
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

449 | P a g e

www.ijacsa.thesai.org

A Hybrid Framework to Implement DevOps Practices

on Blockchain Applications (DevChainOps)

Ramadan Nasr, Mohamed I. Marie, Ahmed El Sayed

Department of Information Systems-Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt

Abstract—As the adoption and utilization of blockchain

technology continue to expand in enterprise software

development, integrating the established DevOps approach

emerges as a rational decision. This integration has the potential

to accelerate software development and delivery, enhance

software quality, and improve overall productivity. However,

there is currently a lack of guidance on a structured DevOps

approach, specifically within the realm of blockchain-based

software development. This paper emphasizes the importance of

implementing an effective DevOps process and investigates its

utilization in the development of blockchain smart contracts.

Specifically, this study introduces a framework that aims to

seamlessly integrate DevOps into the process of smart contract

development. Specifically, this research paper presents a

framework that has been developed to seamlessly incorporate

DevOps principles into the process of smart contract development.

The primary focus of this framework is to streamline the

continuous delivery and deployment of blockchain smart

contracts packaged in containers. It comprises two fundamental

components: delivery and deployment, which communicate

through Git-distributed version control. Smart contract

applications and node-specific deployment configurations are

stored in dedicated GitHub repositories. The delivery component

guarantees the synchronization of the deployment package with

the most recent version of the smart contract application and the

node deployment configuration files. The deployment component,

meanwhile, is responsible for executing blockchain-decentralized

applications in containers across all blockchain nodes. It leverages

GitHub, Jenkins, and Docker for this purpose. To validate its

effectiveness, multiple tests have been conducted on Quorum's

simple storage, Sawtooth's XO Integerkey, and Corda's token

decentralized applications (dapps) dappsto evaluate the

effectiveness of the proposed method.

Keywords—Blockchain; decentralized applications (dapps);

DevOps; smart contracts; continuous integration (CI); continuous

deployment (CD); model-driven development (MDD)

I. INTRODUCTION

The Agile Manifesto's key concept emphasizes the
significance of early and consistent software delivery to meet
customer requirements. In the domain of software development
projects, organizations strive to adopt diverse development
practices, with a predominant inclination towards agile
methodologies [1].

An integral practice within this framework is DevOps, a
software development methodology that particularly aims to
enhance collaboration among disparate teams engaged in a
project. Noteworthy is its substantial emphasis on fostering
efficient cooperation between the development and operations

teams, hence the derivation of its name [2, 3]. As a result, all
teams involved experience increased productivity through
efficient time utilization, leading to shorter software
development cycles and enhanced product quality [4].

The rise in popularity of smart contracts in recent years can
be attributed to the growing fascination with cryptocurrencies.
Initially conceived as a way to facilitate transactions within
digital currencies like Bitcoin and Ethereum [5], smart contracts
have since evolved to encompass a wide range of applications
beyond their original purpose. Researchers have identified
numerous potential uses for smart contracts, including in areas
such as supply chain management, healthcare, finance, and legal
agreements. This broadening scope highlights the versatility and
transformative potential of smart contracts in various industries.

Smart contracts serve as protocols that enable and enforce
agreements between multiple parties on a blockchain. These
contracts are self-executing, with the terms of the agreement
directly written into code, which runs on a decentralized
blockchain network. The decentralized nature of blockchain
technology necessitates specific considerations during the
development and deployment of smart contracts [6, 7]. Unlike
traditional software, where updates and patches can be easily
applied, smart contracts often cannot be modified once they are
deployed on the blockchain. This immutability, while enhancing
security and trust, also means that ensuring high software quality
and reliability during development is crucial.

Smart contracts typically do not undergo the same software
life cycle as regular applications, where new code versions can
introduce enhancements or address issues. As a result, ensuring
high software quality and reliability is crucial during
development.

DevOps plays a key role in offering support through test
automation and the creation of stable operating environments,
among other aspects. As demonstrated in [8], frequent changes
to the DevOps process may lead to unanticipated delays, posing
a significant challenge for smart contracts due to the rapid
evolution of programming languages [9] and the subsequent
demand for new and more comprehensive tools and
development strategies.

However, Wohrer and Zdun [10] have effectively shown the
viability of implementing specific facets of DevOps on an
Ethereum blockchain. Fully implementing all DevOps steps is
essential for guaranteeing the success of a project. In addition,
several alternative processes built on agile development
principles have been proposed in [11-13].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

450 | P a g e

www.ijacsa.thesai.org

These studies affirmed the feasibility of establishing a
comprehensive framework for working with blockchains and
smart contracts.

Finally, the transition to DevOps comes with obstacles,
especially in the context of smart contracts, for the reasons
outlined earlier. This paper presents a novel framework for
directing the adoption of DevOps practices in the development
and deployment of blockchain smart contracts. The major
contribution is DevChainOps, which simplifies the development
and deployment process by integrating tools like Visual
Paradigm, GitHub, and Jenkins. It covers the entire CI/CD
pipeline, from creating UML deployment diagrams to deploying
smart contract dapps within the blockchain network.

The subsequent sections of this document follow the
following structure: Section II provides a comprehensive
overview of both DevOps and blockchain, providing pertinent
contextual information. Section III explores the existing body of
research on the subject.While, Section IV provides a detailed
explanation of the design of the proposed framework
(DevChainOps) that applies the DevOps practices to smart
contract applications.

Three use cases are employed in this section to illustrate the
essential steps for implementing CI/CD practices on Quorum,
Sawtooth, and Corda blockchains.. The experimental results,
including tests conducted on the distributed applications are
discussed in Section V Finally, in Section VI, conclusions are
drawn and future work is outlined.

II. BACKGROUND

This section provides an overview of DevOps components
and Blockchain smart contracts.

A. Components of DevOps

Two key components of DevOps are Continuous Integration
(CI) and Continuous Delivery/Deployment (CD), which support
the DevOps principle of merging the two main disciplines
through automation. Fig. 1 shows the sequence of steps in
CI/CD practices.

Fig. 1. Sequence of steps in CI/CD practices.

The CI phase involves continuously integrating software
throughout its development cycle. This includes automating
software builds and testing processes, often using a version
control system like GitHub [14]. Developers routinely merge
their code with primary branches [15, 16], after which the newly
introduced or modified code is integrated into a build and
subjected to verification through automated tests.

