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Abstract—Nitrogen plays a fundamental role in plant growth, 

but its high application has significant negative impacts for the 

farmers and the environment. This nutrient is often provided in 

excess to prevent plant growth limitations when it ought to be 

administered in the exact quantities because many farmers do 

not have access to technology or affordable soil and plant 

chemical analyses. Precision agriculture through monitoring of 

crop nutrition may be possible with quantitative, non-destructive 

methods and technological tools that allow farmers to conduct a 

rapid and representative verification of their fertilizer 

applications.  In this sense, we carried out a systematic review 

and bibliometric analysis of recent scientific research to answer 

the questions: 1) Can artificial intelligence-based, non-

destructive analysis of plant nutrition provide relevant 

information for decision-making in agricultural systems?, 2) 

Have recent studies reached the stage of developing technological 

tools to be applied in agricultural systems and field conditions?, 

and 3) What is the way forward to achieve popularization of the 

application and development of technological tools in 

agricultural systems? We found that non-destructive analyses of 

foliar nutrition need to provide more supportive information for 

decision-making given the challenge of interpreting and 

replicating results in agricultural systems operating under 

uncontrolled conditions, such as field conditions. To address this 

issue, we propose developing accessible technological tools, such 

as mobile applications, tailored to farmers’ needs. However, most 

studies had not yet considered developing a technological tool as 

part of their objectives. Therefore, it is critical to develop 

accessible and affordable technologies and monitoring systems 

that approach precision agriculture since the conservation and 

sustainable management of natural resources demands 

translating scientific knowledge into supporting tools that reach 

farmers and decision-makers worldwide. The way forward is 

innovation through technological developments that enhance 

current agricultural systems. 

Keywords—Digital images; spectral data; estimation models; 
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I. INTRODUCTION 

Deficiencies of macro and micronutrients essential for plant 
growth can limit crop yields. As a result, farmers increase the 
use of chemical fertilizers to prevent nutrient limitations [1]. 
Unfortunately, the excessive use of fertilizers to ensure good 
production is popular today, despite the high costs involved 
and the fact that it is one of the most influencing factors in the 
degradation of soils and aquifers [2]. 

Ensuring effective fertilizer management is one of the main 
paradigms of precision agriculture. Precision agriculture is a 
strategy that seeks to increase productivity in agricultural fields 
by improving crop yields and assisting farmers in management 
decisions using high-tech analysis tools [3]. This type of 
agriculture requires the intensive collection and processing of 
spatio-temporal data on crops [4]. 

The most widespread method to obtain crop nutrient data to 
verify that fertilization is adequate fertilization was achieved is 
by carrying out destructive analyses of plant tissue and soils 
using laboratory chemical procedures, given that fertilization 
should complement soil available nutrients and the 
requirements of each crop. However, the periodic and 
systematic achievement of this type of analysis is time-
consuming and costly, and the results are sometimes difficult 
for farmers to interpret. As a result, these activities are never 
performed at all or, in the best case, on a rare basis as a routine 
check of fertilization efficiency, and "panic" over-fertilization 
prevails. 

There are also non-destructive methods for diagnosing the 
nutritional status of plants, which are fast but less accurate. 
These methods include the use of color charts for visual 
evaluation of plant leaves [5], sensors for chlorophyll 
measurement [6], and the use of digital information, such as 
images, for plant color analysis [7], all of which can support 
the implementing of precision agriculture. For example, on the 
one hand, [8] reviewed the available information for 
determining plant nitrogen through remote sensing. They found 
that there is still a need to generate more knowledge, especially 
in the agricultural domain, even though their research has 
identified guidelines to help selecting the appropriate sensor 
based on the specific objective of each study.. On the other 
hand, [9] also explored the usefulness of remote sensing. They 
focused on evaluating nitrogen in cereals, concluding that 
accurate and timely field monitoring is essential to guarantee 
crop performance and protect the environment by adjusting 
applications of fertilizers. However, while these methods can 
save resources, they are not always within the reach of farmers. 
This may be due to the cost of acquisition (in the case of 
sensors), the impossibility of applying them (image analysis 
requires computational algorithms), or the difficulty in 
understanding the results (chlorophyll measurements are not 
interpretative). 
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In this sense, the scientific community has made significant 
efforts to develop non-destructive methods and technologies to 
reduce the negative impacts of over-fertilization on the 
environment. Artificial intelligence (AI) branches, such as 
Machine Learning (ML) and computer vision with Deep 
Learning (DL), have been used to provide consistent 
assessments of the nutritional level of distinct types of crops in 
a fast, economical, and reliable way [10], [11]. However, 
farmers apply AI-generated models for estimating the 
nutritional status of plants in uncontrolled conditions within 
agricultural systems in a very sparse manner. In addition, these 
automated systems hardly evolve to the innovation of a 
technological tool, such as software, web systems, or mobile 
applications, to support farmers in non-destructive and cost-
effective field determinations. 

