set of 

mappings, such that Ri
: R→BRi

 is a mapping returning the 

tuple of attribute values (bi,1, bi,2, …, bi,e(i)) of a relationship (p, 

q) in R. 

In a temporal graph, the presence of vertices and edges can 

vary over time. A vertex v  O and an edge l  R are not 
necessarily active in all time points. Additionally, a strict 
consistency condition must be upheld: If an edge l(p, q), which 

may be directed l(p→q) or undirected l(pq), is active at time 
point t, then its endpoints p and q should be also active at time 

t. Formally this is expressed as t(l(p→q))  t(p)  t(q) and 

t(l(pq))  t(p)  t(q), where t(e) denotes a function returning 
the active set of time points for e. 

In this definition, a temporal graph, encompasses a variety 
of objects (e.g., individuals or affiliations) and their 
multilateral relationships of diverse relationship types (e.g., 
friendships or spouse relationships). Both objects and 
relationships may possess varying numbers of attributes. To 
facilitate graph or network analytics, modern comprehensive 
graph database management systems (GDBMSs) are furnished 
with specialized query language constructs for extracting 
attributes, relationships, or even transitive closures within 
networks. Users can formulate query statements by effortlessly 
expressing pattern matching or multi-hop navigation in social 
networks [8] [13]. However, these GDBMSs do not inherently 
support functionalities for temporal features. Therefore, our 
aim is to investigate such temporal features based on formally-
defined characteristics and explore methods for simulating 
these functionalities through time-oriented relations. 

To exemplify the concept of our temporal graph data 

model, we present the temporal graph, denoted as GT = (O, R, 

T, O, R, fs, ft, ) in Fig. 3, where, 

1) O = {2, 3, 5, 6, 7, 8, 101}, means there are 7 UUIDs 

for six persons and one conference. 

2) R = {(2, 3), (2, 101), (3, 5), (3, 101), (5, 8), (5, 101), 

(7, 8), (7, 101), (8, 101), (6, 7), (6, 101)}. There are 12 UUID 

pairs for the relationships between persons and the conference. 

3) T = {t1, t2, …, t888}. 

4) O = {O1(A1), O2(A2)} = {Person(UUID, Name, 

Gender, City, Affiliation, Degree), Conference(UUID, Name, 

Start_Date, End_Date, City)}, where Person(UUID, Name, 

Gender, City, Affiliation, Degree) = {{(2, Luna, F, Taipei 

County, NTPU, MS)t1
, (2, Luna, F, New Taipei, NTPU, 

MS)t2
}, (3, Lora, F, Taipei, NTU, PhD)t2

, {(5, Tom, M, 

Changhua, NCUE, MS)t1
, (5, Tom, M, Changhua, NCUE, 

PhD)t2
}, (6, May, F, Tainan, NCKU, MS)t2

, (7, Ling, F, Tainan, 

NCKU, PhD)t2
, (8, Ren, M, Kaohsiung, NKUST, PhD)t2

} is an 

object type of degree 6, and Conference(UUID, Name, 

Start_Date, End_Date, City) = {{(101, 2020 ICDE 

Conference, 2020/04/20, 2020/04/24, ‘Dallas, TX’)t1
, (101, 

2021 ICDE Conference, 2021/04/19, 2020/04/22, ‘Chania, 

Crete, Greece’)t2
} is an object type of degree 5, containing 1 

object. 

5) R = {R1(BR1
), R2(BR2

)} = {participate(timepoints), 

Friend()}, where participate(timepoints) = {(2, 101, 

[2020/04/20-2020/04/23]), (3, 101, [2020/04/20-2020/04/23]), 

(5, 101, [2020/04/22-2020/04/24]), (6, 101, [2020/04/22-

2020/04/24]), (7, 101, [2020/04/20-2020/04/24]), (8, 101, 

[2020/04/21-2020/04/23])}; Friend() = {(2, 3), (3, 5), (5, 8), 

(6, 7), (7, 8)}. 

6) fs: R→O and ft: R→O are two mappings indicating 

the source and target objects of a relationship. For example, 

we may obtain fs((2, 101)) = 2 and ft((2, 101)) = 101. 

