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Abstract—Anomaly detection aims to build a decision model 

that estimates the class of new data based on historical sample 

features. However, the distance between samples in the feature 

space is very close sometimes, resulting in samples being invisible 

to the detection model that is the class overlap problem. To 

address this issue, an anomaly detection model based on Pearson 

correlation coefficient and gradient booster mechanism is 

proposed in this paper. Different from traditional resampling 

methods, the proposed method groups and sorts features from 

different dimensions such as feature correlation, feature 

importance, and feature exclusivity firstly. Then, it selects features 

with higher correlation and lower importance for deletion to 

improve the training accuracy of the detector. Furthermore, 

through the unilateral gradient sampling mechanism, ineffective 

or inefficient training samples can be further reduced to improve 

the training efficiency of the detector. Finally, the proposed 

method was compared with three feature selection methods and 

six anomaly detection ensemble models on six datasets. The 

experimental results showed that the proposed method has 

significant advantages on feature selection, detection 

performance, detection stability, and computational cost. 
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I. INTRODUCTION 

Anomaly detection aims to build a decision model that 
estimates the class of new data based on historical sample 
features. However, samples in a large amount of data may have 
very close distances in the feature space, with overlapping areas 
of features, resulting in some samples being invisible to the 
detection model, that is the problem of feature overlap. Feature 
overlap can critically affect the definition of decision 
boundaries [1], but unfortunately, feature overlap always 
accompanies the occurrence of small sample problems, as small 
samples have a higher probability of being located to these 
overlapping areas. Therefore, feature overlap and small sample 
coupling are a more challenging scenario for data anomaly 
detection models. For example, when network attacks are 
hidden in large-scale normal network behavior, abnormal 
traffic or access data can easily escape detection by the 
detection system [2]. 

At present, there are two main approaches to solve the 
problem of feature overlap: data preprocessing methods and 
cost sensitive algorithms [3]. The former focuses on 
preprocessing training dataset in the feature space to alleviate 

feature overlap [4], while the latter provides a guidance for 
detection models that lean towards overlapping samples, 
especially for imbalanced overlapping samples [5]. Generally, 
the former has a wider range of application, and the most widely 
used data preprocessing method is resampling. The resampling 
methods can solve the problem of small data samples by 
generating minority class samples. However, feature overlap is 
a more complex and challenging scenario that involves multiple 
factors [6]. Therefore, feature overlap presents greater 
challenges for data anomaly detection [7], especially for 
datasets with complex distribution and higher level of noises. 
For small sample problems (imbalance problem), the detection 
model should consider the minority class where the small 
sample is located as a whole and try to learn its global 
distribution characteristics to better generate high-quality 
samples. As for the problem of feature overlap, the detection 
model should pay more attention to the local distribution 
characteristics of each small sample. The above contradiction 
leads to existing methods having better performance on specific 
domain datasets, while their detection accuracy decreases and 
generalization ability is insufficient on other domain datasets. 
The reason is that they have not fundamentally solved the 
problem of overlap from the perspective of feature distribution. 

In response to the above issues, this paper proposes a 
lightweight anomaly detection model for overlapping data 
based on Pearson correlation coefficient and gradient booster 
mechanism, PG-LightGBM. First, PG-LightGBM calculates 
the correlation between various features and establish a feature 
overlap matrix based on the Pearson correlation coefficient. 
Then, it calculates the importance of all features and ranking 
them with gradient boosting decision tree (GBDT). 
Furthermore, based on the correlation and importance of all 
features, it removes some ones with higher correlation and 
lower importance to alleviate feature overlap. In addition, the 
unilateral gradient sampling mechanism is used to further 
reduce invalid or inefficient samples and to improve the 
training efficiency of the detector. The main contributions of 
this paper are as follows: 

1) To quantify the degree of feature overlap, Pearson 
Correlation Coefficient (PCC) is introduced to calculate the 
correlation between two feature variables. The overlap matrix 
is then obtained based on this correlation calculation, and then 
the overlapping feature set is obtained through numerical 
quantification; 
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2) To select worthier feature to remove, Gradient Boosting 
Decision Tree (GBDT) is introduced to calculate the 
importance of overlapping features. At the same time, the 
feature importance values are accumulated and sorted to obtain 
important and non-important feature sets. 

3) To solve the problem of insufficient detection ability of 
weak learning machines, a unilateral gradient sampling 
mechanism is introduced. The detection model is trained by 
selecting a certain proportion of large and small gradient 
samples to reduce data size, improving training efficiency, and 
achieving performance enhancement of weak learning 
machines through iterative training. 