CI enhances team productivity with frequent releases and
improves software quality through iterative testing. Overall, CI
generates various outputs, such as compiled executables or
libraries, suitable for use in other projects.

The CD involving the deployment of the artifact across
different product environments. While CD activities do not
handle security, confidentiality, or infrastructure concerns [17],
they enable system component updates and facilitate more
frequent feedback from diverse teams to developers due to
process automation [18].

CD can be classified into two forms: continuous deployment
and continuous delivery. Continuous delivery is a non-
automated process that results in an artifact ready for
deployment, while continuous deployment pushes the final
artifact to a system without decision-making.

B. Blockchains Smart Contract

Blockchains serve as secure platforms for transactions,
integrating computational and economic principles. Smart
contracts, immutable code on the blockchain, automate business
processes and ensure execution according to predefined terms
[19].

They are fundamental to blockchain services, with Ethereum
being a prominent platform, while other blockchains also
support them [20, 21]. These contracts enable decentralized
transactions and rely on consensus algorithms to maintain data
integrity [22, 23]. Table I presents a comprehensive comparison
between the most commonly used blockchain platforms [24].

The proposed framework presented in this paper
encompasses Quorum, Hyperledger Sawtooth, and R3 Corda
blockchain platforms to validate its effectiveness. In the
following, brief descriptions and some details related to those
platforms are presented.

 Quorum [25], developed by JP Morgan, is a
permissioned ledger platform that uses a modified
version of the Ethereum Virtual Machine (EVM) and
Solidity language for private transactions. It focuses on
enterprise and business needs, ensuring increased
security by limiting transactions to authorized users
within an organization and protecting confidential
information.

 Fig. 2 depicts the architecture diagram of a Quorum
node. The source code is derived from geth (the
Ethereum Go client) and has been adapted to function
within a permissioned environment, as previously
discussed. This involves overseeing communication with
clients and other nodes via the general-purpose
Constellation peer-to-peer system for secure messaging
[27].

Fig. 2. Quorum architecture [26].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

451 | P a g e

www.ijacsa.thesai.org

TABLE I. ILLUSTRATES A COMPARISON BETWEEN THE MOST COMMONLY USED BLOCKCHAIN PLATFORMS

Platform Type
Smart Contract

Language

Consensus

Mechanism
Main Application Contexts Related Projects

Ethereum Public Solidity, Vyper Proof of Work Financial, Asset trading
DAI
Gitcoin

Cryptokitties

Quorum Private Solidity, Vyper Proof of Authority
Financial, Supply Chain and

Logistics

Liink
Komgo

Project Ubin

Hyperledger

Fabric

Public,

Private

Java, Go,

JavaScript
Proof of Work

Supply chain, Trade finance,

Stock trading

IBM Food Trust

Everledger diamond blockchain

Hyperledger
Sawtooth

Private
Rust, Go
Python, Java

PoET, PBFT, RAFT
Supply chain, Provenance
Tracking

Sawtooth Private UTXO
Sawtooth Marketplace

NEM Private Java
Proof of
Importance

Augmented reality, Advertising
and marketing, Banking

DigitCoin

Bankera

Pantos

Stellar Public

Solidity,

JavaScript, Java,

Go

Stellar Consensus
Protocol

Remittance

StellarX

Tempo

TillBilly

Corda Private
DAML,
Kotlin, Java

Validity and
Uniqueness

Energy trading, Insurance,
Retail markets

Energy Block Exchange

TradeCloud

MonetaGo

Within the Quorum node, the Constellation module consists
of two sub-modules: Transaction Manager and Enclave. The
Transaction Manager handles private transactions by facilitating
access to them, transmitting encrypted data payloads to other
Transaction Managers on different Quorum nodes, and utilizing
the Enclave for cryptographic operations. Meanwhile, the
Enclave functions independently by securely housing all private
keys associated with transactions and conducting all encryption
and decryption procedures internally.

 Hyperledger Sawtooth is an enterprise-grade blockchain
platform specifically developed for distributed ledger
applications and networks [28]. The design philosophy
of this platform is oriented towards preserving ledger
distribution and guaranteeing the safety of smart
contracts. Sawtooth streamlines the development of
blockchain applications by delineating the core system
from the specific application domain, allowing
developers to define specific rules using their preferred
programming languages. Its high modularity allows
enterprises and consortiums to make policy decisions
based on their expertise. Fig. 3 shows a high-level view
of the Sawtooth architecture.

Sawtooth is specifically designed for managing business
supply chains rather than for cryptocurrency applications. The
transaction process starts with the client organizing all
transactions into a block, followed by signing the batch and
sending it to a validator. The validator then employs its
transaction processor to verify the integrity of the batch before
committing it.

Sawtooth parallelly executes transactions through a REST
API to enhance performance. Its modular nature includes
various features such as consensus algorithms, rule sets,
programming languages, and smart contracts, enabling efficient
adaptation based on specific business requirements.
Programmers have the flexibility to utilize Python, JavaScript,
Go, C++, Java, or Rust for building and interacting with the

Sawtooth blockchain. Sawtooth currently supports four different
consensus algorithms: Dev_mode, PoET, Sawtooth PBFT, and
RAFT [28].

 Corda is a blockchain project available for public use,
created specifically for business purposes, allowing
participants to engage in direct transactions using smart
contracts. [29]. It optimizes operations by reducing
transaction costs and simplifying record-keeping. Corda
is scalable and adaptable to diverse business needs, with
applications like CorDapps designed to revolutionize
industries like insurance, healthcare, finance, and energy.
Fig. 4 illustrates the various node types within the R3
Corda Architecture network.

Fig. 3. Sawtooth architecture [28].

The consensus mechanism employed by R3 Corda
exclusively involves nodes actively participating in a
transaction, significantly impacting scalability. DLT nodes are
the foundation for distributed applications and services, forming
a fully connected graph. Transactions are verified by a notary
node, and the ledger includes network map and Oracle nodes.

Communication between DLT nodes and the notary node
uses AMQP/TLS, while secure communication between DLT
nodes and Oracle nodes and the network map uses HTTPS.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

452 | P a g e

www.ijacsa.thesai.org

Fig. 4. Corda architecture.