7)  = {Participate, Friend} represents a set of mappings, 

where Participate((2, 101)) = ([2020/04/20-2020/04/23]), 

          Participate((3, 101)) = ([2020/04/20-2020/04/23]), 

          Participate((5, 101)) = ([2020/04/22-2020/04/24]), 

          Participate((6, 101)) = ([2020/04/22-2020/04/24]), 

          Participate((7, 101)) = ([2020/04/20-2020/04/24]), 

          Participate((8, 101)) = ([2020/04/21-2020/04/23]), 

Friend((2, 3)) = , Friend((3, 5)) = , Friend((6, 7)) = , 

Friend((5, 8)) = , Friend((7, 8)) = . 
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Fig. 3. A temporal graph representing ICDE 2020 Conference and the 

participants. 
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Fig. 4. The graphs of participants in each day of ICDE 2020 Conference. 

Based on the Start_Date and End_Date of object 101, the 
graph of participants in each day of the ICDE 2020 Conference 
can be illustrated in Fig. 4. These subgraphs can be further 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

264 | P a g e  

www.ijacsa.thesai.org 

summarized as Fig. 5 depicts, where the top belt contains the 
participants’ total aggregation, the middle and bottom belts 
respectively derive the participants’ aggregation by their 
degree and gender analysis for every conference day. The 
number in a vertex denotes the number of participants, and the 
number beside an edge represents the number of relationships. 
Notice that the vertex with UUID = 5 (Name: Tom) 
participated in the 2020 ICDE Conference (held at t2) from 
2020/04/22 to 2020/04/24, and the degree of Tom at t2 is PhD 
instead of MS. Besides, the city of UUID = 2 (Name: Luna) is 
‘New Taipei’ instead of ‘Taipei County’ at t2. Therefore, if the 
City is regarded as a temporal dimension, then ‘New Taipei’ 
should be used at t2 for analytical processing. 
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Fig. 5. Three graph summarizations of participants in each day of ICDE 

2020 Conference. 

When analyzing a large graph, displaying all its details in a 
single pass becomes impractical. Two overarching strategies 
exist for examining large graphs: 

1) Generating summary descriptions of graphs using 

statistical methods.  

2) Extracting smaller subgraphs based on interesting 

criteria, such that more sophisticated methods can be 

conducted. 

While both strategies are considered in our study, greater 
emphasis is placed on the second approach. This involves 
addressing large graph structures through a divide-and-conquer 
strategy. In this method, a large graph is partitioned into 
smaller segments. If a segment remains sizable, it can be 
further subdivided into subsegments. This iterative process 
continues until the subsegments become sufficiently small for 
the application of more intricate methodologies. Descriptions 
of these smaller graphs prove valuable, offering insights into 
graph structures. Importantly, these descriptions can be 
amalgamated to yield a comprehensive understanding of graph 
structures. 

Fig. 6 illustrates various options within the divide-and-
conquer strategy. A sample graph is depicted, with different-
colored areas denoting regions from which segments can be 
extracted. The most detailed partition contains vertices within 
the yellow area. One approach involves extracting graph parts 
to closely examine their interrelationships. Additionally, a 
decomposition process can be executed at a chosen level, 
employing vertex or edge partitions based on attribute values, 

thereby forming a hierarchy. When vertices are consolidated 
into a single vertex, a reduction of the graph is achieved. 

In Fig. 7, we demonstrate a series of status changes of 
temporal graph reductions along a timeline when temporal 
features are introduced and considered for analytical 
processing. Such temporal tracking graph capability is helpful 
for group evolution discovery in social networks (e.g., like the 
work conducted by Bródka et al. (2011, 2013) [5] [6]). 
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Fig. 6. Graph summarizations by hierarchy decomposition and reduction. 

Reduction
t1

t2

t3

t1

t2

t3

 

Fig. 7. A series of status changes of graph reduction along a timeline. 

IV. TEMPORAL GRAPH WAREHOUSE MODELING 

Since the data in a relational database can be deduced to 
create a graph database, the basic elements defined in 
Definitions 1 to 6 can also be employed for both the temporal 
relational data warehouse and temporal graph warehouse. For 
example, a temporal dimension can be constructed from 
attributes of a vertex type, and used for building a temporal 
graph cube later. 

Recall that a line l(p, q), including l(p→q) or l(pq), can be 
active in time t, only when two end-vertices p and q are active 
in time t. Therefore, we do not introduce temporal concepts 
into relationship types, and the dimensions constructed from 
attributes of relationship types are treated as ordinary 
dimensions in our model. As a relationship represents an event 
or action, the attributes of a line record the history itself. We 
use the time points contained in relationship types to construct 
an ordinary time dimension, which can be regarded as a 
counterpart corresponding to the time dimension constructed 
from attribute T of the fact table in relational temporal data 
warehousing (as discussed in Section IV). 