One of the most significant nutrients studied with AI 
models is nitrogen (N) due to its fundamental role in plant 
growth through cell division, protein synthesis, and enzyme 
production [12]. However, there is evidence that excessive N 
addition has led to significant negative impacts on the 
environment, such as aquifer contamination [13], [14], harmful 
accumulation of nitrates and nitrogen dioxide (carcinogenic 
substances) in cultivated plants [15], and the acceleration of 
soil acidification and salinization through N transformation 
processes [16]. Therefore, N must be administered only in the 
precise amount needed to satisfy the nutritional goals. 

The fact that N concentration is related to leaf color in 
many plants makes color a valuable parameter that serves as a 
basis for estimating foliar nitrogen levels [17]. For example, 
[18] presents the results of a conducted review of non-
destructive techniques for determining foliar N, based 
primarily on color analysis parameters. They found that digital 
image processing attracts agricultural scientists due to its 
promising results and moderate cost. 

Quantitative chemical or biochemical analyses and color 
measurements made on the same plant tissue, and critical foliar 
nutrient concentration values, are required as references to 
establish color values and build color charts that accurately 
reflect measured nutrient levels [19]. Several color guides have 
been produced and printed on paper for the main cereals, given 
that nutritional deficiencies are evident in grasses [20]. Mobile 
applications have also been developed in recent years [21], 
[22]. 

This work aimed to carry out a systematic review and 
bibliometric analysis of the current state of scientific 
knowledge on the evaluation of the nutritional status of plants 
using a quantitative, AI non-destructive approach, to provide 
relevant information for decision-making in agricultural 
systems under field conditions. This review's contribution is to 
present recent knowledge and identify its potential for the 
generation of accessible technological tools that might serve as 
low-cost support for promoting the rational and adequate use of 
fertilizers within the framework of sustainable precision 
agriculture. 

II. MATERIALS AND METHODS 

The traditional methodology “Preferred Reporting Items for 
Systematic Review and Meta-Analysis” (PRISMA) [23] was 

followed to conduct a systematic review of current scientific 
knowledge. This review mainly focuses on nitrogen content, as 
color characteristics can conveniently detect nitrogen 
deficiencies and excessive concentrations for adequate 
fertilization of crops. 

The PRISMA methodology was complemented with the 
PSALSAR methodology [24]. In addition, a bibliometric 
analysis was carried out to evaluate the production, visibility, 
and impact of the scientific literature related to the topic of 
study (see Fig. 1). 

The research questions posed for this review were: 1) Can 
artificial intelligence-based non-destructive analysis of plant 
nutrition provide relevant information for decision-making in 
agricultural systems?, 2) Do studies reach the stage of 
developing technological tools for application in agricultural 
systems under field conditions?, and 3) What is the way 
forward for the popularization of the development and 
application of technological tools in agricultural systems? 

Relevant platforms were used to search for information. 
The selected databases were Scopus1 , Science Direct2 , and 
Web of Science 3 . Initially, the search terms were specific, 
including "nitrogen" and "color", however, the results were 
limited; so, the search was broadened to include the keywords 
"machine learning" and "deep learning" (see Table I). The 
search was restricted to publications from the last ten years, as 
this work aims to gather information on the most recent 
technologies and processing methods. 

 

Fig. 1. Phases of the psalsar methodology applied in this systematic review. 

Scientific mapping and network analysis were performed as part of the 
bibliometric analysis. 

                                                           
1 Web link: https://www.scopus.com/search/form.uri?display=advanced 
2 Web link: https://www.sciencedirect.com/ 
3 Web link: http://webofscience.com/ 
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TABLE I.  SEARCH TERMS FOR COMPILING SCIENTIFIC ARTICLES ON 

PROCESSING DIGITAL PLANT LEAF IMAGES TO EVALUATE THEIR NUTRITION 

Data 

bases 
Searching string 

No. of 

articles * 

Consultatio

n date 

Scopus 

Article 
title, 

abstract, 

keywords 

"nitrogen" AND 

"color" AND "plant 

leaf" AND "image 
processing" 

15 

September 

19, 2023  

"plant leaf" AND 

"deep learning" AND 

"nitrogen" 

10 

 

plant leaf AND 

machine learning AND 

nitrogen 

22 

Science 

Direct Advanced 

Search 
Find 

articles 

with these 

terms 

"nitrogen" AND 

"color" AND "plant 

leaf" AND "image 
processing" 

104 

September 

19, 2023  

"plant leaf" AND 

"deep learning" AND 

"nitrogen" 

80 

 

"plant leaf" AND 

"machine learning" 

AND "nitrogen" 

152 

Web of 

Science 

Search in: 

Collection 

Editions: 
All 

nitrogen (All Fields) 
and color (All Fields) 

and plant leaf (All 

Fields) and image 
processing (All Fields) 

74 

September 

19, 2023 

plant leaf (All Fields) 

and deep learning (All 
Fields) and nitrogen  

48 

plant leaf (All Fields) 

and machine learning 

(All Fields) and 
nitrogen  

222 

a. 
The documents considered include review and research articles written in English from 2013 

onwards. 