The remainder of this article is organized as follows. In 
Section II, we review the main methods of anomaly detection 
for overlapping data. In Section III, we outline the proposed 
PG-LightGBM in detail. In Section IV, we present the 
experimental methodology including benchmarked datasets, 
baseline methods and evaluation metrics. Additionally, in 
Section V, we report on and analyze the experimental results. 
Finally, we conclude this paper and look forward to future work 
in Section VI. 

II. RELATED WORK 

There are three main approaches to solving the problem of 
feature overlap: data sampling, feature selection, and model 
optimization. The following is an overview of related work 
from these three aspects. 

A. Data Sampling Methods 

The most classic oversampling method is the Synthetic 
Minority Oversampling Technique (SMOTE) based on linear 
interpolation, and its variant algorithm overcomes noise related 
degradation problems through weighted clustering, such as the 
NI-MWMOTE (Noise Immunity Majority Weighted Minority 
Oversampling Technique) algorithm [8]. In addition, Zhu et al. 
[9] also used positional feature aware interpolation algorithms 
to segment samples and provided different interpolation 
strategies for different categories, effectively improving the 
sampling effect. In recent years, sampling methods based on 
Generative Adversarial Networks (GANs) have been 
developed due to their better ability to generate diverse samples 
[10]. For example, Gayathri et al. [69] further improved the 
quality of GAN generated samples by using auxiliary 
information. Engelmann et al. [11] applied Wasserstein 
distance to GAN models to sample data of specified categories 
and achieved classifier training optimization on strongly 
nonlinear datasets. Zheng et al. [12] further introduced penalty 
coefficients into the GAN model, which significantly improved 
its stability. Dlamini and Fahim [13] proposed a conditional 
GAN model with KL divergence. This method not only guides 
the model to learn the features of minority class samples, but 
also overcomes the problem of gradient vanishing. Zhu et al. 
[14] proposed a new GAN based mixed sampling method to 
handle the classification problem of small sample data. It not 
only generates samples that match the actual data distribution, 
but also significantly reduces the impact of feature overlap. 

The most classic undersampling method is nearest neighbor 
search and its variant algorithms, such as Tomelink [15]. 
Undersampling has shown significant advantages in dealing 

with feature overlap issues. Kumar et al. [16] proposed an 
entropy and improved k-nearest neighbor search based 
undersampling (ENU) method, which overcomes the problems 
of over elimination and information loss by only removing 
normal samples with low entropy scores. Dai et al. [17] 
proposed a multi granularity relabeled undersampling 
algorithm (MGRU) based on the Tomeklink method for small 
sample datasets. This algorithm fully considers local 
information in the granularity subspace and detects potential 
local overlapping samples in the dataset. Then, eliminate 
overlapping samples based on the globally re labeled index 
values. Farshidvard et al. [18] divided large class (normal) 
samples into multiple clusters in undersampling, so that each 
cluster did not contain small class (abnormal) samples and 
controlled the size of each cluster. Zheng et al. [19] proposed a 
three-stage undersampling framework that integrates functions 
such as denoising, fuzzy C-means clustering, and representative 
sample selection to improve the final anomaly detection 
performance by removing noise and unrepresentative samples. 
Mayabadi and Saadatfar [20] further reduced the number of 
large class data, eliminated overlap, and removed noise. Some 
researchers have also transformed the undersampling problem 
into other problems to explore new solutions. Dai et al. [21] 
proposed a method to solve feature overlap through Schur 
matrix factorization, attempting to obtain global similarity to 
identify potential overlapping samples, and using matrix 
factorization to handle feature overlap problems. Soltanzadeh 
et al. [22] and Le et al. [23] both consider undersampling as an 
optimization problem and use clustering based surrogate 
models for optimization processing. 