In Fig. 8, we draw the temporal dimensions 𝑅 
𝑡1 and 𝑅 

𝑡2  for 
Taiwan, and their aggregated temporal dimension RT in Fig. 9. 
Fig. 10 also depicts another ordinary dimension C for 
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representing a categorization of computer, communication, and 
consumer electronic products. 
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Taipei
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Taipei
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Tainan KaohsiungChanghua

 

Fig. 8. The temporal dimensions 𝑅 
𝑡1 and 𝑅 

𝑡2 about Taiwan. 
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Fig. 9. The aggregated temporal dimension RT. 
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Fig. 10. The dimension C of a categorization of general electronic products. 

In the following, we define the basic elements for temporal 
graph warehousing. These definitions are modified from our 
previous work of graph data warehousing [28]. Primarily, for 
facilitating multi-dimensional indexing in temporal graph 
warehousing, each temporal graph and its subgraphs are all 
allocated with a distinct identifier. 

We establish the fundamental unit of a temporal graph 
cube, termed a t-cell, as follows. 

Definition 2: A t-cell of time t, denoted ct = (t, K, x), defined on 

 a temporal graph GT = (O, R, T, O, R, fs, ft, ), 

 a time point t  T, and 

 n aggregated temporal dimensions (𝐷1 
𝑇 , 𝐷2 

𝑇 , …, 𝐷𝑖 
𝑇 , …, 

𝐷𝑛
𝑇 ), such that each 𝐷𝑖

𝑇  is a hierarchy of keywords, 

derived from some attribute values of 𝑂𝑖 
𝑡(Ai) O, 1 i  

n, is a subgraph of GT, denoted Gt = (t
O
, t

R, T, O, R, 

fs, ft, ), pointed (indexed) by a unique identifier x, 
with the following conditions hold: 

o K = (K1, K2, …, Ki, …, Kn), such that Ki (𝐷𝑖 
𝑡(0)  

{‘*’})  , 1 i  n, 

o t
O
 (t

O
  O) contains vertices of type 𝑂𝑖 

𝑡 , which 

have attribute values ci  Ki at time t. 

o t
R (t

R  R) contains all relationships (p, q) in Gt, 

such that these relationships have an attribute 

timepoint containing time t and p, q t
O
. 

In essence, a t-cell ct contains a subgraph of GT, generated 
through a graph query rooted in (K1, K2, …, Kn) for time t, with 
the subgraph referenced by x. 

Example 1: Based on the graph depicted in Fig. 3, an 
example t-cell of time ‘2020/04/23’, denoted ct = (2020/04/23, 
({2020 ICDE Conference}, {F, M}, {*}), x), defined on three 
aggregated temporal dimensions (C, S, RT), where C is a 
dimension of conference names, S is a dimension of gender, 
and RT is the dimension depicted in Fig. 9. The subgraph with 
their multilateral relationships (e.g., friend relationship) 
pointed by x can be illustrated in Fig. 11. 

F (Female) M (Male)

2 3

101

5

6

7 8

frien
d

UUID: 101

Name: 2020 ICDE Conference

Start_Date: 2020/4/20

End_Date: 2020/4/24

City: Dallas, TX

UUID: 8
Name: Ren
Gender: M
City: Kaohsiung
Affil iat ion: NKUST
Degree: PhD

UUID: 5
Name: Tom
Gender: M
City: Changhua
Affil iat ion: NCUE
Degree: PhD

UUID: 3
Name: Lora
Gender: F
City: Taipei
Affil iat ion: NTU
Degree: PhD

UUID: 2
Name: Luna
Gender: F
City: New Taipei
Affil iat ion: NTPU
Degree: MS

UUID: 7
Name: Ling
Gender: F
City: Tainan
Affil iat ion: NCKU
Degree: PhD

UUID: 6
Name: May
Gender: F
City: Tainan
Affil iat ion: NCKU
Degree: MS

 
Fig. 11. A t-cell ct = (2020/04/23, ({2020 ICDE Conference}, {F, M}, {*}), 

x) of time ‘2020/04/23’. 