The collected articles were evaluated using inclusion and 
exclusion criteria based on the objective of the review work. 
The inclusion criteria were a) search words exist in the title, 
keywords, or summary, b) the article must be written in 
English, c) the article’s publication date is less than ten years, 
d) ML or DL models were used, e) the precision or uncertainty 
of the predictive models was calculated, and f) relevant gray 
literature documents (not conference proceedings) are 
acceptable. The exclusion criteria did not consider duplicate 
articles and documents not accessible. 

After omitting inaccessible or duplicate articles and 
checking that the search words existed in the title or keyword 
section, 174 documents were left for initial review, which were 
downloaded from the search platforms and stored locally. 
Subsequently, the abstract of all articles was read and classified 
into two groups: 1) studies focused on the identification of 
nutrient levels, and 2) studies for the detection of pests and 
diseases in plant leaves, which were discarded. In total, 111 
articles were collected using images and data from the leaves 
of different plants for the study of nutrient levels. A second 
search was carried out from the references cited in those 
articles to obtain 123 articles for full reading. 

The relevant information of the selected articles was 
extracted and classified. This phase was complemented by 
scientific mapping and network analysis with the bibliometric 
method to identify the relationships between different research 

areas in the context of producing scientific papers [25]. 
Conducting a meta-analysis was not possible due to the wide 
heterogeneity of the studies reviewed. 

Through scientific mapping it is possible to recognize the 
most influential works based on the classification and 
visualization of studies without the subjective bias of non-
systematic literature reviews [26]. Network analysis uses graph 
theory to calculate the number of times that a) a document has 
been referenced by others (indegree), b) a particular node cites 
others (outdegree) [27], and c) the degree of intermediation of 
each element within the network (betweenness) [28]. 

Analysis of citations, co-citations, bibliographic coupling, 
co-authorship, and co-occurrence of words was applied in 117 
studies of this review. In addition, 105 documents were 
synthesized in the supplementary material, 11 studies were not 
included because their methodology was unclear, and seven 
were review documents. 

The tools used for scientific mapping and network analysis 
were VOSviewer4 and biblioshiny by bibliometrix [29]. The 
analysis and graphical representation of the science tree were 
performed with Tree of Science (Core of Science, 2020), and 
word clouds with text mining were generated using Voyant5. 
An evaluation of the synthesized information was carried out to 
answer the research questions. The analysis includes narrating 
the results, discussing the way forward for future research 
work, and the conclusion [24]. 

III. RESULTS AND DISCUSSION 

A. Bibliometric Analysis 

An increasing publication trend was found, with an annual 
growth rate of 20.89%. China has the most publications, 
followed by Brazil, USA, India, and Australia. This is probably 
associated with the current existence of accessible devices, 
with better hardware and software features for data collection 
and the availability of free software tools that allow the 
processing of large amounts of information with a quantitative 
approach and known precision. Research from China is the 
most cited, followed by research from Brazil, Germany, Korea, 
and Iran. 

Scientific mapping and network analysis with tree of 
science allowed identification of the most influential research 
on the topic of study, some of which was not considered during 
the information search phase. The metaphor of the tree of 
science to perform network analysis facilitated the recognition 
of connections and hierarchies based on the frequency of 
appearance of specific terms or concepts together in the 
scientific literature addressed in this review. 

Given their theoretical dominance in derivative studies, the 
tree of science roots showed the classic documents of 
fundamental relevance in the subject. Twenty articles were 
considered the pillars of subsequent knowledge, they focused 
mainly on proposing and comparing the performance of 
different vegetation indices. Some of the early indices, which 
at the time were considered novel, are still in use today, such as 
the Soil-Adjusted Vegetation Index (SAVI), Transformed Soil-

                                                           
4 Web link: https://www.vosviewer.com/ 
5 https://voyant-tools.org/, 2023 
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Adjusted Vegetation Index (SAVIT), Modified Soil-Adjusted 
Vegetation Index (MSAVI), among others [30]. 

The trunk of the tree of science includes 20 articles from 
authors that first discovered the applicability of this type of 
research. These documents are the central pillar of collective 
knowledge on the subject, and the proposal of new indices is a 
topic of interest. The most relevant studies explored the 
potential of the RGB color system through the relationship of 
its channels, mainly green and red, to the nitrogen content of 
different types of crops [31]. Other studies explored the use of 
spectral data [32], [33]. 