III. RELATED WORK

This paper gives prominence to the pivotal DevOps
practices, specifically CI/CD, in addition to investigating
blockchain technology and UML. Accordingly, the literature
review encompasses the work related to these three areas. The
first section delves into papers discussing recent advancements
in continuous practice. The subsequent section examines articles
that exemplify the most recent advancements in blockchain
technology. Lastly, another section encompasses studies that
showcase the latest applications of UML.

Considerable focus has been directed towards identifying
such applications within blockchain solutions. Although various
approaches and methodologies for CI/CD have been proposed
in the literature [30], translating these theories into practice can
pose significant challenges.

Laukkanen et al. [31], the objective of this study was to
address the complexities encountered during the adoption of
Continuous Delivery (CD) in software development, the authors
conducted a comprehensive review by searching five major
bibliographic databases, identifying 293 articles related to CD.
Of these, 30 articles were selected for detailed qualitative
analysis based on their empirical evidence and focus on practical
implementation rather than just tooling. The review identified a
total of 40 problems, 28 causal relationships, and 29 solutions
associated with CD adoption. Testing and integration issues
were the most frequently reported, with system design and
testing problems having significant causal relationships with
other issues, finally, their study provides valuable insights for
both practitioners and researchers by synthesizing the existing
knowledge on CD adoption challenges and solutions, offering a
foundation for future research and practical guidance for
organizations attempting to implement CD.

Abdalkareem et al. [32] have streamlined the execution time
of continuous integration processes by identifying redundant
commits and employing a prototype tool compatible with Git
repositories.

Gallaba et al. [33] have introduced a tool designed to
scrutinize feature misuse within Travis CI. Similarly, Saidani et
al. [34] utilize the Travis CI platform to examine refactoring
techniques within continuous integration. Numerous research
has highlighted the importance of the widely used Jenkins
automation server, which is popular among both academic and
professional communities [35, 36].

Yu et al. [37] examined the application of continuous
integration platforms in the evaluation of non-functional
specifications. Recently, Leite et al. [38] conducted a
comprehensive investigation into the practices of continuous
delivery, with a specific focus on the organizational structure of
DevOps teams and their patterns of communication. Their
research highlights the significance and timeliness of their study
in the field.

Blockchain is acknowledged as one of the most impactful
technologies. Chowdhury et al. [39] have conducted a
comparative study of permissioned and permission less
blockchain frameworks. The study discussed the design
principles, consensus mechanisms, and security considerations
in frameworks like Corda, Hyperledger Fabric, and Quorum.

Notably, blockchain finds widespread utility within the
energy sector, especially in the regulation of electrical flow
within decentralized energy systems for consumers. Jamil et al.
[40] propose a predictive energy trading system to optimize
energy generation scheduling from renewable sources.
Additionally, Saxena et al. [41] proposed a blockchain-based
system for facilitating residential energy trading to align with
consumer’s preferences for reducing energy demand using the
permissioned Hyperledger Fabric.

In the realm of blockchain frameworks, researchers and
practitioners utilize various frameworks, such as those
scrutinized by Monrat et al. [42] and Al-Jaroodi et al. [43]. Both
scrutinize the advantages and challenges associated with
employing this technology in business applications, but their
focus is limited. Healthcare data management extensively
leverages blockchain [44], as demonstrated in Shahnaz et al.'s
[45] presentation of an electronic health record system utilizing
blockchain.

Furthermore, the use of UML is still the focus of this study.
Practitioners employ the Unified Modeling Language for the
purpose of software architecture modeling, representing
architecture from diverse perspectives. For instance, Chavez et
al. [46] have focused on achieving cohesion between Java
source code and UML class diagrams. UML models can also
incorporate Object Constraint Language (OCL) to provide clear
semantics.

Lu et al. [47] illustrate the utilization of OCL restrictions for
medical regulations in cancer registries, utilizing UML class
diagrams as well. Recent studies demonstrate an increasing
range of applications for UML in conjunction with model-driven
development (MDD). Arora et al. [48] employed a bio-inspired
approach to analyze the concurrent portion of a UML activity
diagram, leading to the identification of several viable test
scenarios. Meanwhile, study [49] utilized UML class diagrams
to produce variants of product line architecture. Additionally,
Arcaini et al. [50] introduced a method that combines tests
created for subsystems to generate tests for the entire system
model.

Moradi et al. [51] demonstrated a technique for converting
the model of services into executable web services. Other
studies have investigated the effectiveness of this transformation
process. For example, Panach et al. [52] observe that software
quality resulting from MDD surpasses that of manually written

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

453 | P a g e

www.ijacsa.thesai.org

code, particularly for complex issues, while Basciani et al. [53]
illustrate the reusability potential of combining existing
transformations to formulate novel design approaches. The
emerging domain for employing MDD encompasses blockchain
technology. Within blockchain, a pivotal component is the smart
contract.

Zou et al. [30] conducted an investigation to identify the
genuine hurdles faced by developers during smart contract
development. The results revealed security vulnerabilities
within the source code of smart contracts. Furthermore, the
existing frameworks were found to be rudimentary, with several
constraints in the programming language. Górski et al. [54]
present a methodology designed to produce node deployment
packages specifically for the Corda blockchain platform.

Meanwhile, Xu et al. [55] delineate two distinct
transformations integrated into blockchain. The first
transformation utilizes collaborative business processes to
generate smart contracts, while the second implements
blockchain registries for commodities, ownership titles, and
digital assets using the Ethereum blockchain platform.
Moreover, Gao et al. [56] created a tool prototype to
automatically detect bugs and validate smart contracts.
Laukkanen et al. [57] emphasized the scarcity of documented
solutions pertaining to system design and build design aspects
within the Continuous Delivery field, as highlighted in their
survey.

Zou et al. [30] assert that existing tools for blockchain
application development exhibit notable deficiencies in
providing comprehensive support. The authors provide a
comprehensive analysis of the current state of smart contract
development, focusing on both the challenges faced and the
potential opportunities for advancement. The authors identify
key issues such as security vulnerabilities, lack of robust
development tools, and the need for formal verification
methods. The study highlights the limitations of existing
programming languages and virtual machines, emphasizing the
infancy of Solidity and the Ethereum Virtual Machine (EVM).
Additionally, the paper discusses the importance of community
support and the necessity for best practices in coding, testing,
and debugging smart contracts. It concludes by suggesting
future research directions, including improvements in security
tools, development frameworks, and language features to
enhance the reliability and efficiency of smart contract
development.

