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Abstract—Artificial intelligence (AI) technologies, including 

deep learning (DL), have seen a sharp rise in application in 

agriculture in recent years. Numerous issues in agriculture have 

led to crop losses and detrimental effects on the environment. 

Precision agriculture tasks are becoming increasingly 

complicated; however, AI facilitates huge improvement in 

learning capacity brought about by the advancements in deep 

learning techniques. This study examined how CNN and VGG16 

(transfer learning) were used for weed classification for the 

application of spraying herbicides selectively in palm oil 

plantations based on the type of optimizer, values of learning rate 

and weight decay used on the models. The result shows that the 

VGG 16 BN model with Adagrad optimizer, learning rate value 

of 0.001 and weight decay of 0.0001 shows the average accuracy 

of 97.6 percent and highest accuracy of 99 percent.  

Keywords—Artificial intelligence; deep learning; CNN; 

transfer learning; VGG16 

I. INTRODUCTION 

The integration of artificial intelligence (AI) in agriculture 
has been a subject of ongoing research and application; 
however, recent years have seen a substantial escalation in the 
adoption and advancement of AI technologies in this domain. 
Various challenges such as weed infestation and uncontrolled 
use of herbicide have resulted in crop losses and negative 
environmental repercussions. Innovative solutions that 
leverage AI's adaptability, precision, affordability, and overall 
higher efficiency are required to overcome these obstacles. In 
recent years, advances in deep learning techniques have led to 
a significantly better learning capacity, enabling the approach 
to handle increasingly complex tasks in the field of precision 
agriculture. 

Deep learning, a branch of AI, is a rapidly evolving field 
which has seen increased adoption in various fields. Deep 
learning emerged as a powerful tool used in many applications 
such as image recognition and classification, and it has 
extended its impact in vital areas such as agriculture, 
medicines, finance and more. This revolution has been 
primarily driven by the availability of vast amounts of data (big 
data) and the advancement of technology in computing power, 
some of which can be accessed for free such as in Google 
Colaboratory. 

Deep learning utilized the use of algorithm to learn from 
data enabling it to perform predictions or decisions with high 
accuracy and efficiency. Deep learning is a subset of machine 
learning, which involves the use of neural networks which are 
used to analyze large dataset, with the aim to simulate the 
structure and function of human brain. These neural networks 
are highly effective in solving complex problems such image 
and speech recognition due to its ability to learn from 
unstructured data [1], [2], [3]. Deep learning has become an 
indispensable tool in the development of intelligent systems, 
paving the way for innovations across diverse industries. 

The most prominent deep learning approach is the 
Convolutional Neural Networks (CNNs). It was first 
introduced by LeCun et al. [4], [5] for the purpose of 
handwritten digits classification. In a CNN, there is an input 
layer, hidden layers and an output layer. The two core 
structures in CNN are the convolutional layer and the pooling 
layer. The convolutional layer share weights, and the pooling 
layer lowers the data rate from the layer below by subsampling 
the convolutional layer's output [6]. In building a CNN 
algorithm, the most frequently used hidden layers in the CNN 
algorithm are, convolutional layers, fully connected layers, 
normalization layers, and pooling layers. 

 

Fig. 1. CNN architecture. 

*Corresponding Author. 
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In order to form a more complex CNN models, additional 
layers can be added to the CNN architecture. The CNN 
architecture has proven to be an outstanding solution in most 
computer vision problems. Since 2011, CNN layers have 
enhanced deep learning models for tasks involving images, and 
at this point, CNN layers are used in the majority of DLs [7], 
[8]. Fig. 1 shows the basic CNNs architecture. Fig. 2 and Fig. 3 
shows an example of the operation carried out in convolution 
and pooling layer. 

Transfer learning allows a model to be taught and refined 
for one task, then adapted for a related task, leveraging prior 
knowledge to enhance performance and efficiency in the new 
context. This technique exemplifies the ability to use insights 
gained in one domain to improve outcomes in another. Data 
sets smaller than the real training datasets were fed into pre-
trained models [9], [10]. 

 

Fig. 2. Operation carried out by convolution layer. 

  

Fig. 3. Operation carried out by Max Pooling and Average Pooling. 

Max-pooling layer picks the maximum number from the 
layer input within a selected window, while an average-pooling 
layer computes average values over the selected window. 