Three branches were identified based on underlying 
citations, each integrating 15 trending studies. The tree leaves 
represented the most recent and innovative papers citing each 
other, showcasing current trends framing emerging research. 

The analysis of citations through scientific mapping 
showed that 103 of the studies considered in this review were 
connected, forming 12 clusters, which can be considered 
subfields of the central theme of the review. With the 
cocitations analysis, a thematic affinity was found among the 
documents reviewed; these studies are closely related to the 
extent that they have a greater number of bibliographic 
references in common. With the co-occurrence analysis, the 
most frequent keywords detected were: "vegetation indexes", 
"reflectance", "chlorophyll content", "regression" and "spectral 
reflectance". 

Other reviews have been written on estimating plant 
nutrition with non-destructive methods. Reference [12] 
describes the techniques available to estimate nitrogen content, 
finding that several factors influence their suitability and 
applicability; for example, the accuracy of leaf color tables is 
not guaranteed since they are based on visual color inspection. 

The work in [7] reviewed the use of RGB digital images for 
foliar nutrition estimation, finding that existing processing 
technology can support the development of agricultural 
automation by achieving low price, high efficiency, and high 
precision. Reference [10] studied proximal image capture with 
different types of sensors, concluding that studies of this type 
are becoming less and more dispersed, making it difficult to 
draw a complete picture of the state of the art of this type of 

research. On the other hand, [8], [34], [35] focus their reviews 
on obtaining and analyzing spectral information. Although 
these reviews give a comprehensive view of the advances in 
scientific literature, they do not focus on the progress of 
technological tools, which is the contribution of this review. 

B. Can Artificial Intelligence-based Analysis of Plant 

Nutrition Provide Relevant Information for Decision-

Making in Agricultural Systems? 

The methodology for obtaining and analyzing information 
in non-destructive plant nutrition studies varies according to 
the types of data available and the estimation models selected. 
However, the overall process could be standardized into four 
phases commonly used for analyzing digital information with 
artificial intelligence (see Fig. 2). The most used measuring 
devices for data acquisition are conventional [36], spectral 
[37], [38], or modified digital cameras [39], and sensors that 
enable the collection of continuous and discrete numerical 
values [40], [41]. Some of these sensors and digital cameras 
can be installed on unmanned aerial vehicles (drones) to 
conduct canopy-level surveys [42], [43]. 

The data types obtained are RGB digital images [44], 
spectral data and images [35], and measurements with SPAD 
sensors [45] or color sensors [46]. In addition, it is common to 
calculate vegetation indices from distinct color models and 
spectral channels [47]. For example, the green channel is the 
one that has been most frequently used on its own or as part of 
indices for diagnosing plant nutrition levels [48], [49], [50]. 

Studies published after 2018 mainly use multi and/or 
hyperspectral data, probably because researchers have ventured 
into developing reliable and inexpensive sensors [49] and 
because of the increase in available computational capacity. 
Spectral information requires greater computational processing 
since it presents several bands of information across the entire 
electromagnetic spectrum [50]. This large amount of 
information can be used to produce maps of precise 
biophysical indicators throughout the different crop 
development cycles, which would allow better decision-
making and the implementation of precise agriculture [3]. 

 

Fig. 2. Phases of data processing for the evaluation of the nutritional level of plants. Example of an assessment of the nitrogen level of an avocado leaf from the 

color in RGB. 
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Obtaining spectral information through sensors can be 
proximal in the field, or aerial. Satellite is the best option for 
the measurement of the entire field or plot quickly and free of 
charge. Unmanned aerial vehicles are the most advantageous 
option to measure quickly with high resolution and high level 
of detail. Leaf-based sensors are very accurate to measure at a 
specific point [8]. 

On the other hand, each data type has its limitations, for 
example, one of the main challenges associated with digital 
imaging for plant nutrition diagnostics is the illumination of the 
environment, as it can have a significant impact on the 
performance of estimation model algorithms [31]. Light 
variations in field conditions can severely hinder the ability of 
models to provide reliable estimates as, for most imaging 
devices, the same part of a plant may have different color 
attributes depending on whether the capture conditions are 
under sunny or cloudy conditions, also changing depending on 
the time of day, and even if some correction or calibration is 
applied [51]. In some studies, light conditions have been 
resolved through controlled environments, such as laboratory 
conditions, the creation of structures that block the passage of 
natural light or contact techniques [52]. 

The massive amounts of information are the most important 
limitations of using spectral data and images. Redundancy, 
collinearity, and noise do not favor data processing, therefore, 
extracting characteristic wavelengths (reducing dimensionality) 
is necessary for training of estimation models [53]. It should be 
noted that wavelengths vary, so they must be calibrated and 
selected according to the type and variety of plant being 
studied. 