To sum up, previous studies may have lacked a
comprehensive CI/CD pipeline designed for blockchain
systems. This could have negatively impacted the efficiency and
reliability of deploying blockchain applications. Additionally,
there may have been challenges in automating deployment
packages for distributed ledger technologies, resulting in manual
processes prone to errors and delays. The absence of integration
with automation tools like Jenkins could have also hindered the
streamlining of deployment processes. In response, this paper
proposes a systematic approach for implementing DevOps,
customized specifically for smart contracts.

The proposed framework in this paper offers UML modeling
support specifically for the deployment aspect of smart contract

dapps, filling a gap in current blockchain research, which mainly
emphasizes smart contracts as integral components of such
dapps. Furthermore, appropriately configured blockchain nodes
function as the deployment environment for these smart contract
dapps.

In summary, the framework incorporates the Visual
Paradigm modeling tool and leverages GitHub and Jenkins for
automated build releases, as well as Docker containers for smart
contract testing and deployment, thereby integrating the entire
CI/CD pipeline from the UML deployment diagram to the
deployment of smart contracts within the blockchain distributed
ledger network.

IV. THE PROPOSED FRAMEWORK

The proposed framework presents a structured approach to
integrating DevOps practices tailored for blockchain
applications. This integration aims to improve the development
and deployment processes for smart contracts. The framework
emphasizes streamlining the continuous delivery and
deployment of blockchain smart contracts. By utilizing tools like
GitHub, Jenkins, and Docker, it ensures effective
synchronization and execution of decentralized applications
across blockchain nodes.

This section presents the proposed framework, known as
DevChainOps. DevChainOps utilizes model-to-code
transformation to generate scripts that streamline the
deployment of blockchain smart contracts dapps. DevChainOps
is designed to automate the delivery and deployment process of
smart contract dapps.

Fig. 5 illustrates the architecture of the proposed framework.
The framework comprises three primary layers: UML
transformation, version control, and the CI/CD automation
server.

In the UML Transformation layer, the UML deployment
diagrams of the blockchain network have been built along with
the UML profile for distributed ledger deployment [58]. These
form the basis of the transformation process. With the
modularity architectural principle in consideration, the
transformation design has been divided into two primary
components: a node config generator application and a
transformation plug-in that integrates the transformation with
the Visual Paradigm modeling tool.

The UML deployment diagrams may be stored in various
formats, depending on the modeling tool. So, we have used the
Application Programming Interface (API) of the Visual
Paradigm modeling tool to get the complete set of nodes with
specified tagged values.

Then the Java Node config generator application reads the
proper configuration file templates and generates deployment
configuration files tailored for the chosen blockchain platform.

GitHub repositories serve as the version control layer for
storing the source code of blockchain smart contracts, as well as
nodes deployment configuration files created using the
transformation plugin, JenkinsFile, and docker-compose files to
run and test the smart contracts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

454 | P a g e

www.ijacsa.thesai.org

Fig. 5. The proposed framework architecture.

The Jenkins automation server is utilized in the CI/CD
automation server layer to streamline the continuous integration
and continuous delivery (CI/CD) process through the use of
pipelines. This pipeline streamlines the process of developing,
testing, and deploying smart contract.

The following subsections outline the three layers of the
DevChainOps framework, comprising UML transformation,
Version control, and the CI/CD automation server.

A. UML Transformation Layer

In the UML Transformation layer, the UML deployment
diagrams are divided into component and deployment types,
illustrating the physical components of software used by a
system and the deployment environment of the designed system.

These diagrams provide a comprehensive representation of
the blockchain dapp and its deployment environment, allowing
for a better understanding of the elements involved in deploying
a blockchain smart contract dapp.

The deployment diagrams, incorporating the UML Profile
for blockchain dapp deployment, serve as the source of
transformation and consist of services, nodes, and
communication links. A single UML deployment diagram or
multiple diagrams can be employed to represent the UML
deployment model of the blockchain dapp.

The UML deployment diagrams for Quorum simple storage,
Sawtooth xo Integerkey, and Corda tokens dapps are shown in
Fig. 6, 7, and 8, respectively. While Fig. 9 shows the flowchart
of the Node config generator component.

Fig. 6. Deployment diagram of Quorum Simple Storage Dapp.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

455 | P a g e

www.ijacsa.thesai.org

Fig. 7. Deployment diagram of Sawtooth xo intkey Dapp.

Fig. 8. Deployment diagram of Corda Tokens Dapp.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

456 | P a g e

www.ijacsa.thesai.org

Fig. 9. The flowchart of Node config generator.

The Node config generator is a Java application that consists
of classes and interfaces that correspond to Visual Paradigm API
classes and UML nodes in which configuration file templates
are utilized, filled with data from the UML Deployment
Diagram, to generate specific configuration files needed for
deploying the blockchain dapp. Fig. 10 presents interfaces and
classes in the inheritance tree of the Node config generator.

By leveraging the Visual Paradigm API, we have established
a flexible connection between the node configuration generator
and the UML deployment diagram. The mapping between the
Visual Paradigm API and the classes of the Node configuration
generator is illustrated in Table II.

The API enables the manipulation of the UML deployment
model by employing an object-oriented method, representing
UML elements within the source code as interfaces, classes, and
objects. Specifically, in Java source code, the creation of
appropriate objects is achieved using the StereotypesEnum data
type.

The Node configuration generator employs the
transformation plugin, which functions in two different modes:
LOCAL and GIT.

The LOCAL mode is retained for backward compatibility.
In the LOCAL mode, users are prompted to designate a local
path for storing generated files.

Enabling GIT mode causes the created deployment
configuration files to be automatically committed and pushed to
the selected repository. The plugin's work mode selection is
governed via a specific property file named plugin-
config.properties.

Fig. 10. The Node config generator class diagram.

