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Abstract—Hard-constrained controllable text generation aims 

to forcefully generate texts that contain specified constrained 

vocabulary, fulfilling the demands of more specialized application 

scenarios in comparison to soft constraint controllable text 

generation. However, in the presence of multiple weak correlation 

constraints in the constraint set, soft-constrained controllable 

models aggravate the constraint loss phenomenon, while the hard-

constrained controllable models significantly suffer from quality 

degradation. To address this problem, a method for hard-

constrained controllable text generation based on latent variables 

improving on weak correlations is proposed. The method utilizes 

latent variables to capture both global and local constraint 

correlation information to guide the language model to generate 

hard-constrained controllable text at the macro and micro levels, 

respectively. The introduction of latent variables not only reveals 

the latent correlation between constraints, but also helps the model 

to precisely satisfy these constraints while maintaining semantic 

coherence and logical correctness. Experiment findings reveal that 

under conditions of weak correlation hard constraints, the quality 

of text generation by the method proposed exceeds that of the 

currently established strong baseline models. 

Keywords—Latent variables; controllable text generation; weak 

correlation; hard constraint 

I. INTRODUCTION 

Pre-trained Language Models (PLMs) [1] [2] [3] achieve 
high-quality text generation through learning from massive 
corpora and modelling the distribution of natural language. To 
meet the requirements of specific tasks or scenarios, such as 
simulating conversations, describing data, editing stories, or 
auto-generating reports, researchers introduce control 
mechanisms to ensure that the generated text satisfies given 
constraints. These constraints can encompass aspects such as 
sentiment, tone, topic, style, and content. 

Constrained controllable text generation can be divided into 
three rudimentary strategies. The first method [4] [5] [6] [7] 
usually encompasses constraint controllability during the 
decoding phase. For example, within each Beam in Beam 
Search, scores are jointly computed based on the constraints 
and predicted words, eventually selecting the text route that is 
both highest scoring and meets the constraints. This method 
comes with a high decoding cost. 

The second method applies a non-autoregressive language 
model (NAR) [8] [9] based on an Insertion-Transformer. 
During the text generation process, NAR initially generates 

words that are bound by constraints, gradually refining the text 
through insertion operations. These hard-constrained methods 
require multiple rounds of optimization to generate high-quality 
text, leading to no significant advantage in terms of generation 
efficiency and text quality compared to autoregressive models. 

The third method is a prompt-based approach [10]. It inputs 
prompts or a piece of text into the model to guide the model in 
generating text in line with the prompts. This method offers the 
advantages of low decoding overheads and high generation 
quality. However, during the initial phase of generation, the 
model usually focuses on information that is highly related to 
the prompt, leaning towards generating text skewed away from 
prompts with weak correlation. 

Fig. 1 delineates the process of generating text from four 
specific cue words: “Apple”, “Mouse”, “Table”, and “Doll”. 
The relationship among these words is portrayed through a 
spectrum of colours where darker shades imply stronger 
connections, as deduced through Euclidean distance. The 
diagram reveals a hierarchy change from deep hues in the top-
left corner to paler ones in the bottom-right, with the confluence 
of “Apple” and “Mouse” appearing the most intense, indicating 
their high correlation. Conversely, the link between “Table” 
and the rest of the cue words is comparatively weaker, with 
“Doll” exhibiting the lowest correlation. An in-depth analysis 
of the generated text content reveals that the model gives 
precedence to “Apple” and “Mouse” during the composition, 
demonstrates reduced attention towards “Table”, and entirely 
excludes “Doll”. 

Apple

Mouse

Table

Doll

Apple Mouse Table Doll 1.0

0.0

The Apple Mouse is a mouse that can be used with the iPad, 

iPhone and iPod touch. It has an apple-shaped button on top 

of the table where it sits in your hand.  

Fig. 1. Example of the constrained controllable text generation problem. 

*Corresponding Author. 
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This case demonstrates that during the initial stages of 
generation, language models tend to focus more on constraints 
with stronger relevance. This results in the model deviating 
from weaker constraints as the generation progresses, moving 
towards directions less associated with these weaker constraints. 

To address this problem, we propose a method that latent 
variables improve hard-constrained controllable text generation 
method on weak correlation. This method introduces a latent 
variable constraint correlation module which initially captures 
the semantic context related to constraints and decodes to 
generate ambiguous text as a global constraint correlation. 
Subsequently, the module integrates the global constraint 
correlation text with individual constraint using latent variables 
to acquire localized constraint correlation text. Ultimately, the 
model combines both global and local constraint information 
with the context, steering the text generation towards the 
constraints. Compared to robust baseline models, our model 
enhances the connection between weak correlation constraints 
and the context, generating high-quality text that complies with 
hard constraints. 

The sections that follow are organized as follows: Section 
II provides an introduction and summary of the works on 
controllable text generation and latent Transformers. Section III 
elaborates on the methodology of the model. Section IV gives 
a concise description of the experimental framework. In Section 
V, we present an array of experimental outcomes and provide 
an analysis of these results. Finally, Section VI summarizes the 
study with a thoughtful conclusion. 

II. RELATED WORKS 

This section chiefly summarizes related works on 
controllable text generation and latent Transformers. Our 
mission is to guide the model to generate high-quality text in 
alignment with constraints, which emphasis is strengthening the 
correlation information of weak correlation constraints. 

A. Controllable Text Generation 

Controllable text generation represents a pivotal and 
challenging branch within the field of Natural Language 
Processing (NLP), giving rise to a diversity of solutions. 
Initially, Keskar et al. introduced a novel method by appending 
a control code (domain, style, theme, etc.) at the beginning of 
the text corpus, training a language model, CTRL, based on 
various control codes. Subsequently, Dathathri et al. [11] 
developed the PPLM model, leveraging an attribute 
discriminator model to guide the PLM in generating text. 
Building upon the works of CTRL and PPLM, Chan et al.[12] 
introduced a conditional control module that facilitates precise 
control over text generation at the level of words and phrases. 
Krause et al. [13] employed class-conditional language models 
as generative discriminators (GeDis) to direct the language 
generation towards the desired attributes. Yang and Klein [14] 
proposed the flexible and modular Fudge model, which adds an 
attribute predictor on top of the original PLM to adjust the 
probability distribution, achieving improved performance in 
tasks such as poetry generation, thematic text generation, and 
machine translation. Pascual et al. [4] introduced a 
straightforward, efficient, and discriminator-free plug-and-play 
decoding method, K2T. Other researchers have advanced upon 

NAR, such as Zhang et al.[8], who proposed Pointer, an 
insertion-based method for constrained text generation. Miao et 
al. [15] developed a method known as CGMH, which facilitates 
the generation of constrained sentences through Metropolis-
Hastings sampling. He [9] improved upon CGMH by enabling 
the model to autonomously learn where to insert, replace, and 
duplicate content. 