Another limitation for the use of spectral data is associated 
with the type of measurement that is performed, as this can be 
at the canopy level, which means that reflectance is scanned 
from the top layer of the leaf and the vertical distribution of 
nutrients in the crop is difficult to infer. Unlike leaf-level 
measurements, that are performed only on young leaves that 
better reflect the current nutritional status of the plants [54], 
spectral data at the canopy level create uncertainty in crop 
monitoring and limit the practical value of estimates at the plot 
and plant levels, given such heterogeneity. 

Sensor differences between devices should also be 
considered, as they can have significant variations [55]. 
Technical characteristics, such as optical quality and pixel 
sensor type (CMOS or CCD), change between models and 
manufacturers [10]; therefore, proper calibration is necessary to 
compensate for these effects. In addition, the interpretation of 
measurement results may require expert knowledge and may 
not be accessible, given the excessive cost of some of these 
devices. 

On the other side, preprocessing is necessary to improve 
and select information that will be used for training estimation 
models of crop nutrition levels. In the case of RGB images, the 
preprocessing can include reducing intensity variations 
between neighboring pixels (smoothing), modifying pixels 
whose intensity level is quite different from their neighbors 
(noise removal), increasing intensity variations between pixels 
(detail enhancement), detecting pixels with abrupt changes in 

intensity (edge detection), and adjusting brightness [56]. 
Different filters can also be applied to enhance RGB images, 
such as mean, median, and Gaussian [57]. 

Segmentation is used in RGB images for background 
extraction, the main challenge is capturing information under 
field conditions since image backgrounds can be diverse [58]. 
It is common to use unsupervised analysis to perform feature 
extraction and find patterns in the data without any prior 
knowledge of classes or groups, as it allows having an 
overview of the main sources of variation in the data. Cluster 
analysis and principal component analysis are among the most 
used algorithms. 

Preprocessing of spectral information is carried out to 
select important bands to reduce data dimensionality and 
improve the robustness and interpretability of the estimation 
models [40]. These preprocessing methods include a) first 
derivation to overcome band shifting and overlap problems, b) 
light scattering reduction, and c) reflectance to absorbance 
conversion to linearize the spectrometer response [59]. First-
order derivatives have been the most used, with better results 
[60], [61]. On the other hand, feature extraction refers to 
calculating new information from the data. In the case of 
digital images, it is possible to obtain numerical values of 
color, texture, shape, and geometry. The final phase of the 
process consists of estimating and classifying plant nutrient 
levels through the application of trained mathematical models. 
Studies published before 2018 mainly used linear regression 
models, given their simplicity and the possibility of generating 
approximation functions. More recently, ML and DL models 
have been used, such as convolutional neural networks, which 
refer to a class of feedback networks applied to the analysis of 
digital images [62]. 

The regression models for estimating plant nutritional 
levels represent suitable solutions to complex problems thanks 
to the evolution of ML and DL techniques. Many of these 
algorithms are freely available on various platforms so that 
they can be easily applied by anyone with a basic 
understanding of their concepts [63]. However, one of the main 
limitations of this models is that, in many cases, users do not 
have enough knowledge about the algorithms they are 
applying. Hence, the experimental design is not always 
appropriate. In addition, it may not be possible to validate the 
congruence of models with expert knowledge, as some models 
are so complex that they can function as black boxes, making 
unfeasible to fully understand the decision process. A summary 
of the regression and validation models applied in the research 
with technological tool development considered in this review 
can be found in the Table II. 

In conclusion, artificial intelligence-based analyses of plant 
nutrition are a good source of information for decision-making 
in agricultural systems, since its allows monitoring the state of 
crops by measuring and analyzing different variables. 
However, using this information implies expert knowledge, 
high computational processing capabilities, memory spaces, 
and, in some cases, the acquisition of expensive sensors. 
Therefore, at this point, its implementation in agricultural fields 
is not viable; so, the development of technological tools that 
are easy to use and accessible to decision-makers is necessary.
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TABLE II.  SYNTHESIS OF THE STUDIES THAT LED TO THE DEVELOPMENT OF A TECHNOLOGICAL TOOL 

Reference 

Tool or 

technology 
development 

Branch of 

artificial 
intelligence 

Input data 

types 
Regression models Crops Database size 

Validation 

methods 

Models 

accuracy 
(best model) 

2013 

[36] 
Software 

Machine 

learning 
RGB images 

Stepwise multiple 

linear regression 
(shoot dry weight 

showed better 

performance) 

Rice 

166 observations for 

model calibration and 

161 observations for 
model validation  

Determination 

coefficient   
0.87 

Root mean 
square error in 

prediction 

0.52 

2013 

[64] 