The VGG16 and VGG16_BN model was trained using 
Image Net, and it was repurposed to learn (or shift) features so 
that it can become proficient on a new dataset for this project 
(weed images). Rather than starting from scratch with random 
weight initialization, initial training can be carried out using the 
Image Net dataset and Transfer Learning, which enables to 
better fit the new dataset/task utilizing the learned features and 
model structure. The network architecture and dataset attributes 
need to be tested and adjusted to determine which factors affect 
classification accuracy. 

The VGG concept was first presented by the University of 
Oxford's Visual Geometry Group [6], [9]. Their extremely 
complex ConvNet is made up of sixteen weight layers, 
comprising three fully connected layers and thirteen 
convolutional layers with a 3x3 filter size. Both the padding 
and the convolution stride are set at one pixel. Five max 
pooling layers, which come after some of the convolutional 
layers, handle spatial pooling. There is no Local Response 
Normalization (LRN) in the network, and all weight layers 

have ReLU nonlinearity. Fig. 4 shows the architecture of the 
VGG16 algorithm. 

In this study, two transfer learning methods, VGG16 and 
VGG16_BN, were applied to classify weed images for 
precision agriculture. The use of several optimizers were 
explored and the impact of hyperparameters, such as learning 
rate and weight decay were investigated, on enhancing 
classification accuracies. Additionally, a detailed comparison 
of the chosen transfer learning methods with traditional 
Convolutional Neural Networks (CNNs) were provided, 
focusing on their respective performances and the implications 
for weed classification. The findings highlight the potential of 
transfer learning to improve weed classification accuracy, 
thereby contributing to more efficient and sustainable 
agricultural practices. Furthermore, this research underscores 
the importance of hyperparameter tuning and optimizer 
selection in optimizing model performance for agricultural 
applications. This study is divided into seven sections. Section 
I is the introduction, while in Section Ⅱ, related works are 
discussed. Dataset is given in Section III. The methodology 
adopted in this study were discussed in Section IV. In Sections 
V and ⅤI, the result and discussion are presented, respectively. 
Lastly, the study concludes in Section ⅥI with 
recommendations for future studies. 
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Fig. 4. VGG16 architecture. 

II. RELATED WORKS 

By 2050, there will likely be 9.8 billion people on the 
planet [10], meaning that more food will be required to feed 
this population expansion. In contrast, one might expect 
droughts and natural disasters to increase the value of 
agricultural food products, as well as reductions in the amount 
of land and resources available. Conversely, because there is a 
limited supply of arable land, the rising demand for these items 
will mostly be satisfied by increasing the usage of agricultural 
inputs like pesticides, fertilizers, and water [11]. 

While mechanical weed removal necessitates a significant 
amount of labour and a huge workforce, the overuse of 
herbicides poses grave risks to human health and the 
environment. By selectively spraying herbicides, for example, 
AI technology can counteract those tendencies and reduce the 
use of herbicides while increasing the effectiveness of weed 
management. 

In the year 2019, Adhikari et al. [12] proposed semantic 
graphic learning with convolutional encoder-decoder network 
for crop line and weed detection in paddy fields. The system 
shows higher performances compared to bounding box-based 
object detection. 

In 2020, You et al. [13] developed a segmentation model 
based on deep neural network in order to differentiate weed 
and crop in complex environment condition. The model is 
tested on the challenging Bonn and Stuttgart dataset and 
showed promising potential. In the same year, Arun et al. [14] 
developed a reduced U-Net integrated with pixel-wise 
segmentation for weed and crop classification to aid in 
automated weed removal. The proposed approach managed to 
achieve a segmentation accuracy of ~95%. 

Hussain et al. [15] in 2021 investigated the application of 
deep convolutional neural network to detect the lamb quarter 
weeds in potato fields in Canada under various conditions. The 
models used were GoogLeNet, VGG16 and EfficientNet in 
both Tensorflow and Pytorch frameworks. The results show 
excellent performance with more than 90% accuracy with the 
Pytorch frameworks showing better performance for all 
models. Jin et al. [16] in the same year proposed the 

combination of deep learning (CenterNet) and image 
processing for weed identification in vegetable plantation. The 
method managed to achieve a precision of 95.6%, recall of 
95% and F1-score of 0.953. Then, Ofori and El-Gayar [17] 
proposed the use of CNN with transfer learning for weed 
detection among plant seedlings. In the study, the mobile sized 
EfficientNet was combined with transfer learning and managed 
to achieve 95.44% classification accuracy on plant seedlings. 