TABLE II. THE MAPPING BETWEEN THE TOOL API AND THE

CORRESPONDING JAVA CLASS

API element Node config generator class

INode with < QuorumNode > DLTQuorumNode

INode with < TxManagerNode > TxManagerQuorumNode

INode with < ValidatorNode > DLTValidatorNode

INode with < DLTNode > DLTCordaNode

INode with < NetworkMapNode > NetworkMapCordaNode

INode with < NotaryNode > NotaryCordaNode

INode with < OracleNode > OracleCordaNode

The transformation plugin examines the plugin-config file
and specifies the location for saving the generated files. Utilizing
the constructor of the PluginConfiguration class, the plugin

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

457 | P a g e

www.ijacsa.thesai.org

defines the storage location (e.g., ramadannasr/xo-intkey-
sawtooth-pbft/main/nodeConfigFiles).

The NodeConfigGenerator class of the transformation
plugin calls upon the generateConfigFiles() method within
Diagram2CodeTransformer's selected platform NodeManager
class and provides it with generation destination information.
The transformation process generates files and stores them in the
designated location using the store() function.

In GIT mode, once the transformation for the designated
environment is executed, The generated files are automatically
pushed to the designated repository.

Samples of these newly generated deployment setup files for
the three blockchain platforms are accessible in the
ramadannasr/DeploymentConfigurationFiles repository in the
main branch.

The GitHub repositories [59] contain source code for the
Node config generator and transformation plugin. This
transformation ensures the alignment of the UML deployment
diagram with the generated configuration files for smart contract
deployment on nodes.

B. Version Control Layer

The version control layer includes Git repositories
containing the smart contract application source code,
configuration files for nodes created by the transformation plug-
in, a JenkinsFile, and a docker-compose file for running and
testing the smart contract application.

The JenkinsFile is used to define a Jenkins pipeline,
providing a more concise and structured way to implement a
basic three-stage continuous delivery pipeline (build, test,
deploy).

The JenkinsFile is stored alongside the blockchain smart
contract application code being built, so changes to the pipeline
can be tracked along with changes to the code.

Fig. 11 shows the Jenkins file for Sawtooth XO integerkey
Dapp. Three GitHub repositories were established for each
smart contract application: one for Sawtooth xo integerkey,
another for Quorum simple storage, and the third for Corda
tokens [60, 61, 62].

Fig. 11. The fragment of the JenkinsFile of Sawtooth xo intkey Dapp.

C. CI/CD Automation Server Layer

In the CI/CD Automation Server layer, The Jenkins
automation server has been employed to support the continuous
integration and delivery procedure by utilizing distributed
version control systems like Github. A pipeline is a fundamental
concept in Jenkins. It is an automated process that generates a
release-ready package from software stored in a Git version
control system It includes stages, with each stage block
representing a distinct subset of tasks within the build process.
Significantly, a proper node deployment package includes both
smart contract business application and deployment
configuration scripts. Therefore, one pipeline has been built to
address this requirement, as shown in Fig. 10. The Jenkins
pipeline automates the build, test, and deployment of the smart
contract application. It triggers whenever new business logic
source code is committed to the repository or a new deployment
configuration is produced and pushed by the Node config
generator.

Fig. 12 shows the UML activity diagram of the
DevChainOps framework Jenkins pipeline.

Fig. 12. The DevChainOps framework Jenkins pipeline.

Docker is widely used by organizations for standardizing
build and test environments and deploying applications. The
DevChainOps framework uses Docker containers for testing and
deployment.

The Docker-compose file, located on GitHub, is crucial for
the Jenkins server's pipeline execution process. It simplifies
configurations of application service dependencies, allowing for
specifying containers, networks, and persistent data volumes.
The automated test suite is a key aspect of continuous
deployment or integration, requiring an environment for testing.

V. EXPERIMENTAL RESULTS

An integral element of this research involves verifying the
accurate operation of the transformation process. As per the
guidelines outlined in the IEEE 610.12-1990 Standard,
validation refers to the assessment of a system or component
either throughout or at the conclusion of its development phase,
aimed at ascertaining its adherence to specified requirements
and alignment with the intended application use.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

458 | P a g e

www.ijacsa.thesai.org

Numerous test scenarios have been devised to verify the
proper functionality of the smart contract application. The
validation process consists of two types of tests: unit testing and
integration testing. Unit testing focuses on discrete methods
inside the smart contract application, whereas integration testing
assesses overall operation across blockchain nodes, broadening
its reach to check end-to-end scenarios.

These tests involve the configuration and operation of two or
more blockchain nodes. Subsequently, transactions are executed
and committed as part of the validation process. The test ensures
that the ledgers of blockchain nodes accurately store the
designated values. We have conducted both unit and integration
tests for our three blockchain applications, namely Sawtooth xo
integerkey, Quorum simple storage, and Corda tokens. As a
result of the testing, the DevChainOps framework has proven to
function effectively. Both the UML transformation and the
Jenkins pipelines are working as intended.

The Jenkins server displays a visual representation of every
execution of the Groovy script in our configured pipelines. This
visualization helps monitor each stage of the process and gather

metrics, such as the average stage time. Both pipelines end with
an additional stage called Declarative: Post Actions, which is
closely linked with the chosen automation server on a technical
level. After completing each pipeline, it is essential to perform a
cleanup process within the workspace, including the removal of
all temporary files and directories generated during execution
Fig. 13 depicts metrics for the Sawtooth xo integerkey pipeline
build execution on the Jenkins automation server. The pipeline's
execution time is 41 seconds.

Fig. 14 depicts metrics for the Quorum simple storage
pipeline build execution.

And Fig. 15 presents metrics for the Corda token pipeline.
The pipeline's execution time is 42 seconds.

Comparison with the previous study:

In research [54] the authors introduced the BinCD
framework, which aims to generate node deployment packages
customized for the Corda blockchain platform.

Fig. 13. Metrics of Sawtooth xo-intkey pipeline execution.

Fig. 14. Metrics of Quorum simple storage dapp pipeline execution

Fig. 15. Metrics of Corda tokens dapp pipeline execution.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

459 | P a g e

www.ijacsa.thesai.org

The BinCD framework is a continuous delivery method for
producing packages for smart contract deployment on the Corda
blockchain nodes. MDD is employed in generating the Platform
Specific configuations tailored for the R3 Corda in version 4.6.