To address the escalating costs associated with model 
training, researchers have proposed the use of Prompts. Li et al. 
[16] applied Prompts to the domain of controllable text 
generation, introducing prefixes that guide and constrain the 
output of generative models to yield desired results. Similarly, 
Lester et al. [17] employed the model to learn "soft prompts" to 
adjust a frozen language model for performing specific 
downstream tasks. Han et al. [18] defined a set of logical rules 
and used Prompts embedded with these rules as input to 
generate text related to specified categories as the output. Zou 
et al. [19] suggested a method known as reverse prompt, which 
employs candidate texts generated by a PLM to inversely 
predict prompts. Yang et al. [20] introduced a soft prompt-
based method for multi-attribute controllable text generation, 
which diminishes the impact of prompt placement on text 
quality. Carlsson et al. [10] presented the use of non-residual 
prompts for fine-grained control of text generation, addressing 
the trade-off between fine-grained control and the capability for 
more expressive advanced instructions. 

B. Latent Transformers 

Compared to the conventional Transformer models, the 
latent variable-based Transformer introduces an extra latent 
variable to capture the semantic information of the input 
sequence, followed by NAR prediction. The approach of using 
latent variables in Transformer models was initially proposed 
by Kaiser et al. [21], who incorporated the concept of discrete 
latent variables to expedite the decoding process. Expanding on 
this concept, Shu et al. [22] introduced a NAR neural machine 
translation et al. [24] proposed a method for non-autoregressive 
translation by learning target category codes, and later 
introduced a technique for parallel text generation [25] using 
method utilizing discrete latent variables. Ma et al. [23] 
combined generative flows with conditional variational 
autoencoders to efficiently generate conditional sequences. 
Based on latent variables, Bao discrete latent variables to 
capture lexical category information, thus mitigating 
multimodal issues. 

This study makes the following three main contributions to 
hard-constrained controllable text generation, Specifically, as 
follows: 

1) A novel latent variable constraint controllable strategy is 

proposed to improve the issue of constraint bias in existing 

language models. 

2) Utilizing latent variables to reveal potential connections 

among constraints, assisting language models in accurately 

fulfilling given hard constraints while maintaining semantic 

coherence and logical correctness. 

3) Confirming the effectiveness of this latent variable 

constraint controllable strategy through experimental results. It 

demonstrates that this method can effectively satisfy weakly 
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related hard constraint conditions while ensuring the quality of 

generated text, meeting practical application requirements. 

III. METHODOLOGY 

Humans form sentences based on constraints through 
rational combinations and skilful utilization. In other words, the 
intrinsic message contained in a sentence reveals the latent and 
profound connections among constraints. Present controllable 
text generation models mainly focus on learning the probability 
distribution that coexists with text and constraints, while 
neglecting the correlated information between the constraints. 
This limitation often leads the model to favour constraints with 
stronger correlations when faced with weak correlation 
constraints. Hence, we guide text generation with constraint 
correlation information, a method more in line with human 
thinking. By introducing latent variables, we more effectively 
unearth the latent correlation within sentences, thereby 
strengthening their generalization capabilities, especially in 
managing weak correlation constraints. Beyond that, using 
latent variables to model target sentences helps to reduce the 
multimodality problem of sentences. Additionally, learning 
discrete latent variables directly through a Transformer greatly 
improves the model's overall operational efficiency. 

This section is structured into five main components: Part 
A illustrates the generation of latent constraint correlations. Part 
B details the embedding of constraints, Part C describes the 
framework of model, Part D explains the model training process, 
and finally, Part E summarizes the model inference. 

A. Latent Constraint Correlation Generation 

To enhance the capacity of model in handling weak 
correlation constraints and controllable text generation, we 
introduce a Latent Constraint Correlation Generation (LCCG) 
module inspired by the concept of VQ-VAE[26]. This module 
utilizes latent variables to separately process all constraints and 
individual constraint, thereby obtaining both global and local 
constraint correlation information. As shown in Fig. 2, based on 
the foundation of the Vanilla Encoder of Transformers (VET), 
we add a Constraint Embedding module and a Target Length 
Prediction (TLP) module. Moreover, the Multi-head Attention 
layer (MHA) in the Decoder module is employed as the 
Decoder for LCCG. 

The LCCG is responsible for processing an input X  of 
length m , initially transforming it into embedded vectors 

through the CE layer, and then feeding these vectors into the 

TLP layer to predict the target sentence length l , akin to a 

typical classification task. Its prediction loss is as follows: 

 log ( | )len lenp y X L  (1) 

where,   represents the model parameters. 

After obtaining the length value l , the module adopts the 
Softcopy mechanism proposed by Wei et al. [27] to match the 
target sentence length. The hidden layer state 

1 2{ , ,..., }jH h h h
, obtained after the process, is then fed into 

VET to acquire the continuous latent variable 

1 2{ , ,..., }jZ z z z
. To discretize these continuous latent 

variables, our study employs the Vector Quantised technique. 

First, define an embedding space 
K DQ   and denote K  is 

the number of vectors e  in the embedding space Q . Then, 

discrete latent variables are assigned to each continuous latent 
variable through nearest neighbour lookup. The formula is as 
follows: 
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Fig. 2. Latent constraint correlation generation module. 