Kamath et al. [18] in 2022 investigated the use of semantic 
segmentation models (SegNet, Pyramid Scene Parsing 
Network (PSPNet) and UNet) for the segmentation of paddy 
crop and two types of weeds. The models managed to achieve 
accuracies of over 90% which shows promising potential to be 
used for site-specific weed management. In the same year, 
Mustaza et al. [19] classified weeds using a multilayer 
perception neural network (MLPNN) with 50 hidden layers as 
the classifier. Mustaza et al. utilized a modified line filter 
technique in directional shape feature extraction and the 
proposed method achieved an accuracy rate of over 97%. Then, 
G C et al. [20] compared the use of Support Vector Machine 
(SVM) and VGG16 in performing the classification of four 
weeds and six crops species. The results shows that the VGG16 
classification models outperformed the SVM classifiers.  After 
that, Nasiri et al. [21] utilized deep learning model, UNet as a 
deep encoder-decoder convolutional neural network (CNN) for 
the use of pixel-wise semantic segmentation of weed, soil and 
sugar beet. The results showed an accuracy of 96% and an 
intersecting over union (IoU) of 84%. 

In 2023, Jiang et al. [22] proposed the use of weeding 
method where herbicides are applied to injured weed tissue. 
Jiang also designed an intra-row weeding robot to evaluate the 
performance of the method. The experimental results show 
better weed removal rate than purely mechanical weeding and 
shows that it can reduce mechanical weeding operations. The 
results also show that, compared to normal chemical weeding, 
the proposed method achieved good weed removal rate while 
minimizing the use of herbicides. In the same year, Farooque et 
al. [23] study the performance of a variable rate sprayer for 
application of agrochemicals such as herbicides. The system 
utilized CNN for target detection and agrochemicals targeted 
application in potato field infested with lamb’s quarters weed 
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and corn spurry weeds. The system managed to reduce the 
spray volume up to 47% when compared with conventional 
chemical application which is applied at a constant rate. 

III. DATASET 

In this study, the dataset used is made from the images of 
weed captured using camera from an oil palm plantation in 
Selangor, Malaysia. The two main weeds found in the oil palm 
plantations are the broadleaves weed and the narrow grass 
weed. The weed images are captured using natural light on a 
sunny day. The images were captured at a close distance 
approximately 1.5m height at 45° camera viewing angle. This 
is because it is aligned with the current height and design of 
sprayer boom tractor frequently used in palm oil plantations in 
Malaysia. A total of 2377 dataset images is created with image 
size of 224 x 224 pixels from the images obtained from the 
plantation. The dataset consists of three classes namely, broad 
weed, mixed weed and narrow weed. The dataset for each class 
is divided into approximately 80% train dataset, 10% 
validation dataset and 10% test dataset. Fig. 5 shows the 
example of dataset used in the study. 

(A) (B) (C) 

Fig. 5. The example of dataset used where (A) Broadleaves weed, (B) 

Mixed weed, (C) Narrowleaves weed. 

IV. METHODOLOGY 

This study evaluates the performance of simple CNNs and 
transfer learning models which are VGG16 and VGG16 Batch 
Normalizations (BN) for weed image classification. Firstly, the 
models were tested with different optimizers with constant 
parameters which are, learning rate=0.001, weight decay=1𝑒−4 
and momentum=0.9 for the optimizers that used momentum. 
Each model was trained for 50 epochs under these conditions. 
Next, the top three optimizers were identified based on their 
performance across the three models. Subsequent experiment 
focused on fine-tuning the parameters of these top optimizers, 
particularly adjusting the learning rate (LR) and weight decay. 
The second set of experiment involved training the model for 
20 epochs to determine the optimal parameter values. Then, 
using the optimum parameter found from the experiments, the 
average value of the accuracy is calculated to determine the 
best model and parameters. 