In this paper, we presented DevChainOps, an extensible
framework designed to manage the entire CI/CD pipeline,
focusing specifically on smart contracts. Notably, our
framework includes a UML transformation component designed
for adaptability, enabling smooth updates across various
versions of blockchain platforms. Table III illustrates a
comparison between the BinCD and DevChainOps frameworks.

TABLE III. PROVIDES A COMPARATIVE ANALYSIS BETWEEN THE BINCD

AND THE DEVCHAINOPS FRAMEWORKS

Criteria BinCD DevChainOps

Blockchain

platforms examined
R3 Corde 4.6

Hyperledger Sawtooth

Quorum
R3 Corda 4.8

DevOps phases

implemented

Continuous

Integration

DevOps phases

implemented

Time complexity O(n) O(n)

DevChainOps encompasses three blockchain platforms:
Quorum, Sawtooth, and R3 Corda 4.8.

We created a node config generator in Java that integrates
with the Visual Paradigm Enterprise modeling framework using
a dedicated Java plug-in. This method ensures that the config
generator is independent of the modeling tool, enabling potential
replacements with tools supporting UML extension mechanisms
and providing APIs for accessing model content.

Our solution allows for managing models across various
deployment environments within the UML deployment model,
simplifying the generation of deployment configurations for
blockchain networks in different settings. Additionally, by
leveraging Java, our solution is compatible with specific
Continuous Delivery Automation servers, enabling smooth
integration of UML modeling support into CI/CD workflows.

The utilization of the simplicity architectural principle
strives to attain a linear order-of-growth. In the running time of
the node config generator. This hinges on two key factors: the
execution time of individual statements and the frequency of
their invocation. While the execution time is dictated by the
environment, the invocation frequency is determined by the
algorithm.

To minimize invocation frequency, the algorithm is
developed using a straightforward and direct set of statements.
One-dimensional dynamic collections, such as ArrayLists, are
used to limit the number of repeating control structures to a
single for loop. This is done by eliminating the usage of
multidimensional data structures, the algorithm avoids nested
repetition, thereby sidestepping quadratic, cubic, or exponential
order-of-growth in running time.

The node config generator continues to operate efficiently,
with a running time remaining under one second. Scaling up to
larger networks warrants further performance analysis, though
preliminary estimates suggest that generating configurations for
1000 deployment nodes could take around three minutes based

on testing with a four-node Hyperledger Sawtooth xo-intkey
blockchain network.

Memory usage is optimized through the utilization of local
reference variables in Java, facilitating efficient garbage
collection due to the restricted visibility of these objects.

The estimated size of the Java collection required for
generating the deployment configuration for each node has been
computed. This estimation factors in the memory usage of String
objects, comprising 40 bytes for overhead, reference, hash, and
padding, plus (2n + 24) bytes for a char array, where 'n'
represents the character count in the string.

Assuming each tagged value contains 10 characters, an
additional 8 bytes are used for the reference to the String object,
resulting in a total size of 92 bytes per tagged value. For a
Sawtooth node with 27 tagged values, the total size is calculated
as 2484 bytes per node, with an additional 24 bytes for the
collection object itself.

For a Quorum node with 87 tagged values, the size amounts
to 8028 bytes per node, while for a Corda node with 107 tagged
values, the size reaches 9868 bytes per node.

VI. CONCLUSION AND FUTURE WORK

DevOps, which has demonstrated success in traditional
software development, holds significant promise for improving
the process of developing blockchain smart contracts. This paper
proposes a DevChainOps framework that adapts these principles
to accommodate the unique features of smart contracts and
integrates additional precautions. DevChainOps incorporates
DevOps tools to facilitate the continuous integration and
delivery of blockchain smart contracts.

The proposed framework generates comprehensive
deployment packages for Sawtooth, Quorum, and R3 Corda
blockchain platforms. The management of smart contract
applications and deployment configuration files is conducted
through GitHub repositories, employing version control.
Integration with the Jenkins automation server has been
achieved by making use of deployment configuration files and
smart contract applications that are housed in GitHub
repositories. In future works, there are plans to extend support
to other blockchain platforms like HyperLedger Fabric.
Additionally, efforts will be directed towards automating
monitoring processes for smart contracts to minimize the
necessity for manual intervention.

REFERENCES

[1] The Agile Manifesto. Principles behind the Agile Manifesto, 2001,
[Online].Available : agilemanifesto.org/principles.html (accessed on 16
June 2024).

[2] Mikael Krief, Learning DevOps: A comprehensive guide to accelerating
DevOps culture adoption with Terraform, Azure DevOps, Kubernetes,
and Jenkins , Packt Publishing, 2022.

[3] De Kort, W. DevOps on the Microsoft Stack, 1st ed.; Apress Berkley:
Berkeley, CA, USA, Volume 1;2016.

[4] Christopher Cowell; Nicholas Lotz; Chris Timberlake, Automating
DevOps with GitLab CI/CD Pipelines: Build efficient CI/CD pipelines to
verify, secure, and deploy your code using real-life examples , Packt
Publishing, 2023.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

460 | P a g e

www.ijacsa.thesai.org

[5] J. Abou Jaoude and R. George Saade, "Blockchain Applications – Usage
in Different Domains," in IEEE Access, vol. 7, pp. 45360-45381, 2019,
doi: 10.1109/ACCESS.2019.2902501.

[6] Komalavalli, C., Saxena, D., & Laroiya, C. Overview of Blockchain
Technology Concepts. Handbook of Research on Blockchain
Technology, 349–371. 2020. doi:10.1016/b978-0-12-819816-2.00014-9

[7] V. Capocasale and G. Perboli, "Standardizing Smart Contracts," in IEEE
Access, vol. 10, pp. 91203-91212, 2022, doi:
10.1109/ACCESS.2022.3202550.

[8] Zampetti, F.; Geremia, S.; Bavota, G.; Di Penta, M. CI/CD Pipelines
Evolution and Restructuring: A Qualitative and Quantitative Study. In
Proceedings of the IEEE International Conference on Software
Maintenance and Evolution, Luxembourg, 27 September–1 October
2021.

[9] Chu, H., Zhang, P., Dong, H., Xiao, Y., Ji, S., & Li, W. A survey on smart
contract vulnerabilities: Data sources, detection and repair. Information &
Software Technology. 2023.
https://doi.org/10.1016/j.infsof.2023.107221.