B. Feature Selection Methods 

Liu et al. [24] proposed a hybrid method C-E-MWELM 
(COFS and Ensemble Modified WELM) based on the 
Weighted Extreme Learning Machine (WELM) to address the 
imbalance problem of cancer data at the feature and algorithm 
levels. The classification results on multiple gene datasets show 
that this method achieves good classification performance, 
higher balance, and has advantages in detecting and classifying 
high-dimensional imbalanced data. Wang et al. [25] designed a 
novel hybrid ensemble classification strategy SFSHEL (Sample 
and Feature Selection Hybrid Ensemble Learning), and 
constructed the SFSHEL-RF (Random Forest) classification 
model based on a random forest classifier. SFSHEL-RF selects 
both a sample subset and a feature subset, uses a clustering 
based hierarchical random undersampling method to 
undersample the majority class samples, and combines them 
with minority class samples to obtain a sample subset. Surani 
et al. [26] proposed the Principal Component Loading Feature 
Selection (PCLFS) method to extract the feature subset with the 
highest amount of information from imbalanced data. This 
method sorts the features using the sum of the absolute values 
of the first k principal component loadings, and then uses the 
sequential feature selection method to extract the optimal 
feature subset. Maldonado et al. [27] proposed two embedded 
feature selection methods, KP-CSSVM (KP Cost Sensitive 
SVM) and KP-SVDD (KP Support Vector Data Description), 
for high-dimensional imbalanced data based on kernel penalty 
Kernel Penalized and KP-SVM. By using a strategy similar to 
scaling factors to penalize Cardinality in the feature set, and 
combining cost sensitive SVM and support vector data to 
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describe SVDD, the predictive performance of SVM based 
model methods in handling high-dimensional imbalanced data 
is achieved. Linear and Gaussian kernels were experimentally 
validated on 12 high-dimensional imbalanced datasets, and 
both proposed methods achieved the highest average predictive 
performance. Moayedikia et al. [28] proposed a new feature 
selection algorithm SYMON (Symmetrical Uncertainty and 
Harmony Search) for imbalanced data. This method is divided 
into two stages. In the first stage, SYMON uses Symmetrical 
Uncertainty SU (Symmetrical Uncertainty) to balance the 
dependency between features and class labels, and assigns 
corresponding importance weights to features based on the 
dependency; in the second stage, SYMON uses Harmony 
Search (HS) to transform feature selection into an optimization 
problem, and selects the potential optimal subset of features 
through vector optimization algorithms. The results indicate 
that SYMON exhibits comparable or better performance 
compared to other benchmark feature selection algorithms on 
different high-dimensional datasets. Du et al. [29] proposed a 
risk prediction method JICFS (Joint imbalanced classification 
and feature selection) by combining imbalanced data 
classification and feature selection. This method uses the Large 
Margin framework to construct a loss function, which handles 
the problem of data imbalance by assigning different penalty 
weights to the majority and minority class samples. It also 
optimizes the function and achieves feature selection by adding 
a ℓ 1-norm regularization term to the loss function. In addition, 
based on the designed iterative optimization scheme, it 
converges to the global optimal value, and finally, SVM is used 
for classification prediction. The results on six real medical 
datasets indicate that the proposed method has certain 
advantages compared to some more advanced methods. Sun et 
al. [30] designed a feature selection method AFNFS (Adaptive 
fuzzy neighborhood-based feature selection) for imbalanced 
data adaptive synthesis oversampling based on fuzzy 
neighborhood. This method constructs a balanced decision 
system through an improved adaptive synthesis of minority 
class oversampling method, and introduces tolerance 
parameters into the feature subset selection algorithm of 
adaptive fuzzy neighborhood to obtain the optimal feature 
subset. The classification model is trained on a sub training set 
based on this feature subset. The results indicate that AFNFS 
can select feature subsets with stronger classification 
performance. 

C. Model Optimization Methods 

Tao et al. [31] proposed a density sensitive SVDD classifier 
DSMSM-SVDD (Density Sensitive SVDD classifier based on 
Maximum Soft Margin) based on support vector data to 
describe SVDD. This method optimizes the objective function 
through penalty weights based on relative density, so that 
training samples with high relative density are located as much 
as possible inside the hypersphere, thereby eliminating the 
influence of noisy data on traditional SVDD. In addition, by 
introducing the maximum soft interval regularization term, the 
optimal description boundary is more biased towards minority 
class samples. This method combined with the AdaBoost 
ensemble classifier, improves the generalization performance 
and stability of handling imbalanced data, and outperforms 
other methods in multiple performance metrics. Rezvani et al. 
[32] proposed a class imbalance learning method called CIL-