Vector Quantization employs the arg min  function during 

forward propagation to obtain discrete latent variables qZ
. As 

the 
arg min

 function is non-differentiable, a Straight-
Through Estimator is utilized to design the loss, thus the loss 
for LCCG is as follows: 
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space jq Q
 vectors with an Exponential Moving Average 

over a small batch of target labels 
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where, jv
 represents the count for the group 

j
, 

1[ ]
 is 

the indicator function, and the decay parameter   is set to 
0.9999 following prior work. 

B. Constraint Embedding 

To deepen our comprehension of constraints and textual 
characteristics, we integrate a Constraint Embedding layer 
positioned between the conventional Token Embedding and 
Position Embedding layers. The specific framework is 
illustrated in Fig. 3. 

[CLS] Dog Dirver [SEP] [SEP][CLS] The

[CLS] Dirver [SEP] [SEP][CLS] The Dog

Context

Token Embedding

Position Embedding

Constraint Embedding

Local Constraints

Global Constraints Context

AE

CEBE
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Fig. 3. Constraint embedding layer. 

The newly added Constraint Embedding layer embeds three 
types of input sequences: Global Constraints Sequence, Local 
Constraints Sequence, and Context Sequence, into three 

different embedding vectors, namely AE
, BE

, and CE
. In 

our practical experiments, AE
, BE

, and CE
 were set to 

vectors entirely composed of 0, 1, and 2, respectively. This 
embedding approach effectively captures the latent information 
within global constraints, as well as the latent information 
between local constraints and sentences, thus enhancing the 
ability of model to understand constraints. 

C. Model Framework 

Our model adopts an encoder-decoder Transformer 
architecture similar to BART. As depicted in Fig. 4, the primary 
function of the encoder is to transform constraints into latent 
variables. In the decoder section, we have refined the attention 
mechanism for each layer. The Masked Multi-Head Attention 
(MMHA) is used exclusively to obscure future information of 
each token in the context, while the MHA is used for cross-
attention between the context and constraint-related 
information and also as a part of the latent variable decoder. 

The Fully Connected layer (FC) is utilized to fine-tune the 
constraint correlation information and text generation. The 
given constraints 

1 2{ , ,... }mC c c c  and the context X , let the 

constraints 
ic  denote unmet constraints within the context, 

where {1,2,..., }i m . The satisfaction of fine-grained, 

controllable text generation requires the following steps: 

1) Global constraints text generation: Constraints C  are 

input into the encoder to obtain discrete latent variables 
GZ , 

which then bypass the MMHA module and are passed to the 

MHA in the decoder, thereby generating global constraint 

correlation text 
GY : 
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   (5) 

2) Local constraints text generation: This step is different 

from the first one in that it uses GY
 as the context, which is 

input along with the constraints 
ic . The model generates local 

constraint correlation text 
LY  that is relevant to the constraints 

based on the input information: 
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   (6) 

3) Constraint-guided text generation: This step entails 

applying Global Average Pooling (GAP) to GY
, to obtain GP

. 

The context X , after embedding, is fed into the MMHA of the 

decoder while masking future information of the token. 

Thereafter, X , as the Query, engages in cross-attention 

calculations with both 
GP  and 

LY  to predict the subsequent 

token. 

 
1

( | , ) ( | , , )
N

g L

n

p y X C p y X n P Y



    (7) 

4) Incorporate the predicted token into the context X  and 

reselect constraint 
ic . Repeat the operations of the second and 

third steps until the generated text meets all the given constraint 

conditions. 

Global constraint correlation text provides a macroscopic 
guiding direction for the language model, while local constraint 
correlation text serves to refine the relevant constraint text. 
Considering that the quality requirements for these texts are not 
high, a non-autoregressive approach is adopted for generation 
to improve efficiency. 

C ic GY

LY

GP
Y

(1) Global Constraints Text Generation (2) Local Constraints Text Generation (3) Constraint-guided Text Generation
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Fig. 4. Procedure for hard-constrained text generation. 
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D. Model Training 

The model training consists of two stages. The first stage is 
the training of latent variables, where the task is to enable the 
model to generate both global and local constraint correlation 
text given the provided constraints and contextual conditions. 
During this stage, the MMHA layer is frozen. When the input 
consists of all constraints, the text is used as the training target. 
When the input consists of a single constraint or global 
constraint correlation text, the target text is selected from the 
beginning of the original text or the position after the previous 
constraint to the end of the original text or the position before 
the next constraint. 

The second stage is the fine-tuning stage, where the encoder, 
MHA, and MMHA layers of the model are frozen, and only the 
FC layer of the decoder is fine-tuned. The specific loss function 
is as follows: 

 
log ( | , , ) log ( | )

      log ( | , )

G L G

L i G

p y X P Y p Y C

p Y c Y

 







   L
  (8) 

where 0.4  , 0.6  . 

E. Inference 

Cross-attention between constraints and context is an 
effective soft constraint method for language models. However, 
it is challenging to train a model to generate text that fully 
incorporates constraints, often requiring additional processing. 
Therefore, in the inference stage, we draw inspiration from the 
work of Pascual et al. [4] and make some improvements to 
ensure that the model's output meets the constraints. 

In concrete terms, we involve treating a subset of words 
from the correlated text as a set of guiding words, denoted as 
set W , while disregarding the order of these guiding words. At 

each decoding step t , a new subset of guiding words, denoted 

as set tW
, is selected from set W , consisting of guiding words 

that have not appeared before the current time step. The top-k 
algorithm is then employed to select the k  most likely 
predicted words from the predicted word set. Subsequently, the 

similarity between each predicted word ty
 and guiding word 

w  is computed, tw W
. This similarity is then weighted with 

the probability distribution of each predicted word, resulting in 
a reweighted probability distribution for the current word. The 
formula is as follows: 
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where, 
1 1( | )tscore y   is the scoring function, and scores 

are used for sampling. 1 1'( , | )t t tscore y W y   is the overloaded 

scoring function, which takes the guiding word set tW  as input. 
Parameter  adjusts the transition of tokens generated by the 
model from being unconstrained to becoming the next guiding 
word. The calculation for   is as follows: 
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  (10) 

where, T  represents the length of the text under local 

constraints, nt  denotes the position where the last guiding 

word appeared. The hyperparameters 0  and c  are used to 
control the initial value and increment of  . In this context, 

they are set to 10 and 100, respectively. When   , the 

predicted word is forced to be a constrained guiding word, and 
the current local constraint is terminated. Then, the model 
enters the next local constraint while updating the guiding word 
set W . 