[10] Wöhrer, M.; Zdun, U. DevOps for Ethereum Blockchain Smart Contracts.
In Proceedings of the 2021 IEEE International Conference on Blockchain
(Blockchain), Melbourne, Australia, 3–8 December 2021; pp. 244–251.

[11] Al-Mazrouai, G.; Sudevan, S. Managing Blockchain Projects with Agile
Methodology. In Proceedings of the 6th International Conference on Big
Data and Cloud Computing Challenges, Kansas City, MO, USA, 9–10
September 2019; Vijayakumar, V., Neelanarayanan, V., Rao, P., Light, J.,
Eds.; Springer: Singapore, 2019; pp. 179–187.

[12] Marchesi, L.; Marchesi, M.; Tonelli, R. ABCDE—Agile block chain
DApp engineering. Blockchain Res. Appl. 2020, 1, 100002.

[13] Lenarduzzi, V.; Lunesu, M.I.; Marchesi, M.; Tonelli, R. Blockchain
Applications for Agile Methodologies. In Proceedings of the 19th
International Conference on Agile Software Development, Companion,
Association for Computing Machinery, Porto, Portugal, 21–25 May 2018.

[14] Abildskov, J. Collaboration in Git. In: Practical Git. Apress, Berkeley,
CA. 2020. https://doi.org/10.1007/978-1-4842-6270-2

[15] Powell, R.; Stahnke, M. The 2020 State of Software Delivery, 2022,
[Online].Available:circleci.com/resources/2020-state-of-software-
delivery/

[16] A. S. Yaraghi, M. Bagherzadeh, N. Kahani and L. C. Briand, "Scalable
and Accurate Test Case Prioritization in Continuous Integration
Contexts," in IEEE Transactions on Software Engineering, vol. 49, no. 4,
pp. 1615-1639, 1 April 2023, doi: 10.1109/TSE.2022.3184842.

[17] Mahboob, J.; Coffman, J. Continuous Integration, Delivery and
Deployment: A Systematic Review on Approaches, Tools, Challenges
and Practices. In Proceedings of the IEEE 11th Annual Computing and
Communication Workshop and Conference, Virtual, 27–30 January 2021.

[18] Dakkak, A., Bosch, J., Olsson, H. H., & Mattos, D. I. Continuous
deployment in software-intensive system-of-systems. Information &
Software Technology. 2023.
https://doi.org/10.1016/j.infsof.2023.107200.

[19] E. Zaghloul, T. Li, M. W. Mutka and J. Ren, "Bitcoin and Blockchain:
Security and Privacy," in IEEE Internet of Things Journal, vol. 7, no. 10,
pp. 10288-10313, Oct. 2020, doi: 10.1109/JIOT.2020.3004273.

[20] Brandstatter, T.; Schulte, S.; Cito, J.; Borkowski, M. Characterizing
Efficiency Optimizations in Solidity Smart Contracts. In Proceedings of
the IEEE International Conference on Blockchain, Toronto, ON, Canada,
3–6 May 2020.

[21] Murugan, S.; Kris, S. A Survey on Smart Contract Platforms and Features.
In Proceedings of the 7th International Conference on Advanced
Computing and Communication Systems, Coimbatore, India, 19–20 May
2021.

[22] Oyinloye, D.P.; Damilare, P.; Teh, J.S.; Jamil, N.; Moatsum, A.
Blockchain Consensus: An Overview of Alternative Protocols. Symmetry
2021, 13, 1363.

[23] Ma, J.; Jo, Y.; Park, C. PeerBFT: Making Hyperledger Fabric’s Ordering
Service Withstand Byzantine Faults. IEEE Access 2020, 8, 217255–
217267.

[24] T. Hewa, M. Ylianttila, and M. Liyanage, “Survey on blockchain based
smart contracts: Applications, opportunities and challenges,” Journal of

Network and Computer Applications, vol. 177, p. 102857, Mar. 2021, doi:
10.1016/j.jnca.2020.102857.

[25] M. Mazzoni, A. Corradi, and V. Di Nicola, “Performance evaluation of
permissioned blockchains for financial applications: The ConsenSys
Quorum case study,” Blockchain. Research and Applications, vol. 3, no.
1, p. 100026, Mar. 2022, doi: 10.1016/j.bcra.2021.100026.

[26] A. Baliga, I. Subhod, P. Kamat, and S. Chatterjee, “Performance
Evaluation of the Quorum Blockchain Platform,” arXiv.org, Jul. 19, 2018.
https://arxiv.org/abs/1809.03421

[27] Y. Sharma, “Blockchain and Distributed Ledger System,” in CRC Press
eBooks, 2020, pp. 177–206. doi: 10.1201/9780429352546-8.

[28] P. Moriggl, P. M. Asprion, and B. Schneider, “Blockchain Technologies
Towards Data Privacy—Hyperledger Sawtooth as Unit of Analysis,” in
Studies in systems, decision and control, 2020, pp. 299–313. doi:
10.1007/978-3-030-48332-6_20.

[29] A. Castro Jiménez, “Development of a distributed application over R3
Corda,” Treball Final de Grau, UPC, Escola TècnOUica Superior
d'Enginyeria de Telecomunicació de Barcelona, Departament
d'Enginyeria Telemàtica, 2021.

[30] Zou, W.; Lo, D.; Kochhar, P.S.; Le, X.D.; Xia, X.; Feng, Y.; Chen, Z.;
Xu, B. Smart Contract Development: Challenges and Opportunities. IEEE
Trans. Softw. Eng. 2021, 47, 2084–2106.

[31] Laukkanen, E.; Itkonen, J.; Lassenius, C. Problems, causes and solutions
when adopting continuous delivery—A systematic literature review. Inf.
Softw. Technol. 2017, 82, 55–79.

[32] Abdalkareem, R.; Mujahid, S.; Shihab, E.; Rilling, J. Which Commits Can
Be CI Skipped? IEEE Trans. Softw. Eng. 2021, 47, 448–463.

[33] Gallaba, K.; McIntosh, S. Use and Misuse of Continuous Integration
Features: An Empirical Study of Projects That (Mis)Use Travis CI. IEEE
Trans. Softw. Eng. 2020, 46, 33–50.