The algorithm first starts with pre-processing and loading 
the dataset for train, test, and validation process. Then, the 
model is loaded, either by initializing the VGG architecture or 
defining a custom CNN function. Next, the model is trained. 
The model needs to be set to training mode during the training 
phase while during the validation phase, it needs to be set to 
evaluate mode. Then, the input and corresponding labels are 
applied to the model generating output predictions and 
calculating the associated loss. During training phase, the 
model is optimized. Then, the loss and correct predictions are 

calculated. In training phase, the LR was systematically 
decayed by a factor of 0.1 every 7 epoch. Next, the accuracy 
and loss for the current epoch is calculated and the model is 
saved. This iterative process continues for the total number of 
epochs specified in the configuration. The final step involves 
generating a confusion matrix and a comprehensive 
performance report to assess the model’s classification 
accuracy, precision, recall and other relevant metrics. This 
thorough evaluation ensure that the model’s efficacy is 
rigorously validated, providing critical insights into its 
predictive capabilities and areas for potential improvement. 

A. Pre-Processing 

The dataset images for VGG16 and VGG16_BN are 
resized to 224 x 224 pixels to fit the requirements for the VGG 
architecture. While the dataset images for CNN are resized to 
32 x 32 pixels. Next, the datasets are subjected to random 
horizontal flip. Then, the datasets are subjected to random 
affine transformation of the images keeping centre invariant. 
Lastly, the images are transformed to tensor and are 
normalized with mean and standard deviation. 

B. Platform and Library 

The platform utilized for this study is the Google 
Colaboratory, a cloud-based Python coding environment 
provided by Google. Using Google Colaboratory is more 
convenient as most common library is provided inside the 
platform and they just need be imported. One of the significant 
advantages of using Google Colaboratory is the availability of 
online GPUs, ensuring consistent performance irrespective of 
the user’s local hardware capabilities, such as when using PC 
without dedicated GPUs. The library that is used in this study 
is the PyTorch library due to its extensive range of feature and 
flexibility making it well suited for deep learning task. The 
dataset used in this research is stored in a folder on Google 
Drive, which is mounted onto the Colaboratory environment. 
This allows seamless access to the dataset, with the folder path 
specified to receive images for training, testing and validation 
purposes. Leveraging the resources of Google Colaboratory, 
combined with the robust capabilities of PytTorch facilitates 
efficient model development and experimentations. 

C. Optimizers 

To obtain the optimal model for integration with the 
sprayer boom system in a weed control system in palm oil 
plantation, certain features can be changed to optimize the 
performance. The study compared the performance of CNN 
with VGG-16 and VGG-16 BN focusing specifically on 
optimizers utilization. The study used the optimizer that can be 
used for image dataset and supported by the PyTorch library. 
Optimizers are essential algorithms in deep learning which 
dynamically adjust a model's parameters during training with 
the goal of minimizing a predetermined loss function. The 
optimizer main role is to improve performance by minimizing 
the error or loss function. By iteratively fine-tuning the weights 
and biases in response to feedback from the data, these 
specialized algorithms help in the neural networks learning 
process. The number of epochs is fixed at 50 epochs based on 
preliminary tests indicating that accuracy frequently improves 
up to the 50th epoch and rarely increases beyond this point. 
This decision also helps mitigate the risk of overfitting. Then, 
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the test accuracy is compared for each optimizer for each 
model. Both the VGG-16 and VGG-16 BN models used the 
pre-trained weights from ImageNet to maximize its accuracies. 
The type of optimizers experimented in this study are Adam, 
Adadelta, Adagrad, AdamW, Adamax, ASGD, NAdam, 
RAdam, RMSprop, Rprop and SGD. 

D. Learning Rate and Weight Decay 

For the top three optimizers which produces the best 
accuracy, the models were tested with different value of 
learning rate and weight decay. Learning rate (LR) is the 
hyperparameter that dictates the extent of adjustments made to 
the model in response to the predicted error after each update 
of the model weights. In context of weed image classification, 
the LR determines the speed at which the model adapts to the 
classification task. Generally, smaller LR requires more 
training time due to the smaller weight changes with each 
update while larger LR provides rapid changes and requires 
less epoch. A model may converge too soon if the LR is too 
large while the process may become stuck if LR is too small. 
Meanwhile, Weight Decay is a regularization technique which 
penalizes large weights in the network. Weight decay keeps the 
weights from getting too big by reducing their magnitude. 
Weight decay helps prevent overfitting and maintain 
generalization. Keeping weights small will also prevent 
exploding gradient.  The learning rate and weight decay are 
changed with ten times increment. The learning rate used are 
between 0.00001 and 10 while the weight decay used are 
between 1𝑒−9  and 1𝑒1 . For this experiment, the training is 
only run for 20 epochs to see the trend of the accuracy 
performance. 