Four-wheel 
mobile 

structure 

Machine 

learning 
RGB images Linear regression Rice 

140 samples to 
develop the 

prediction model and 

80 samples to 
validate the model 

 

Determination 

coefficient   
0.95 

2015 
[44] 

Smartphone 

application 

(PocketN) 

Machine 
learning 

RGB images 

Linear regression 

(Dualex was the 

best method) 

Rice 

864 determinations 

for prediction, 54 for 

determining trueness 

Determination 
coefficient   

0.96 in leaves 

nitrogen 

content 

2015 

[52] 

Smartphone 

application 

Machine 

learning and 

deep 
learning 

RGB images 

Linear regression 

and Neural 
Network model 

(NN). The best 

model was NN 

Maize 480 contact images 

Determination 

coefficient  
0.82 

Root mean 
square error 

5.10 

2020 

[65] 

Multispectral 

sensor 

Machine 

learning 
Numerical data 

Rational quadratic 

gaussian process 

regression. Best 
model was for 

Soybean 

Canola, maize, 

soybean, and 
wheat 

Spectral data were 

collected from 307 
leaves (121 for N) 

Determination 

coefficient  
82.29 

Root mean 

squared error 
0.21 

2020 
[66] 

Smartphone 
application 

Computer 
vision 

RGB images 

Color difference 

calculated by the 
CIEDE2000 

formula 

Rice 
180 leaves 
 

Manual 
inspections 

0.95 

2021 
[21] 

Smartphone 
application 

Machine 
learning 

RGB images 

Simple linear 
regression 

(carotenoid 

concentration was 
the best model) 

Spinach 

A total of fifty 

upright leaves were 

visually selected 

Determination 
coefficient   

0.95 

2021 

[67] 

SPAD type 

portable device 

(SPAD-Cap) 
and a web GUI 

for data control 
and 

visualization 

Machine 

learning and 

deep 
learning 

RGB images 

Partial least square 

regression and 
convolutional 

neural network for 
regression 

Rape leaves 

and some other 

plant leaves of 
cotton, 

sugarcane, 
citrus, brassica, 

and bamboo 

Totally 120 rape 

leaves and 50 others 

were collected and 
tested 

Determination 
Coefficient 

0.97 for rape 
leaf 

Root mean 

square error 

2.5 for rape 

leaf 

2022 

[68] 

Structure for 
taking 

photographs 

Machine 

learning and 

deep 
learning 

Hyperspectral 

images 

Random forest, 

Support Vector 
Regression (SVR), 

partial least square 

regression, and 
artificial neuron 

network. Best 

model was SVR. 

Oil palm 

A training set with 50 

samples was used to 
be modeled for each 

target, and a test set 

with 15 samples was 
employed to evaluate 

model performance 

 

Determination 

coefficient for 
prediction 

0.655 

Root mean 

square error of 
calibration 

0.17 

Standard error of 

prediction 
0.18 

2022 
[33] 

Hardware 
device with a 

spectral 

camera 

 

Machine 
learning 

Multispectral 
images 

Partial least squares 
regression 

Wheat 

144 samples in the 

calibration set and 72 
samples in the 

validation 

Determination 
coefficient   

0.79 

Root mean 

squared error 
3.94 

2022 

[69] 

Sensor to 

acquire and 

analyze a color 
image 

Machine 

learning 
RGB images 

Simple linear 

model 

Winter 

rapeseed 

In total 100 rapeseed 

leaves were examined 

Determination 

coefficient   
0.81 

2022 

[39] 

Image 

acquisition 
device 

Machine 

learning 
RGB images 

Random forest 

sequential 
backward selection 

and support vector 

regression were 
combined 

Aquilaria 

sinensis 

The original dataset 
contains 48 samples 

with 108-dimensional 

image features. 

Determination 

coefficient  
0.87 
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C. Do Studies Reach the Stage of Developing Technological 

Tools for Application in Agricultural Systems under Field 

Conditions? 

Most of the studies reviewed (86%) did not consider 
developing a technological tool as part of their objectives. They 
were limited to applying regression and classification 
estimation models with different levels of complexity and 
evaluating their accuracy. Therefore, this knowledge is mainly 
aimed at specialists, who are usually not the decision-makers in 
agricultural fields. The few technological developments in the 
studies reviewed include software [36], mobile applications 
[21], [52], [66], and hardware devices, such as sensors [33], 
[65], [69], structures [64], and intelligent robots [70]. 

The development of mobile applications dates to studies 
published in 2015 and is resumed in works from 2017, 2020, 
and 2021. Only one software tool was presented in a study 
from 2013 [36], and the hardware appeared in documents 
published in different time intervals (2013-2015, 2017 and 
2018, and 2020-2022) (see Fig. 3). 