[34] Saidani, I.; Ouni, A.; Mkaouer, M.W.; Palomba, F. On the impact of
Continuous Integration on refactoring practice: An exploratory study on
TravisTorrent. Inf. Softw. Technol. 2021, 138, 106618.

[35] Couto, L.D., Tran-Jørgensen, P.W.V., Nilsson, R.S. et al. Enabling
continuous integration in a formal methods setting. Int J Softw Tools
Technol Transfer 22, 667–683 2020. https://doi.org/10.1007/s10009-019-
00546-y.

[36] Mysari, S.; Bejgam, V. Continuous Integration and Continuous
Deployment Pipeline Automation Using Jenkins Ansible. In Proceedings
of the 2020 International Conference on Emerging Trends in Information
Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February
2020; pp. 1–4.

[37] Yu, L.; Alégroth, E.; Chatzipetrou, P.; Gorschek, T. Utilising CI
environment for efficient and effective testing of NFRs. Inf. Softw.
Technol. 2020, 117, 106199.

[38] Leite, L.; Pinto, G.; Kon, F.; Meirelles, P. The organization of software
teams in the quest for continuous delivery: A grounded theory approach.
Inf. Softw. Technol. 2021, 139, 106672.

[39] Chowdhury, M.J.M.; Ferdous, M.S.; Biswas, K.; Chowdhury, N.; Kayes,
A.S.M.; Alazab, M.; Watters, P. A Comparative Analysis of Distributed
Ledger Technology Platforms. IEEE Access 2019, 7, 167930–167943.

[40] Jamil, F.; Iqbal, N.; Imran; Ahmad, S.; Kim, D. Peer-to-Peer Energy
Trading Mechanism Based on Blockchain and Machine Learning for
Sustainable Electrical Power Supply in Smart Grid. IEEE Access 2021, 9,
39193–39217.

[41] Saxena, S.; Farag, H.E.Z.; Brookson, A.; Turesson, H.; Kim, H. A
Permissioned Blockchain System to Reduce Peak Demand in Residential
Communities via Energy Trading: A Real-World Case Study. IEEE
Access 2021, 9, 5517–5530.

[42] Monrat, A.A.; Schelén, O.; Andersson, K. A Survey of Blockchain From
the Perspectives of Applications, Challenges, and Opportunities. IEEE
Access 2019, 7, 117134–117151.

[43] Al-Jaroodi, J.; Mohamed, N. Blockchain in Industries: A Survey. IEEE
Access 2019, 7, 36500–36515.

[44] Ismail, L.; Materwala, H.; Zeadally, S. Lightweight Blockchain for
Healthcare. IEEE Access 2019, 7, 149935–149951.

[45] Shahnaz, A.; Qamar, U.; Khalid, A. Using Blockchain for Electronic
Health Records. IEEE Access 2019, 7, 147782–147795.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

461 | P a g e

www.ijacsa.thesai.org

[46] Chavez, H.M.; Shen, W.; France, R.B.; Mechling, B.A.; Li, G. An
Approach to Checking Consistency between UML Class Model and Its
Java Implementation. IEEE Trans. Softw. Eng. 2016, 42, 322–344.

[47] Lu, H.; Wang, S.; Yue, T.; Ali, S.; Nygård, J.F. Automated Refactoring
of OCL Constraints with Search. IEEE Trans. Softw. Eng. 2019, 45, 148–
170.

[48] Arora, V.; Singh, M.; Bhatia, R. Orientation-based Ant colony algorithm
for synthesizing the test scenarios in UML activity diagram. Inf. Softw.
Technol. 2020, 123, 106292.

[49] Assunção, W.K.G.; Vergilio, S.R.; Lopez-Herrejon, R.E. Automatic
extraction of product line architecture and feature models from UML class
diagram variants. Inf. Softw. Technol. 2020, 117, 106198.

[50] Arcaini, P.; Gargantini, A.; Riccobene, E. Decomposition-Based
Approach for Model-Based Test Generation. IEEE Trans. Softw. Eng.
2019, 45, 507–520.

[51] Moradi, H.; Zamani, B.; Zamanifar, K. CaaSSET: A Framework for
Model-Driven Development of Context as a Service. Future Gener.
Comput. Syst. 2020, 105, 61–95.

[52] Panach, J.I.; Dieste, Ó.; Marín, B.; España, S.; Vegas, S.; Pastor, Ó.;
Juristo, N. Evaluating Model-Driven Development Claims with Respect
to Quality: A Family of Experiments. IEEE Trans. Softw. Eng. 2021, 47,
130–145.

[53] Basciani, F.; D’Emidio, M.; Ruscio, D.D.; Frigioni, D.; Iovino, L.;
Pierantonio, A. Automated Selection of Optimal Model Transformation

Chains via Shortest-Path Algorithms. IEEE Trans. Softw. Eng. 2020, 46,
251–279.

[54] Górski, T. Continuous Delivery of Blockchain Distributed Applications.
Sensors 2022, 22, 128.

[55] Xu, X.; Weber, I.; Staples, M. Architecture for Blockchain Applications;
Springer: Cham, Switzerland, 2019; pp. 5–7.

[56] Gao, Z.; Jiang, L.; Xia, X.; Lo, D.; Grundy, J. Checking Smart Contracts
with Structural Code Embedding. IEEE Trans. Softw. Eng. 2020, 47,
2874–2891.

[57] Laukkanen, E.; Itkonen, J.; Lassenius, C. Problems, causes and solutions
when adopting continuous delivery—A systematic literature review. Inf.
Softw. Technol. 2017, 82, 55–79.

[58] UML Profile for Distributed Ledger, 2023, [Online].Available at
https://github.com/ramadannasr/UML-PROFILE-FOR-DLT.git

[59] Node Config Generator, 2023, [Online].Available at
https://github.com/ramadannasr/Node-config-generator.git

[60] Sawtooth xo intkey dapp , 2023, [Online].Available
athttps://github.com/ramadannasr/xo-intkey-sawtooth-pbft.git

[61] Quorum simple\ storage dapp , 2023, [Online].Available at
https://github.com/ramadannasr/SimpleStorageQuorumDapp.git

[62] Corda tokens dapp , 2023, [Online].Available at
https://github.com/ramadannasr/TokensCorDapp.git.