IV. EXPERIMENTAL SETUP 

In this section, we list the datasets suitable for the text 
generation method used in our study, then outline the metrics 
for both automatic and human evaluations, and finally provide 
a description of the experimental details. 

A. Datasets and Evaluation Metrics 

1) Datasets: The experiments consist of two tasks, starting 

with the model pre-trained on the Wikitext-103-raw-v1 dataset. 

The first task is focused on constraint-driven controllable text 

generation, with the objective to evaluate and ascertain if this 

approach enhances the model's competency in excavating and 

understanding the latent connections among constraints, as well 

as if it elevates the quality of text production. The data for the 

experiments include CommonGen [28], Yelp Reviews [29], 

and E2ENLG [30], with detailed information presented in 

Table I. 

TABLE I.  THE COMPARISON STATISTICS OF DATASETS 

Datasets Train Valid Test Total 

Wikitext-3-raw-v1 1801.35k 3.76k 4.35k 1805.7k 

CommonGen 67.39k 4k 1.5k 68.89k 

Yelp Reviews 650k 46.5k 50k 700k 

E2ENLG 42.1k 4.67k 4.69k 4.79k 

Table I compares the parameters of the training sets, 
validation sets, and test sets for the Wikitext-103-raw-v1, 
CommonGen, Yelp Reviews, and E2ENLG datasets. 

CommonGen dataset is used for model training in 
commonsense reasoning benchmark tasks, where the goal is to 
generate a coherent and commonsense sentence given a set of 
common concept words. The training, validation, and test sets 
of CommonGen dataset comprise 67,389, 4,018, and 6,042 
sentences respectively. Each sample features has three to five 
key concepts with an average sentence length of 11 words. 

Yelp Reviews dataset contains over fifty million reviews. 
Our study builds upon the data processing work of He [10] on 
the Yelp Reviews dataset, who chose a keyword set from a 
thousand sentences that could not cover the entire text 
extensively. This work constructs a keyword set based on word 
frequency, eliminating Stopwords and selecting the top 5,000 
most frequent words to assure the quality of the set. Exclusions 
are made for samples without the keywords. For each case, the 
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corresponding target word is a term from the keyword 
collection, supplemented by additional words randomly chosen 
from the sample to enhance the target word's diversity. 

E2ENLG dataset is an end-to-end text generation dataset for 
the restaurant industry, with tasks requiring the generation of 
descriptions based on multiple key-value pairs. E2ENLG 
dataset provides a crowdsourced corpus of 50k instances, each 
with a Meaning Representation (MR) shaped by dialogue acts 
and accompanied by up to 16 natural language references. 

2) Evaluation metrics: We employ both automatic and 

manual evaluations to demonstrate the enhanced generative 

performance of our model in universal text generation. For 

automatic evaluation of generation quality, the paper employs 

Perplexity (PPL), BLEU [31], NIST [32], and DIST [33] as 

indicators to measure the similarity between the generated text 

and human references. Higher scores in BLEU and NIST 

denote that the model is capable of crafting sentences closely 

resembling those made by humans. 

a) PPL low value often indicates better linguistic fluency. 

c, degraded repetition can also result in a reduced perplexity 

score. Hence, one should not rely solely on perplexity, but 

should combine it with other metrics and qualitative analysis. 

b) BLEU Lower-order assesses word-level accuracy, 

whereas higher-order BLEUs can gauge sentence fluency. We 

adopt both BLEU-2 and BLEU-4 for evaluation. 

c) NIST is an improvement over the BLEU method. It 

introduces the concept of the information quantity of each n-

gram. The NIST score is derived by accumulating the 

information quantity and then dividing by the total number of 

n-grams in the translation, effectively placing more weight on 

less frequent words. 

d) DIST measures diversity by dividing the number of 

unique n-grams by the total number of n-grams; a higher value 

indicates greater diversity in the text. 

For the human evaluation component, this study expands 
upon the framework established by He [10], incorporating an 
additional dimension, semantic consistency. The comparative 
performance of the models is assessed across three criteria: 
semantic consistency, the smoothness of the sentences, and the 
richness of information conveyed. In pursuit of impartiality, a 
set of 50 sentences is chosen at random, and five evaluators are 
enlisted to review the sentences produced by varying models. 
These evaluators are tasked with delivering their assessments 
premised on the consistency in meaning, the fluidity of the text, 
and the depth of information presented. In instances where the 
evaluators find themselves unable to discern a clear winner, the 
outcome is declared a draw. Prior to the annotation process, the 
sequence of sentences is shuffled to eliminate any potential for 
prejudice. 

B. Experimental Details 

In terms of model parameters, this study adopts the pre-
trained parameters from BART to serve as the model's initial 
parameters for fine-tuning tasks. For the first two rounds of 
training, the learning rate is set at 1e-3, and it is reduced by 3e-
4 in each successive round until it reaches the threshold of 1e-

5. The experiments utilize an Nvidia RTX A5000 GPU, and 
taking into account the experimental hardware and training 
efficiency, the batch size is determined to be 64. The study sets 
the character length limit to 128. In addition, the paper 
introduces a regularization parameter to curb overfitting during 
the training phase. The regularization parameter is established 
at 0.04, informed by the training performance. Across all tasks, 
the AdamW algorithm is employed for model optimization. 

V. RESULTS AND DISCUSSION 

This section comprehensively discusses the experimental 
and analysis work we have undertaken, divided into six parts: 
automatic evaluation, human evaluations, weak correlation 
constraint analysis, ablation study, hyperparameter analysis, 
and generating instances. The principal aim of both part A and 
part B, automatic and human evaluations, is the appraisal of our 
model's text generation calibre. Analysis touching on weak 
correlation constraint investigates how the quality of text is 
influenced when this study's model, as well as benchmark 
models, face several weakly related constraints. Part D, 
Ablation study, validates whether the integration of a latent 
constraint-association generation module in our model 
enhances the handling of weak correlation constraints. Part E is 
hyperparameter exploration segment, which discusses the 
model's performance under varying parameter configurations. 
Part F, the exemplification analysis showcases instances of text 
generated by our model. 