Since the accuracy for each runs differs, the average 
accuracy is used to clearly analyse the accuracy of the top three 
optimizers. The learning rate and weight decay used are the 
optimum values found from the learning rate and weight decay 
experiment in this same paper. The accuracy reading is taken 
for 10 times and the average is calculated. Table Ⅰ shows the 
pseudocode of the algorithm used in this study. 

TABLE I.  PSEUDOCODE OF THE STUDY’S ALGORITHM 

Algorithm Pseudocode 

Function Pre-processing 

START 

Input IMG: Weed images 

For i in range IMG 

| IMG_aug = transform(IMG) 

| return(IMG_aug) 

End for  

For VGG16/BN: Load model with pretrained weights from ImageNet 

For CNN: Define CNN model function 

Function VGG16/BN or CNN 

START 

Input IMG_aug: Augmented Weed Images 

Input hyperparameter 

Define loss function, optimizer and LR Scheduler 

Load model 

For epoch in range total epoch 

|  For i in range IMG_aug: 

|    if phase == train 

|    |  Perform Backward + Optimize 

|    End if 

|    Running_loss+=loss*input.size(0) 

|    Running_corrects+=sum(predictions=labels) 

|    if phase == train 

|    |  Decay LR 

|    End if  

|  Epoch_loss = running_loss/len(train_dataset) 

|  Epoch_acc = running_corrects/len(train_dataset) 

|  Save checkpoint and model 

Show time elapse 

End for  
Load model and test model: 

 Show classification report 

 Show confusion matrix 

Load model checkpoint 

END 

V. RESULT 

During processing, an input image is presented to the 
system and subjected to pre-processing stages. Once the 
images have been transformed according to Section Ⅳ (A), the 
images are then used to train the algorithms. The classification 
performance is based on the accuracy which is obtained based 
on Eq. (1). 

The result for the first experiment which utilizes the three 
types of models with different optimizers is as tabulated in 
Tables Ⅱ, Ⅲ and Ⅳ. 

TABLE II.  ACCURACY OF THE VGG16 MODEL 

DL Type Optimizer Test Accuracy 
Time taken 

for training 

VGG16 

 

Adam 194/238 82% 46m 52s 

Adadelta 226/238 95% 48m 6s 

Adagrad 229/238 96% 46m 12s 

AdamW 94/238 39% 44m 28s 

Adamax 227/238 95% 47m 28s 

ASGD 231/238 97% 47m 14s 

NAdam 188/238 79% 49m 13s 

RAdam 231/238 97% 51m 2s 

RMSprop 94/238 39% 47m 46s 

Rprop 120/238 50% 49m 7s 

SGD 231/238 97% 55m 12s 
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TABLE III.  ACCURACY OF THE VGG16 BN MODEL 

DL Type Optimizer Test Accuracy 
Time taken 

for training 

VGG16 BN 

Adam 230/238 97% 52m 10s 

Adadelta 222/238 93% 54m 60s 

Adagrad 234/238 98% 55m 12s 

AdamW 230/238 97% 53m 2s 

Adamax 232/238 97% 58m 45s 

ASGD 224/238 94% 51m 13s 

NAdam 231/238 97% 53m 7 s 

RAdam 232/238 97% 51m 23s 

RMSprop 95/238 40% 53m 2s 

Rprop 222/238 93% 55m 41s 

SGD 228/238 96% 50m 15s 

TABLE IV.  ACCURACY OF THE CNN MODEL 

DL Type Optimizer Test Accuracy 
Time taken 

for training 

CNN 

Adam 157/238 66% 19m 21s 

Adadelta 107/238 45% 19m 41s 

Adagrad 129/238 54% 20m 43s 

AdamW 146/238 61% 14m 24s 

Adamax 140/238 59% 19m 48s 

ASGD 105/238 44% 21m 38s 

NAdam 156/238 66% 19m 20s 

RAdam 151/238 63% 20m 11s 

RMSprop 94/238 39% 19m 51s 

Rprop 125/238 53% 22m 35s 

SGD 136/238 57% 20m 54s 

In the beginning of this study, the performance of the 
models was evaluated with accuracies. However, aside from 
accuracy, there are several other performance metrics that need 
to be used in order to accurately measuring the performance of 
a deep learning model. The performance metrics of the models 
are calculated by using the formulas in Eq. (1) [19], [24]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁 
    

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−𝑅𝑒𝑐𝑎𝑙𝑙
)  (1) 

Where: 

TP = True Positive 

TN = True Negative 

FP = False Positive 

FN = False Negative 

The other performance metrics are used on top three (3) 
optimizers among the models. The top three are from the 
VGG16_BN model which utilized the RAdam, Adamax and 
Adagrad optimizers. 