Definition 3: A t-cell ct = (t, K, x), defined over n 

aggregated temporal dimensions (𝐷1 
𝑇 , 𝐷2 

𝑇 , …, 𝐷𝑖 
𝑇 , …, 𝐷𝑛

𝑇 ) is 

termed an m-d t-cell, 0  m  n, if and only if there exist 

exactly m non-summary members Ki (i.e., Ki  {*}). When m = 

n and ci  𝐷𝑖 
𝑡(hi), where hi denotes the height of 𝐷𝑖 

𝑡 , for all 1 i 

 n, then ct is referred as a base t-cell; otherwise, ct is termed a 
non-base t-cell. 

Definition 4: An n-dimensional i-d t-cell at = (t, (a1, a2, …, 
an), xa) serves as a parent to another n-dimensional j-d t-cell bt 
= (t, (b1, b2, …, bn), xb), if and only if the following conditions 
are met: 

1) i = j－1, 

2) There exists exactly one index k, such that ak is the 

parent of bk in 𝐷𝑘 
𝑡  and al = bl for all l  k, 1 l  n. 

3) The graph indexed by xb is a subgraph of the graph 

indexed by xa. 

Definition 5: A temporal graph cube GCT = (T, GT, (𝐷1 
𝑇 , 

𝐷2 
𝑇 , …, 𝐷𝑖 

𝑇 , …, 𝐷𝑛
𝑇 )) for GT = (O, R, T, O, R, fs, ft, ) 

defined over n aggregated temporal dimensions (𝐷1 
𝑇 , 𝐷2 

𝑇 , …, 

𝐷𝑖 
𝑇 , …, 𝐷𝑛

𝑇), is a cube composed of all t-cells in {ct
i = (t, K, xi)| 

t  T(0), ct
i  T(0)  ( ×

1𝑖𝑛
𝐷𝑖 

𝑇(0)), the subgraph indexed by xi 

is a subgraph of GT}. 
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The main difference between a temporal relational cube 
and a graph temporal cube is the data contained in a t-cell. In a 
relational temporal cube, a t-cell is a tuple of values returned 
by respectively applying aggregate functions fj(C, Mj) on each 
measure in M = {M1, M2, …, Mj, …, Mk}, using each ci of C = 

(c1, c2, …, ci, …, cn), ci  𝐷𝑖 
𝑇(0)  {‘*’}, 1 i  n, as the filter 

of 𝐷𝑖 
𝑇 . However, in a temporal graph cube, a t-cell is 

conceptually a subgraph of the original graph defined by a 
graph query using K as the slice condition (using Ki to slice the 

aggregated temporal dimension 𝐷𝑖 
𝑡). 

An example depiction of a temporal graph cube GCT = (T, 
GT, (RT, C)) is presented in Fig. 12, with T representing the 
Time dimension, and RT and C representing the dimensions as 
depicted in Fig. 9 and Fig. 10, respectively. 
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Fig. 12. An example of multi-dimensional temporal graph cube. 

Each t-cell in Fig. 12 corresponds to a subgraph containing 
objects and their relationships defined by the intersected 
dimension members across all engaged aggregated temporal 
dimensions. For instance, t-cells a, c, and e respectively 
reference three subgraphs concerning the social network 
netizens residing in {(Taipei County)t

1
, (New Taipei)t

2
} (in 

North Taiwan), {Taichung} (in Middle Taiwan), and {Tainan} 
(in South Taiwan), who purchased TVs on the same day (e.g., 
‘2021/08/08’ in the Time dimension), with their friendship 
relationships. If the purchase date precedes t2, then t-cell a 
corresponds to the dimension keyword ‘Taipei County’; 
otherwise, it corresponds to the dimension keyword ‘New 
Taipei’. By selecting t = ‘2021/08/08’, the system can generate 
these subgraphs for users respectively using the tuples (t, {New 
Taipei}, {TV}), (t, {Taichung}, {TV}) (t, {Tainan}, {TV}) as 
filters on the temporal graph cube. In contrast, in a traditional 
temporal relational cube structure, the cells just respectively 
store three numbers regarding the amounts of TVs bought by 
customers located in {(New Taipei)t

2
}, {Taichung} and 

{Tainan} at time t2. 