The model proposed is compared with three of the latest 
strong baseline fine-grained text generation models 
(Keyword2Text (K2T) [4], NRP [10], CBART [9]) and one 
traditional baseline (Pointer[8]). 

The Pointer utilizes the Insertion Transformer architecture 
for hard constraint text generation, which still has room for 
improvement regarding the quality of output. The CBART, 
using an Encoder-Decoder structure for non-autoregressive 
hard constraint generation, has enhanced the quality, yet it 
struggles with quality reduction under weak correlation 
constraint conditions, similar to the plug-and-play controlled 
decoding approach of K2T. The NRP, utilizing a non-residual 
attention mechanism, betters text generation but risks constraint 
loss within contexts of weak correlation constraints. Our model 
is capable of generating text that meets weak correlation 
constraints, thereby enhancing the quality of generation. 

A. Automatic Evaluation Results and Analysis 

This experiment evaluates the text generation quality of the 
improved model versus the baseline models on three test sets: 
CommonGen, Yelp Reviews, and E2ENLG. 

As shown in Table II, on the Common Gen test set, our 
model is slightly inferior to the K2T model in terms of NIST 
scores, but demonstrates a distinct advantage in BLEU and 
DIST scores. This is due to the fixed mapping from keywords 
to text in the K2T model, which thus offers relatively poor text 
diversity. The performance of our model on DIST-4 is 
comparable to that of NRP, but slightly superior to NRP on 
DIST-2. This suggests that the improved model can exhibit 
more granular controllability when generating high-quality 
sentences. 
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TABLE II.  AUTOMATIC EVALUATION EXPERIMENTS SCORES COMPARISON 

Datasets Models 
BELU↑ NIST↑ DIST↑ PPL↓ Len 

B-2 B-4 N-2 N-4 D-2 D-4   

CommonGen 

K2T 19.5 4.25 7.52 7.63 0.72 0.95 25.27 7.1 

CBART 17.44 5.34 5.01 3.15 0.71 0.98 32.62 5.7 

NRP 20.15 7.28 7.43 7.59 0.74 0.99 24.01 6.3 

Pointer 10.18 1.77 2.23 2.4 0.45 0.9 72.82 7.2 

Ours 22.92 9.21 7.22 7.36 0.78 0.99 22.73 6.8 

Yelp 
Reviews 

K2T 25.6 8.25 7.53 7.61 0.69 0.89 31.19 17.2 

CBART 18.41 7.4 2.54 2.63 0.48 0.94 50.61 15.7 

NRP 23.52 9.11 8.47 8.66 0.74 0.91 35.78 20.3 

Pointer 11.48 2.46 2.14 2.16 0.35 0.68 101.8 27.2 

Ours 26.25 9.52 8.42 8.51 0.82 0.95 40.23 16.8 

E2ENLG 

K2T 27.1 9.1 8.44 8.65 0.78 0.92 25.79 12.4 

CBART 20.22 8.06 3.46 3.67 0.82 0.91 34.21 13.4 

NRP 26.33 9.23 8.42 8.7 0.81 0.98 20.18 15.3 

Pointer 12.65 2.98 2.39 2.43 0.55 0.83 60.84 14.2 

Ours 29.01 9.78 8.65 8.81 0.86 0.99 19.86 16.1 

a. Note: Bold numbers indicate the optimal values under this dataset and evaluation method. B-2, B-4 represent the BLEU evaluation method using 2-gram, 4-gram, respectively, with NIST and DIST following a similar 
pattern. 

Our study further evaluated the performance of our model 
on the Yelp Reviews test set. The results indicated that our 
model is comparable to the highly-rated NRP model in terms of 
NIST score, while it also achieves the highest scores in BELU 
and DIST metrics. This reflects our model deals with the 
constraints on latent variables, as well as its inclusion of some 
extraneous noise in the prompt transformation process, 
impacting its understanding and generation capabilities. Owing 
to the learning ability of latent variables, our model still 
surpasses baseline models in terms of generation quality. 

On the E2ENLG test set, our model scored the highest 
across all evaluation metrics. It exceeded the CBART model by 
0.04 points in DIST score and the K2T model by 0.2 points in 
NIST-2 score. This suggests that the model also slightly 
outperforms baseline models in terms of text diversity and 
coherence. According to the assessment data from CBART and 
Pointer, it can be observed that the quality of non-
autoregressive generation is slightly lower than that of 
autoregressive generation. 

B. Human Evaluation Analysis 

Table III shows that our model outperforms the baselines in 
terms of semantic consistency, fluency, and informativeness, 
which is even comparable to human levels in sentence fluency 
and semantic consistency. In text fluency, our model slightly 
exceeds the baseline models, and considerably surpasses the 
baselines in both semantic consistency and sentence 
informativeness. However, our model still falls behind humans 
in terms of sentence informativeness, this is attributed to the 
model's excessive focus on text fluency, leading to the 
generation of sentences that are shorter and less informative 
than those referenced by humans. 

In summary, the evaluations demonstrate that the improved 
model excels in text generation quality, surpassing other 

baseline models. This also validates the superior performance 
and generalization capability of our model in the domain of 
controlled text generation. 

C. Weak Correlation Constraint Analysis 

This section is dedicated to analyzing the impact of weak 
correlation constraints on the model. Existing pre-trained 
language model is black-box model, and the features they learn 
from constraints lack interpretability. Therefore, we assess the 
strengths and weaknesses of the relationships between 
constraints based on their Euclidean distance, allowing for a 
more precise measurement of the constraints' impact on the 
model. Compared to simply measuring the strength of 
relationships between constraints based on co-occurrence 
frequency, Euclidean distance can more effectively evaluate the 
similarity of features among constraints, making this method 
more comprehensive and accurate. 