Another experiment was conducted to identify the optimum 
learning rate and weight decay to find the best model among 

top three. The results were as tabulated in Table Ⅴ and Table 
Ⅵ. 

TABLE V.  THE ACCURACY OF TOP THREE OPTIMIZER WITH DIFFERENT 

LEARNING RATE (WEIGHT DECAY :1𝑒−4) 

Learning Rate RAdam (%) Adamax (%) Adagrad (%) 

0.00001 94 92 85 

0.0001 96 97 97 

0.001 98 97 98 

0.01 94 52 48 

0.1 40 39 41 

1 38 39 48 

10 38 45 40 

TABLE VI.  THE ACCURACY OF TOP THREE OPTIMIZER WITH DIFFERENT 

WEIGHT DECAY (LEARNING RATE: 0.001) 

Weight Decay Radam (%) Adamax (%) Adagrad (%) 

𝟏𝒆−𝟗 97 97 97 

𝟏𝒆−𝟖 96 97 98 

𝟏𝒆−𝟕 97 96 97 

𝟏𝒆−𝟔 97 97 98 

𝟏𝒆−𝟓 97 97 97 

𝟏𝒆−𝟒 98 97 98 

𝟏𝒆−𝟑 96 98 97 

𝟏𝒆−𝟐 97 97 97 

𝟏𝒆−𝟏 96 95 96 

𝟏𝒆𝟎 96 96 96 

𝟏𝒆𝟏 61 39 60 

Fig. 6 and Fig. 7 are the graph of accuracy vs. learning rate 
and accuracy vs. weight decay shown to better analyse the 
effect of learning rate and weight decay to accuracy. 

For the average accuracy for the top three optimizers, the 
highest average accuracy is achieved by the Adagrad optimizer 
with 97.6% accuracy. However, based on Table Ⅶ, the 
highest accuracy achieved by the Adamax and RAdam 
optimizer is 98% while the highest accuracy for the Adagrad 
optimizer is 99%. 

 

Fig. 6. The graph of Accuracy (%) vs. Learning Rate. 
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Fig. 7. The graph of Accuracy (%) vs. Weight Decay. 

TABLE VII.  AVERAGE ACCURACY FOR TOP THREE OPTIMIZERS 

 RAdam Adamax Adagrad 

Highest 

Accuracy 

achieved (%) 

98 98 99 

Average 

Accuracy (%) 
97.3 97.3 97.6 

The performance in term of accuracy for the VGG16 BN 
used in this study was compared with previously reported study 
on weed classification. The following Table Ⅷ depict the 
comparisons. 

TABLE VIII.  STUDY COMPARISON 

Study Dataset Architecture 
Highest 

Accuracy 

Arun et al. [14] 

Crop/Weed 
Field Image 

Dataset 

(CWFID) 

Reduced U-Net 

(Segmentation 

accuracy) 

95.34% 

Hussain et al. 

[15] 

Potato crop and 

Lamb Quarters 

weed 

GoogleNet, 

VGG16, 

EfficientNet 

92-97% 
accuracy in 

every growth 

stage 
(EfficientNet) 

Jin et al. [16] 
Weed and 

Vegetable 
CenterNet 

(Precision) 

95.6% 

Ofori & El 

Gayar [17] 

Weed and Plant 
Seedlings 

EfficientNet 95.44% 

This study 
Weed (Broad, 

mixed narrow) 

CNN, VGG16, 

VGG16 BN 

97.6% (VGG16 

BN) 

However, aside from accuracy, other performances metrics 
such as precision, recall and f1-score are also important. Fig. 8, 
9 and 10 show the other performance metrics and the confusion 
matrix for the highest accuracy achieved for the top three 
optimizers. Based on the figure, the top three optimizers 
achieved precision, recall and f1-score more than 90% (0.93 to 
1) which shows good performance. The confusion matrix of 
Fig. 8, 9 and 10 shows that the mixed weed labelled 1 (broad - 
0, mixed - 1, narrow - 2), have the highest number of 
misclassifications compared to broad and narrow. 