V. VISUALIZATION AND SUMMARIZATION OF GRAPH 

CUBES 

Following the establishment of a temporal graph cube, all 
temporal dimensions or attributes associated with vertices and 

relationships can be leveraged to generate a summarization of 
all subgraphs defined by t-cells facilitating on-line analytical 
processing in social networking. For instance, if the vertices of 
Person (i.e., the participants of the 2020 ICDE Conference) in 
Fig. 3 are expanded and used to construct two dimensions, one 
for Degree (e.g., {MS, PhD}), and the other for Gender (i.e., 
{Female, Male}) as shown in Fig. 13. Then, any subgraph 
indexed by a t-cell defined on these dimensions can be used to 
derive the summarization of participants based on their degrees 
and genders, respectively (as shown in Fig. 14). 
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Fig. 13. Two views of the friendships for the dimensions Gender and Degree 

of Person at time t. 
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Fig. 14. Two summarizations of the friendship of Fig. 13 at time t. 
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Furthermore, it also offers the summarization of composite 

dimensions. For example, by regarding Gender  Degree = 

{Female, Male}  {MS, PhD} = {(Female, MS), (Female, 
PhD), (Male, MS), (Male, PhD)}) as a composite dimension, 
the summarization result at some time t can be derived as Fig. 
15 illustrates. The intricate relationships depicted in Fig. 15 can 
be internally stored within the system, and utilized to execute 
an operation akin to the traditional DRILL-THROUGH 
operation in multi-dimensional query language like MDX [23] 
or MD2X [26]. This functionality enables users to navigate 
from the summarized results shown in Fig. 15 to access the 
detailed information pertaining to each engaged vertex. 

 

Fig. 15. The summarizations of Gender  Degree at time t. 

Another intricate perspective concerning the cities of 
Person with Degree (i.e., {PhD, MS}) are situated at a certain 
time t is illustrated in Fig. 16. This view aids in computing the 
summarization for the Degree-City relationships at time t (as 
depicted in Fig. 17). Additionally, the perspective regarding the 
cities where individuals of different genders are located is 
provided in Fig. 18. This view assists in calculating the 
summarization for the Gender-City relationships at time t (as 
shown in Fig. 19). 
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Fig. 16. A view of the Degree-City relationships at time t. 

The drill-down and roll-up operations outlined in 
Definitions 3 and 4 can also be seamlessly executed within 
temporal graph cubes. For instance, Fig. 20 illustrates two 
subgraphs obtained by rolling up one level (along the 
dimension RT) from Fig. 17 and 19, respectively. 

In contemporary times, numerous fan pages proliferate 
across social networks, such as Facebook or Instagram, serving 

as platforms for gathering stakeholders’ feedback, 
disseminating promotion content, or conducting sentiment 
analysis on valuable customers alongside their friends or 
followers. These shared comments or resources can be 
processed, structured and integrated into graph cube 
frameworks for social network analytics, leveraging the 
principles of temporal graph data warehousing [36] to generate 
insights for short-term analysis or long-term strategizing. Such 
features offer a wealth of opportunities for users to extract 
social business intelligence from graph databases substantially. 
The insights derived can be systematically harnessed for 
internal knowledge management and disseminated to relevant 
users with value-added feedback, thus perpetuating a virtuous 
cycle of information exchange and refinement [4] [24] [27]. 
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Fig. 17. The Summarization of Degree-City Relationships at time t. 
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Fig. 18. A view of the Gender-City relationships at time t. 
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Fig. 19. The summarizations of Gender  City at time t. 
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Fig. 20. One level rolling up (along the dimension RT) for Fig. 17 and Fig. 19 

at time t. 
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VI. SUMMARY AND FUTURE DIRECTIONS 

We are currently observing an unparalleled expansion of 
interconnected data, emphasizing the crucial significance of 
graph processing in our society. We recognize that big graph 
processing systems integrating temporal features, alongside 
their associated data warehousing capabilities, are now 
fundamental components within numerous emerging data 
management ecosystems across various domains of societal 
relevance [21]. Our temporal graph model can be used to 
model many practical applications with abstractions. The 
incorporation of temporal features in graph data management 
and warehousing is indispensable for contemporary 
applications across diverse domains. By providing a dynamic 
perspective on relationships and patterns, temporal features 
enhance the analytical capabilities of graph databases, 
contributing to more informed decision-making processes. 
While challenges exist, ongoing research and technological 
advancements are addressing these issues, ensuring that the 
integration of temporal features continues to be a forefront 
consideration in the evolution of graph data management 
systems. 