TABLE III.  HUMAN EVALUATION SCORES COMPARISON: % 

Metrics Model A won Tied Model B won 

Semantic 

Consistency 

Ours 63.5 15.2 21.3 K2T 

Ours 55.6 10.3 34.1 NRP 

Ours 32.6 21.4 46 Human 

Sentence 

Fluency 

Ours 47.5 20.3 32.2 K2T 

Ours 42.7 14.8 42.5 NRP 

Ours 30.1 29.7 40.2 Human 

Sentence 

Informativeness 

Ours 71.6 10.4 18 K2T 

Ours 64.3 7.5 28.2 NRP 

Ours 23.5 12.9 63.6 Human 

b. Note: “Consistency” represents which sentence is more consistent; “Fluency” stands for which 
sentence is more fluent; “Informativeness” indicates which sentence is more informative? 
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Within an individual sample, for a given set of constraints 

{ , }mC c m  
, 

(( 1)* ) / 2m m
 Euclidean distances can 

be computed. To better evaluate the model under the influence 
of constraints, we examined the maximum Euclidean distance 
(MaxED), the minimum Euclidean distance (MinED), and the 
average Euclidean distance (AvgED) separately. MaxED can 
assess the model's capability to handle weak correlation 
constraints, while MinED can evaluate its ability to deal with 
strong constraints. These two values also provide insights into 
the dispersion among the constraints within the set. AvgED 
offers a more comprehensive metric, presenting an overview of 
the overall distribution of the constraint set. 

 

 
Fig. 5. Weak correlation constraint analysis chart. 

Subfigure (a) of Fig. 5 reveals an inverse relationship 
between MaxED among constraints and the quality of sentence 
generation, indicating that the weaker the relevance of the 
constraints, the more challenging it is for the model to generate 
high-quality sentences. Furthermore, if MinED is close to 
AvgED, it suggests that the constraints are generally weakly 
correlated, and the quality of the sentences generated by the 
model is primarily influenced by AvgED. However, when 
MinED greatly differs from both MaxED and AvgED, strongly 
related constraints have a minor impact on the quality of 
sentence generation by the model. According to subfigure (b) 
of Fig. 5, when the constraints are weaker in correlation, our 
improved model consistently outperforms the comparison 
model Pointer in terms of generation quality, and its rate of 

decline is also slower than that of Pointer. The analysis verifies 
that the model ensures quality generation when facing weakly 
related constraints and that the improvement method can 
effectively handle weak correlation constraints. 

D. Ablation Study 

Reflecting on the analysis of weak correlation constraints 
from the, it’s evident that these constraints largely influence the 
quality of the model's output. To substantiate the preceding 
section advancements of our model in managing weak 
correlation constraints, we conducted an ablation study. The 
study was structured such that each set of constraints included 
two strongly related constraints, with a progressive addition of 
weak correlation constraints to discern the disparity in output 
quality between models applying the LCCG module and those 
without it, referred to as Non-LCCG. 

According to the data presented in Table IV, the 
assessments indicate enhancements in models incorporating the 
LCCG module compared to those which do not include it. More 
specifically, the inclusion of LCCG led to an increase of 4 to 7 
percentage points in BLEU-2 scores, a rise of 2 to 3 points in 
NIST-2, and a significant enhancement of 15 to 20 percentage 
points in DIST-2. The evidence suggests that with the addition 
of weak correlation constraints, the gap in generative quality 
between the two approaches diminishes. 

TABLE IV.  ABLATION STUDY SCORES COMPARISON 

Count Models 
Automatic Evaluation Metrics 

BLEU NIST DIST 

0 
Non-LCCG 18.47 4.32 0.76 

LCCG 35.46 7.13 0.98 

1 
NON-LCCG 12.25 3.67 0.69 

LCCG 26..16 6.21 0.87 

2 
NON-LCCG 10.07 2.93 0.53 

LCCG 15.24 5.21 0.75 

3 
NON-LCCG 4.16 2.05 0.41 

LCCG 8.2 4.33 0.56 

c. Note: The count refers to the number of newly added weak correlation constraints. BLUE, NIST, and 
DIST indicate that the evaluation method uses 2-grams. 

The experimental outcomes emphatically confirm the 
noteworthy efficacy and superiority of our proposed technique 
in handling weak correlation constraints. The research, 
underscored by its experimental design and data interpretation, 
verifies the method’s precision and robustness when 
confronting issues related to weak correlation constraints. 

E. Hyperparameter Analysis 

Hyperparameters are significantly influential in both the 
performance and training process of the model. After 
completing training in the initial phase, the model has adeptly 
learned the art of autoregressive text generation and the ability 
to infer text that adheres to latent variable constraints. 

Therefore, in the second phase, we also fine-tuned the loss 
weight associated with the latent variable constraints. 
Excessively high loss from latent variable constraints may 
hinder the language model's ability to find the optimal solution 
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for incorporating latent variable constraints, while too low a 
loss might fail to ensure that the generated text complies with 
the constraints. As depicted in Fig. 6, based on feedback from 
experimental results and our experience, we adjusted the latent 
variable constraint loss weight   to 0.4 and   to 0.6 to 

strike a better balance. 

 

Fig. 6. Hyperparameter analysis. 

F. Instance Analysis 

In Table V, Case 1, “Basketball” “Forest” and “Paper” are 
weak correlation constraints. The K2T model generates 
semantically inconsistent sentences, while the NRP model 
focuses on the constraints of “Forest” and “Paper” which are 
Constraints with a strong correlation, neglecting “Basketball” 
However, our model using latent variables, finds the potential 
connections between these three constraints. It interprets 
“Forest” as the venue and “Paper” as paper packaging, and uses 
“Basketball” to link them together. 

TABLE V.  GENERATING INSTANCES WITH WEAK CORRELATION 

CONSTRAINTS 

Constraint 

Case 
Models Instance Output 

Basketball, 

Forest, 

Paper 

K2T 
When playing basketball in the forest, I use paper 
to achieve floating flight. 

NRP 

In the forest, I found a paper airplane, which 

made me feel the flying green leaves and fresh 

air. 

Ours 
We were playing basketball in the forest when we 

accidentally spilled our paper wrapped lunch. 

Phone, 
Rocket, 

Eat, 

Floor 

K2T 
Eating rocket shaped mobile phones on the floor 
feels really delicious. 