Most of the studies, in which the development and testing 
of these tools have been published, report satisfactory results in 
their application. Mobile apps and software were searched on 
the web for installation and testing but are unavailable. This is 
probably because they are not open access, their download is 
blocked in some countries, or the devices used do not meet the 
requirements for their installation. On the other hand, mobile 
and robot structures have not been commercialized to the 
public, their construction and use are limited to experts, so it 
would be difficult for decision-makers to replicate these 
structures. 

Some tools have not been developed with a scientific 
approach and have not been published as research but are 
commercialized and available to farmers. If their accuracy is 
proven adequate through rigorous testing, they could be 
valuable options for decision-making in agricultural systems. 
Examples of such tools are FieldScout GreenIndex+ Nitrogen 
App, which is a paid application developed to manage the 
nitrogen needs of maize crops, and Yara ImageIT, created to 
calculate nitrogen uptake from foliage cover, leaf color, and the 
estimated brown-leaf fraction. 

The limitations that hinder the transfer of knowledge and 
technology to farmers should also be considered. One 
limitation is the lack of environmental regulation, which can be 
lax, especially in poor and developing countries, with no 
restrictions on fertilizer use and no accompaniment during the 
production process or incentives to reduce over-fertilization, 
that makes the optimization of fertilization practices irrelevant. 
Another limitation is that technology implementation for smart 
agriculture can involve high costs, making it inaccessible to 
small and medium-sized farmers. 

The rocketing price of chemical fertilizers in recent years 
may nonetheless change this perception and increase the 
interest of farmers worldwide in such fertilizer optimization 
tools, if not for environmental reasons, for economic concerns. 
Given that such scenario is unlikely to change soon, it is worth 
to continue developing tools that are economically accessible, 
with easy-to-interpret and scientific-evidence-based results. 
Mobile and robot technology is becoming affordable and 
ubiquitous and should become available to farmers at no or 
minimum cost to promote sustainable and precision 
agricultural practices. 

 

Fig. 3. Types of technological tools created, and branches of artificial intelligence applied in the studies over time. 
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D. What is the Way Forward for the Popularization of the 

Development and Application of Technological Tools in 

Agricultural Systems? 

There is still much to be done in intelligence-based 
nutritional diagnostics for different crops, as most studies have 
focused on cereals, especially rice, maize, and wheat. In 
addition, varieties of the same crop may possess specific 
canopy architectures [36], different rates of coloration and leaf 
development, and different responses to nutritional deficiency 
[71]. Nutrient estimation models generated for a given crop 
may become less effective when applied to other varieties of 
the same crop, which means that it is necessary to develop a 
specific estimation model for each type of crop [31], [72], [73]. 

Similarly, the plant developmental stage must be 
considered, as it may affect the behavior of the variables used 
by the estimation models given that as plants and leaves 
mature, leaf color changes [74] and, as a consequence, also 
their spectral responses [75]. The same plant often contains 
leaves at different stages of development, so studies should 
consider conducting experiments with other varieties of the 
same crop at various critical stages of their growth [72], [73]. It 
may be more efficient to develop nutritional diagnostic tools 
for perennial crops, whose varieties do not change as rapidly as 
annual crops and whose nutritional requirements are more 
difficult to estimate because plantation areas are usually very 
heterogeneous and tree responses to fertilization are slow and 
less evident. 

In general, the main weaknesses of current knowledge 
about intelligence-based nutritional diagnostics are: 1) given 
that the research has been developed mainly by and for experts, 
the estimation models and the few technological tools 
developed are complex, so decision-makers do not use them; b) 
training estimation models with deep learning requires a large 
amount of information and computational resources, which can 
imply a high economic investment if there are no free 
repositories with the necessary information or adequate 
computing equipment; and c) its application in agricultural 
systems is a challenge since most of the knowledge generated 
has been tested under controlled conditions, without 
demonstrating promising results in field conditions. 

The threats lie in the limitations of the data, estimation 
models, and tools, which may turn them not robust enough to 
be applied with acceptable reliability in agricultural fields, 
producing deficiencies in crop performance. Estimation models 
require data that can be used as predictor variables of foliar 
nutrition. Although color has proven to be a good predictor 
variable for some crops [66], finding the correct variables is a 
challenge in other cases. Other aspects of the crop, such as leaf 
shape, size, age, etc., may need to be considered. 

The strengths focus on the valuable theoretical knowledge 
generated to date, which has made possible to establish 
methodologies for continuing studies of new crops or varieties 
and different growth stages of crops that have already been 
studied. Given the high cost of destructive nutrition analyses, 
farmers use them on a limited number of samples (of leaves or 
soils, for example), therefore their view of nutrition status at 
the plot level is limited. However, using estimation models or 

technological tools would allow multiple estimates to be made 
quickly and economically to monitor crops at the plot level. So 
far, most studies have only estimated macronutrient 
deficiencies [7], [76], so there is an opportunity to generate 
knowledge from micronutrients. 