FART-IFTSVM (Class Imbalance Learning using Fuzzy 
Adaptive Resolution Theory and Intuitionistic Fuzzy Twin 
SVM) for the classification problem of noisy data, outliers, and 
large-scale imbalanced data. It uses fuzzy ART as the clustering 
algorithm for imbalanced data. After data processing, train 
IFTSVM with the retained data and find the optimal 
hyperplane. The experimental results show that CIL-FART-
IFTSVM outperforms other SVM based methods on large-scale 
imbalanced datasets with noisy data and outliers. Tao et al. [33] 
proposed a SVM cost sensitive ensemble framework SCW-
SVM-CE (Self adaptive Cost Weights based SVM Cost 
sensitive Ensemble) based on adaptive cost weights for 
classification research of imbalanced data. This method is 
based on SVM as the classifier and can adaptively consider the 
different contributions of minority class samples to SVM. At 
each iteration, only misclassified minority class samples and 
correctly classified boundary minority class samples will be 
assigned higher cost weights, which will have a significant 
decision impact on the classifier in subsequent iterations. As a 
result, the final classification boundary will be slightly offset 
towards the minority class samples. Maurya et al. [34] proposed 
a large-scale distributed sparse class imbalanced learning 
algorithm called CILSD (Class imbalanced Learning problem 
on large scale sparse data in a distributed setting). This 
algorithm divides imbalanced datasets into different sub 
datasets and assigns each sub-dataset to different processing 
nodes. Each node runs the cost sensitive learning distributed 
learning algorithm FISTA like, which can accelerate the 
convergence speed of CILSD. The results indicate that CILSD 
demonstrates its effectiveness and advantages in using multi-
core computing on multiple imbalanced test datasets. Wang et 
al. [35] proposed two improved methods based on AdaBoost, 
namely Enhanced AdaBoost and Reinforced AdaBoost. The 
key to these two improvement methods is to adjust the weighted 
voting parameters of the weak classifier while considering the 
imbalanced rate of the dataset. The results indicate that if the 
data imbalance rate is high, Enhanced AdaBoost can achieve 
good classification performance. If the data imbalance rate is 
small, the classification performance of Reinforced AdaBoost 
is better. Fu et al. [36] proposed an ensemble classifier EREC 
(ER based Ensemble Classifier) based on Evidence Reasoning 
(ER). This method first divides the training set into n equally 
sized sub training sets, and then uses an oversampling method 
based on AP (Affinity Promotion) to balance n sub training sets 
and train n ER based sub classifiers. The decision weights of 
each sub classifier are determined by their performance on 
OOB (Out of Bag) data, and the final decision classification 
result is determined by the n sub classifiers together. O'Brien et 
al. [37] proposed a q* classifier based on data density ratio to 
address the issue of data imbalance. As the q* classifier is 
implemented based on a random forest classifier, it is also 
known as an RFQ (Random Forests Quantity) classifier. RFQ 
optimizes both true positive rate and true negative rate 
simultaneously, and is equivalent to a cost weighted Bayesian 
classifier, thus minimizing weighted risk. Raghuwanshi et al. 
[38] proposed a kernel based ELM classification method called 
UBKELM (Underbagging based kerneled ELM) based on 
Underbagging ensemble. UBKELM obtains multiple balanced 
sub training sets by randomly undersampling the majority class 
samples, and then uses multiple kernel-based ELMs as sub 
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classifiers for each balanced sub training set. The final 
classification results are obtained by combining Majority 
Voting and Soft Voting methods for each classifier. This 
method performs better than other contrastive classifiers in the 
KEEL dataset library. 

D. Summary and Motivation 

All of data sampling methods, feature selection methods 
and model optimization methods have proven to be effective in 
certain situations. Among them, feature selection methods may 
have a wider application prospect, since it fundamentally solves 
the problem of overlap from the perspective of feature 
distribution. 

However, the gap the existing methods with the task target 
is also big. Although the existing methods have realized that 
feature selection is the fundamental method to solve the 

overlapping problem, they are still focused on the operational 
level of how to do feature processing. Not enough attention has 
been paid to the more important question of which 
characteristics should be addressed. 

The motivation of this paper is to consider the above issue. 
Especially, we consider not only in terms of the impact on 
overlap, but also in terms of the useful information that the 
feature is rich in. That is, we try to balance the role of features 
in overlap mitigation and knowledge learning, proposing a 
more widely used anomaly detection method. 

III. PG-LIGHTGBM METHOD 

A. PG-LightGBM Process 

The process flow of the proposed PG-LightGBM method is 
shown in Fig. 1. 
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Fig. 1. The process flow of the proposed PG-LightGBM method. 

There are three modules for the proposed PG-LightGBM 
method: overlap degree computing module (PCC), feature 
importance calculation module (GBDT), and lightweight 
detection module (GOSS). 

As for overlap degree computing module, The Pearson 
Correlation Coefficient (PCC) is used. The specific design idea 
is as follows: assuming there is an imbalanced dataset X = {x1, 
x2,…, xn}, divide the dataset X into a training set Xtrain and a 
testing set Xtest in a certain proportion (8: 2). From the training 
set Xtrain, the feature sequence FX = {y1, y2,…, ym} can be 
obtained, and the Pearson correlation coefficient PCC is used 

to calculate the feature overlap
i j


y , y between each pair of 

features in FX. According to the
i j


y , y , the feature overlap 

matrix can be further obtained, and the upper triangular region 
is extracted to determine whether the overlap value of all 
feature pairs is higher than the predetermined threshold μ. If it 
is higher than μ, it is considered that there is overlap between 
the pairs of features, and one feature is marked as overlapping 

feature
overlap

i removey and the other as effective feature; otherwise, it 

is considered that there is no overlap between the pairs of 
features and they are all considered valid features. 