NRP 
The floor of the Rockets is very smooth, and the 

players are eating cake while making phone calls 

Ours 
While I was eating, my phone suddenly slipped 
from my hand like a rocket and fell onto the floor. 

Apple, 
Mouse, 

Table, 

Doll 

K2T 
I placed a mouse and a doll next to the apple, 

hoping that they could entertain each other. 

NRP 

The Apple Mouse is a mouse that can be used 
with the iPad, iPhone and iPod touch. It has an 

apple-shaped button on top of the table where it 

sits in your hand.  

Ours 
The doll was sitting on the table with an apple 
beside it, while a mouse scurried across the floor. 

d. Note: In the output sentence, words that are constraints are highlighted in bold. 

Similarly, in Case 2 of Table V, the four constraints have a 
weak correlation. The K2T model poorly handles the 
constraints, resulting in sentences with illogical constructions. 
The NRP model still focuses on the more related constraints, 

leading to sentences with less information. However, our model 
did not encounter such issues, instead, it makes a reasonable 
arrangement based on the latent characteristics of these four 
constraints, forming a semantically coherent sentence. 

In Case 3 of Table V, NRP primarily focuses on “Apple” 
and “Mouse” generating a sentence related to the technology 
field, consequently overlooking “Doll.” K2T considers 
constraints more comprehensively than NRP but also 
experiences issues with constraint loss. In contrast, our 
proposed model didn't lose any constraints and didn't simply 
interpret “Apple” and “Mouse” as the company brand and 
technology product, respectively. By thoroughly considering 
the potential relationships between these four constraints, an 
optimal solution was found, and a high-quality sentence was 
successfully generated while satisfying all the constraints. 

VI. CONCLUSION 

In our study, we conduct an extensive study on the problem 
of hard-constrained controllable text generation, and propose a 
novel latent variable constraint-controllable strategy. The 
strategy effectively deals with the existence of multiple weak 
correlation constraints in the text generation process from the 
language model. Through a series of experiments, the results 
confirm that the strategy significantly improves the quality of 
controllable text generation and satisfies the weak correlation 
constraints. 

This study makes significant progress in the direction of 
hard-constrained controlled text generation, there are still many 
areas to be explored and deepened, such as the excessive 
decoding time. In our future work, we intend to further optimize 
the latent variable constraint-controllable strategy and endeavor 
to adjust the initialization and capture of latent variables to 
more accurately reveal the relations between constraints and 
generate constraint-compliant text more quickly and efficiently. 

ACKNOWLEDGMENT 

National Natural Science Foundation of China (Project Nos. 
62076167 And 61772020). 

Henan Key Scientific Research Project of Higher Education 
Institutions (Project Nos. 24A520058, 24A520060, And 
23A520022). 

Henan Postgraduate Education Reform and Quality 
Improvement Project (Project No. YJS2024AL053) 

REFERENCES 

[1] M Lewis, Y Liu, N Goyal, M Ghazvininejad, A Mohamed, O Levy, ... & 
L Zettlemoyer, “BART: Denoising Sequence-to-Sequence Pre-training 
for Natural Language Generation, Translation, and Comprehension,” In 
Proceedings of the 58th Annual Meeting of the Association for 
Computational Linguistics. Association for Computational Linguistics, 
pp. 7871–7880, 2020. 

[2] A Radford, J Wu, R Child, D Luan, D Amodei, & I Sutskever, “Language 
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, 
pp. 9, 2019. 

[3] C Raffel, N Shazeer, A Roberts, K Lee, S Narang, M Matena, ... & P. J. 
Liu, “Exploring the limits of transfer learning with a unified text-to-text 
transformer,” Journal of Machine Learning Research, vol. 21, no. 1, pp. 
5485-5551, 2020. 

[4] D Pascual, B Egressy, C Meister, R Cotterell, & R Wattenhofer, “A plug-
and-play method for controlled text generation,” In Findings of the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

374 | P a g e  

www.ijacsa.thesai.org 

Association for Computational Linguistics: EMNLP, Association for 
Computational Linguistics, pp. 3973-3997, 2021. 

[5] C. Hokamp, Q. Liu, “Lexically constrained decoding for sequence 
generation using grid beam search,” In Proceedings of the 55th Annual 
Meeting of the Association for Computational Linguistics, pp. 1535–1546, 
2017. 

[6] M Post, D Vilar, “Fast lexically constrained decoding with dynamic beam 
allocation for neural machine translation,” In Proceedings of the 2018 
Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies, vol. 1, pp. 
1314-1324,2018. 

[7] P Anderson, B Fernando, M Johnson, S Gould, “Guided open vocabulary 
image captioning with constrained beam search,” In Proceedings of the 
2017 Conference on Empirical Methods in Natural Language Processing, 
pp. 936–945, 2017. 

[8] Y Zhang, G Wang, C Li, Z Gan, C Brockett, & B Dolan, “POINTER: 
Constrained progressive text generation via insertion-based generative 
pre-training,” in Proc of the 2020 Conference on Empirical Methods in 
Natural Language Processing, Association for Computational Linguistics, 
2021, pp. 3045-3059. 

[9] X He, “Parallel refinements for lexically constrained text generation with 
BART,” In Proceedings of the Conference on Empirical Methods in 
Natural Language Processing, Association for Computational Linguistics, 
pp. 8653-8666, 2021. 

[10] F Carlsson, J Öhman, F Liu, S Verlinden, J Nivre, & M Sahlgren, “Fine-
grained controllable text generation using non-residual prompting,” In 
Proceedings of the 60th Annual Meeting of the Association for 
Computational Linguistics, Association for Computational Linguistics, 
pp. 6837-6857, 2022. 

[11] S Dathathri, A Madotto, J Lan, J Hung, E Frank, P Molino, ... & R Liu. 
“Plug and play language models: a simple approach to controlled text 
generation,” International Conference on Learning Representations, 
ICLR, 2020. 

[12] A Chan, Y.S. Ong, B Pung, A Zhang, & J Fu, “CoCon: A self-supervised 
approach for controlled text generation,” International Conference on 
Learning Representations, ICLR, 2021. 