 
(A) 

 
(B) 

Fig. 8. (A) Classification report and (B) Confusion matrix for Adamax 

Optimizer. 

 
(A) 

 
(B) 

Fig. 9. (A) Classification report and (B) Confusion matrix for RAdam 

Optimizer. 
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(A) 

 
(B) 

Fig. 10. (A) Classification report and  (B) Confusion matrix for Adagrad 

Optimizer. 

These results show that the VGG16 BN model using the 
Adagrad optimizer and learning rate of 0.001 with weight 
decay of 1𝑒−4  is an effective model to distinguish between 
broadleaves, mixed and narrowleaves weed. 

VI. DISCUSSION 

In this study, the weed classification involves assigning 
weeds to broadleaves, mixed and narrowleaves categories. 
2377 images consisting of 905 broadleaves, 538 mixed, and 
934 narrow leaves were used to test the performance of the 
proposed image classification model. 

During preprocessing, in order to vary the dataset images to 
generalize the model classification, some study will change the 
hue/color of the image. However, for this particular study, it 
was crucial to maintain the original hue and color of the images 
to ensure that the model accurately detects living weeds, which 
are green rather than misclassifying twigs or dead weeds as 
live weeds requires spraying. Changing the hue or color could 
undermine the efficiency of the model and its ability to 
perform selective herbicide spraying. 

Poorer performance was observed for the CNN algorithm 
used due to the simplicity in the architecture however CNN has 
the least training time compared with the VGG16 models. This 
is because the CNN doesn’t need to load pre-trained weights 
like the transfer learning VGG models thus allowing quicker 
training time. The VGG16 and VGG16_BN achieve higher 
accuracies because they are transfer learning-based algorithms 
where the algorithm uses pre trained weights trained on 
thousands of images from ImageNet. 

For the three models used, RMSprop consistently shows 
low accuracies compared to the other optimizers. This may be 

because for RMSprop, the learning rate must be defined 
manually, and the suggested learning rate does not work for 
every application. Since during the experiment, the study used 
the predefined learning rate, and this may not be suitable for 
the study’s application. 

Based on the experiment, the optimal learning rate for the 
three optimizers are at 0.001. The accuracy will decrease the 
further away the value of the learning rate from the optimal 
value, backward and forward as shown in Fig. 6.  

For the weight decay, the optimal value for RAdam and 
Adagrad optimizer is a 1𝑒−4 t, while Adamax is at 1𝑒−3 . 
However, the accuracies remain almost the same from 1𝑒−9 to 
1 and reduce significantly after that as shown in Figure 7. This 
may be because no matter how much the training epoch is, if 
the weight decay value is set too big, the model will never 
quite fit well enough; on the other hand, if the weight decay 
value is too little, the model can still train well; but the training 
needs to stop a little early. 

The model also produces a number of misclassifications 
due to several reasons. First, it is possible that some of the 
photos of broadleaves have stems and green tree branches or 
very little number of narrowleaves overlapping, leading to 
misclassification to mixed leaves. The misclassification may 
also result from dead grasses which does not require herbicide 
but is still classified as narrowleaves. 

VII. CONCLUSION 

In this study, the comparison of the CNN, VGG-16 and 
VGG-16 BN for weed classification task has been performed. 
A dataset of images obtained from a local palm oil plantation 
was used to train, validate and test the algorithms. Based on the 
result, it can be concluded that the VGG (transfer learning) 
algorithm shows better accuracy compared to the simple CNN 
algorithm. Between the two VGG model, VGG 16 and VGG16 
BN, the VGG 16 BN with Adagrad optimizer and with 
learning rate of 0.001 and weight decay of 1𝑒−4 shows better 
accuracy. The best model is intended to be used with herbicide 
spraying system on the sprayer boom tractor. The results 
obtained indicate that the proposed model is highly reliable and 
can perform weeds classification with an average accuracy of 
97.6% and highest accuracy of 99%. The model can assist in 
the implementation of an automated weed management system 
for precision agriculture. For future work, the algorithm can be 
further improved with attention mechanism to improve 
performance and robustness of the technique. 
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