We hopefully expect the following benefits can be obtained 
through temporal graph warehousing: 

1) Improved predictive analytics: Temporal features 

contribute to more accurate predictive models, allowing for 

the anticipation of future trends and events. This is particularly 

valuable in applications where timely decisions are 

paramount. 

2) Enhanced pattern recognition: Temporal graph data 

facilitates the identification of recurring patterns and 

anomalies. This is valuable in diverse domains, including 

cybersecurity, where detecting temporal patterns of malicious 

activities is critical. 

3) Temporal graph warehousing for historical analysis: 

Temporal graph warehousing enables the retrospective 

analysis of data, fostering a deeper understanding of historical 

trends and facilitating informed decision-making based on the 

evolution of relationships over time. 

In Fig. 21, we depict an IoT network consisting of different 
sensors, where blue vertices are used for detecting water levels 
in the underpasses of a mega city, and gray vertices are used to 
monitor hill landslides of some geolocations. Assuming their 
status can be divided into normal, warning, and dangerous. 
When their status changes continuously along the timeline, a 
graph warehousing system can be built by deriving the t-cells 
of a temporal graph cube for each t moment, such that the 
number of dangerous spots can be visualized and calculated 
instantly for administrative decision makings. If the number of 
dangerous spots runs over a threshold (e.g., there are 
respectively 4 and 2 dangerous places with landslide and high-
water levels detected in Fig. 22), then by drilling through to 
target the dangerous sensors, the city government can activate 
the alarm system for traffic control or an emergency procedure 
for possible evacuation. 

Through integration with location-based service facilitated 
by mobile devices and leveraging a resource multiplexer, 

diverse multi-dimensional analyses for various types of 
networking business intelligence can be seamlessly conducted 
immediately following the integration of the temporal data 
stream. For instance, to prevent the Covid-19 pandemic, each 
vertex in Fig. 21 can also be regarded as an instance of type 
Branch to represent a branch of some chain stores, and 
customers entering a branch can also be represented by vertices 
of type Customer. By gathering the cellphone check-in 
information (arriving at irregular intervals) of all customers in 
a branch, our framework can help enterprise administrators 
derive the status of each branch, to grasp the number of 
customers at different timestamps. If a customer (with the 
cellphone number) is notified as suspected of being infected, 
then the temporal graph together with their multi-dimensional 
summarization result may effectively help administrators make 
a correct decision to fit the official epidemic prevention policy. 
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Fig. 21. An example IoT network consisting of different sensors. 
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Fig. 22. Aggregations of sensor monitoring. 

Based on our model, we also intend to build a temporal 
graph database based on our roadmap to record the inter-
relationships between publicly traded companies in Taiwan and 
their business partnerships in related countries. Each company 
will be represented as a vertex with some important attributes 
announced in the Taiwan Stock Exchange (TWSE) or the 
corresponding affiliations in their native countries. Attribute 
values may be changed unpredictably, but should be reported 
in the official administration websites (e.g., the TWSE website 
in Taiwan). Therefore, we need to develop a crawler that 
periodically retrieves the official news of every company and, 
based on the following identified conditions, adjusts the 
attribute values, or adds new relationships with other 
mentioned companies: 

1) If the content of the news talks about the adjustment of 

the company's status, then record the new attribute values as 
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another version according to the time point of the 

announcement. 

2) If the news talks about a cooperation with another 

company, then add a new relationship edge between both 

companies with an edge attribute start_time for recording the 

starting time. 

3) If the news talks about a strategic alliance of many 

companies, then add a new relationship edge between every 

pair of the engaged companies, such that each edge contains 

an attribute start_time for recording the starting time. 

4) If the news content talks about the future vision or 

prediction of an entire industry concerning a lot of companies 

(which is called concept stocks in Taiwan), then add the 

concept term (like “EV (Electric Vehicle)” or “Metaverse”) 

into an attribute named concept, which can be represented as a 

multi-valued attribute (in JSON format), since a stock can be 

regarded as involved in many concepts. 

Graphs serve as ubiquitous abstractions that offer reusable 
tools for graph processing with applications spanning diverse 
domains. We believe that the temporal graph framework 
harbors boundless potential for the development of applications 
and business opportunities. In our future study, we will step 
forward to focus on the algebraic frameworks and the query 
language design for our model to help users create a core of 
temporal graph processing ecosystems for various applications. 
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