[13] B Krause, A.D. Gotmare, B Mccann, N.S. Keskar, & N.F. Rajani, “GeDi: 
Generative discriminator guided sequence generation," In Findings of the 
Association for Computational Linguistics: EMNLP, Association for 
Computational Linguistics, pp. 4929-4952, 2021. 

[14] K Yang, D Klein, “FUDGE: Controlled text generation with future 
discriminators,” in Proc of the Conference of the North American Chapter 
of the Association for Computational Linguistics: Human Language 
Technologies, pp. 3511-3535, 2021. 

[15] N Miao, H Zhou, L Mou, R Yan, & L Li, “CGMH: Constrained sentence 
generation by metropolis-hastings sampling,” In Proceedings of the 
Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First 
Innovative Applications of Artificial Intelligence Conference and Ninth 
AAAI Symposium on Educational Advances in Artificial Intelligence, 
AAAI Press, pp. 6834-6842, 2019. 

[16] X Li & P Liang, “Prefix-Tuning: optimizing continuous prompts for 
generation,” In Proceedings of the 59th Annual Meeting of the 
Association for Computational Linguistics and the 11th International 
Joint Conference on Natural Language Processing, Association for 
Computational Linguistics, pp. 4582-4597, 2021. 

[17] B Lester, R Al-Rfou & N Constant, “The power of scale for parameter-
efficient prompt tuning,” In Proceedings of the Conference on Empirical 
Methods in Natural Language Processing, Association for Computational 
Linguistics, pp. 3045-3059, 2021. 

[18] X Han, W Zhao, N Ding, Z Liu, & M Sun, “PTR: Prompt tuning with 
rules for text classification,” In AI Open, vol. 3, pp. 182-192, 2022. 

[19] X Zou, D Yin, Q Zhong, M Ding, Z Yang, & J Tang, “Controllable 
generation from pre-trained language models via inverse prompting,” In 
Proceedings of the 27th ACM SIGKDD Conference on Knowledge 
Discovery & Data Mining, Association for Computing Machinery, pp. 
2450-2460, 2021. 

[20] K Yang, D Liu, W Lei, B Yang, M Xue, B Chen, & Xie, “Tailor: A Soft-
Prompt-Based Approach to Attribute-Based Controlled Text Generation,” 
In Proceedings of the 61st Annual Meeting of the Association for 
Computational Linguistics, Association for Computational Linguistics, 
pp. 410-427, 2023. 

[21] Ł Kaiser, A Roy, A Vaswani, N Parmar, S Bengio, J Uszkoreit, & N 
Shazeer, “Fast decoding in sequence models using discrete latent 
variables,” In International Conference on Machine Learning, PMLR, pp. 
2390-2399, 2018. 

[22] R Shu, J Lee, H Nakayama, & K Cho, “Latent-variable non-
autoregressive neural Machine Translation with Deterministic Inference 
Using a Delta Posterior,” In Proceedings of the AAAI Conference on 
Artificial Intelligence, AAAI Press, pp. 8846-8853, 2020. 

[23] X Ma, C Zhou, X Li, G Neubig, & E Hovy, “FlowSeq: Non-
autoregressive conditional sequence generation with generative flow,” In 
Proceedings of the Conference on Empirical Methods in Natural 
Language Processing and the 9th International Joint Conference on 
Natural Language Processing, pp. 4282-4292, 2019. 

[24] Y Bao, S Huang, T Xiao, D Wang, X Dai, & J Chen, “Non-autoregressive 
translation by learning target categorical codes,” In Proceedings of the 
Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies, Association 
for Computational Linguistics, pp. 5749-5759, 2021. 

[25] Y Bao, H Zhou, S Huang, D Wang, L Qian, X Dai, …, & L Li, “latent-
GLAT: Glancing at Latent Variables for Parallel Text Generation,” In 
Proceedings of the 60th Annual Meeting of the Association for 
Computational Linguistics, Association for Computational Linguistics, 
pp. 8398-8409, 2022. 

[26] A.V.D Oord, O Vinyals, K Kavukcuoglu, “Neural discrete representation 
learning,” In Proceedings of the 31st International Conference on Neural 
Information Processing Systems, Curran Associates, pp. 6309-6318, 2017. 

[27] B Wei, M Wang, Hao Zhou, J Lin, & X Sun, “Imitation learning for non-
autoregressive neural machine translation,” In Proceedings of the 57th 
Annual Meeting of the Association for Computational Linguistics, 
Association for Computational Linguistics, pp. 1304-1312, 2019. 

[28] B Lin, W Zhou, M Shen, P Zhou, C Bhagavatula, Y Choi, & X Ren, 
“CommonGen: A constrained text generation challenge for generative 
commonsense reasoning,” Findings of the Association for Computational 
Linguistics: EMNLP, Association for Computational Linguistics, pp. 
1823-1840, 2020. 

[29] W.S. Cho, P Zhang, Y Zhang, X Li, M Galley, C Brockett, …, & J Gao, 
“Towards coherent and cohesive long-form text generation,” In 
Proceedings of the First Workshop on Narrative Understanding, 
Association for Computational Linguistics, pp. 1-11, 2019. 

[30] O Dušek, J Novikova, & V Rieser. “Evaluating the state-of-the-art of end-
to-end natural language generation: the E2ENLG challenge,” In 
Computer Speech & Language, vol. 59, pp. 123-156, 2020. 

[31] K Papineni, S Roukos, T Ward, & W Zhu, “Bleu: A method for automatic 
evaluation of machine translation,” In Proceedings of the 40th Annual 
Meeting of the Association for Computational Linguistics, Association 
for Computational Linguistics, pp. 311-318, 2002. 

[32] G Doddington. “Automatic evaluation of machine translation quality 
using n-gram co-occurrence statistics,” In Proceedings of the Second 
International Conference on Human Language Technology Research, 
Margan Kaufmann, pp. 138-145, 2002. 

[33] J Li, M Galley, C Brockett, J Gao, & B Dolan, “A diversity-promoting 
objective function for neural conversation models,” In Proceedings of the 
Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies, Association 
for Computational Linguistics, pp. 110-119, 2016. 