Furthermore, in 49% of the review studies, ML has been 
used to generate predictive models, 16% use DL, and 28% 
compare the performance of algorithms from both subfields. 
Therefore, there is an opportunity for developing new research 
in which predictive models are generated using DL to estimate 
the foliar nutrition of different crops. 

The way forward for the popularization of the development 
and application of technological tools in agricultural systems is 
the innovation. Innovation can be defined as “invention plus 
exploitation” [77], and the innovation process considers 1) the 
production of knowledge and, according to this review, there 
are currently sufficient advances in the scientific literature; 2) 
the transformation of knowledge into artifacts, which has had 
little progress with a scientific basis; and 3) the continuous 
adaptation of these artifacts, according to the needs and 
demands of the market. Based on the documents reviewed, we 
can infer that it has only been achieved by commercial tools, 
whose developments have yet to be published in the scientific 
field. Although the innovation process can follow different 
paths, depending on the type of product, in Fig. 4, we propose 
a path forward focused on generating technological tools with a 
scientific basis. 

In the future, we glimpse a precision agriculture achieved 
through technological innovation, using monitoring systems 
and the Internet of Things for the acquisition of crop 
information [78]. Also, soil and climate information could be 
included in the estimating models, representing an 
improvement in their capacity and the possibility of including 
fertilization recommendations besides nutritional diagnosis. A 
monitoring system would not only identify plant nutritional 
deficiencies, but could calculate and provide optimal solutions, 
informing the user of the required nutrient supply and focusing 
not only on one type of nutrient but several. Also, Mobile 
smartphones and similar devices will soon be accessible (sensu 
lato, in terms of costs, operation, language, connectivity, etc.) 
even in the most remote areas, and developing free/low-cost 
applications to support farmers is becoming easier and cheaper 
(see Fig. 5). 

Therefore, the popularization of the development and 
application of technological tools in agricultural systems 
represents a valuable opportunity to translate the scientific 
knowledge generated into accessible tools that bring together 
the recent boom of technological advances and put them in the 
hands of people to facilitate and promote a sustainable 
management of natural resources. In this regard, it is crucial to 
form multidisciplinary working groups that bring together 
experts in agronomy, sustainability, programming, robotics, 
electrical systems, data analysis, among others. Finally, 
research information should be shared in free repositories to 
increase the amount and variety of data available to improve 
the training and validation of estimation models and 
technologies. 
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Fig. 4. Process proposal for the generation of technological tools from scientific information considering the phases of innovation and the development cycle of 

software or mobile applications. 

 

Fig. 5. Advances in assessing the nutritional status of plants with non-destructive methods and the gaps in their study, which become future opportunities, and 

the way forward. 

IV. CONCLUSIONS 

In a promising future, theoretical scientific knowledge will 
evolve towards technological innovation to achieve precision 
and sustainable agricultural systems. The estimation of foliar 
nutrients with AI non-destructive methods will be carried out 
also using more technological tools, with information 
acquisition achieved through the Internet of Things and with all 
this information stored in free repositories for use in training 
robust estimation models. As a direct result, real-time 
monitoring systems will be developed based on these models, 

which will integrate hardware and special software built for the 
particular characteristics of each crop type by interdisciplinary 
and scientifically based work groups, approaching alternative 
agriculture and seeking environmental conservation. 

Nowadays, it is possible to estimate the nutritional status of 
crops through quick, economical, and non-destructive 
measurements thanks to current technological advances. These 
characteristics are of the utmost relevance to support farmers 
and advance environmental conservation. This paper presented 
an overview of the current state of scientific research to 
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identify its scope to generate accessible technological 
diagnostic and planning tools that support farmers. 

It is possible to conclude that digital image processing has 
evolved to allow the detection of slight visual alterations in 
plant color and morphology using appropriate technology. At 
the same time, through predictive models, it is possible to solve 
problems of approximation and classification of values with 
acceptable precisions, with sufficient, representative available 
data. However, the main limitation lies in the limited 
development of technological tools accessible to all types of 
farmers and other non-expert users. These tools should include 
robotic systems, specialized software, and mobile applications 
for decision-makers that can be used and tested in practical 
field environments. 

The scientific community must prioritize advancing science 
and technology that improves the quality of life, especially 
those that help produce healthy and safe crops in a healthy 
environment. The skills required to achieve these goals are 
within our reach, as can be inferred from the research presented 
in this review. Although there are still challenges and 
constraints to overcome, progress is being made in the right 
direction to achieve a brighter future in agriculture that focuses 
on preserving natural resources and biodiversity while enabling 
the production of high-quality food. 
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