 As for feature importance calculation module, by analogy 
until all feature pairs are determined, then the gradient boosting 
decision tree GBDT is used to calculate the importance values 
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of all features. Furthermore, the feature importance values are 
sorted and accumulated to obtain the cumulative feature 

importance value ( )XSUM Fim
. It is determined whether

( )XSUM Fim
has reached the predetermined cumulative 

threshold . If the threshold is reached, the non-cumulative 
features will continue to be marked as overlapping features

overlap

i removey , and the accumulated features will be marked as 

retention features.  

As for lightweight detection module, the single-sided 
gradient sampling (GOSS) is introduced. All overlapping 

features marked as
overlap

i removey are discarded, and the detection 

model is trained with only the sub training set
trainX 

composed 

of the remaining effective feature subset
XF 

. The GOSS 

mechanism utilizes the sample gradient of
trainX 

for training, 

and by selecting a certain proportion of large and small gradient 
samples to train weak learners, it can reduce the data size during 
the training process.  

As a result, the PG-LightGBM method, which combines 
overlapping feature selection with gradient boosting ensemble 
learning, achieves high performance in anomaly detection, 
while maximizing the preservation of effective features and 
information. The following will provide a detailed explanation 
of the implementation of the PG-LightGBM model. 

B. Overlap Quantization Based on Pearson Correlation 

Coefficient 

The Pearson Correlation Coefficient (PCC) [39] is widely 
used to measure the degree of correlation between two variables 
or vectors, with correlation values ranging from [-1,1]. For the 
convenience of calculation, the Square Pearson Correlation 
Coefficient (SPCC) is generally used to participate in the 
subsequent calculation process, with SPCC correlation values 
between [0, 1]. 

Assuming
1 2[ , ,..., ]T

na a aa and
1 2[ , ,..., ]T

nb b bb are 

two random vectors, whose mean real is 0 and length is n. Then 
the SPCC between a and b is: 

2
2 ( )
( , )

( ) ( )

T

T T

E

E E
 

a b
a b

a a a b
  (1) 

Let a and b to be two permutation matrices. If a = b , 

then there is
2 ( , ) a ba b  =

2 ( , ) a b ; Otherwise, If a ≠

b , it is obviously
2 ( , ) a ba b  ≠

2 ( , ) a b . According to 

Eq. (1), it can be seen that
2 ( , ) a b  ≥ 0. For the case of 

2 ( , ) a b  ≤ 1, it can be defined as: 

[( ) ( )] 0TE c c  a b a b   (2) 

where, c is a real number, and the expansion Eq. (2) is: 

2[( ) ( )] ( ) 2 ( ) ( )T T T TE c c E cE c E    a b a b a a a b b b (3) 

Specifically, for
( )

( )

T

T

E
c

E


a a

a b
, it can be inferred:  

2

2

( ) ( )
( ) 2 ( ) 0

( )

T T
T T

T

E E
E E

E
  

a a b b
a a a a

a b
    (4) 

that is: 

2

( ) ( )
1

( )

T T

T

E E

E


a a b b

a b
  (5) 

Therefore, it can be concluded that
2 ( , ) a b ≤ 1, therefore 

0 ≤
2 ( , ) a b ≤ 1. If 

2 ( , ) a b =0, then vectors a and b are 

uncorrelated; If
2 ( , ) a b is closer to 1, then the correlation 

between vectors a and b is stronger. 

Based on the above analysis, for the training set trainX , 

assuming its feature sequence is
1 2{ , ,..., }X mF  y y y , for each 

pair of features in the feature sequence XF , the feature overlap

i j


y , y is first calculated through the Pearson correlation 

coefficient SPCC, where 
i j


y , y ∈[0,1]. The calculation method 

is shown as follows: 

2 2 2 2

cov( , ) ( ) ( ) ( )

( ) ( ) ( ) ( )
i j

i j

i j i j i j

i i j j

E E E

E E E E


 


 

 
y ,y

y y

y y y y y y

y y y y
(6) 

where, cov( iy , jy ) represents the covariance between 

features iy and jy , while 
iy and

iy are the standard 

deviations of features iy and jy , respectively. After calculating 

the feature overlap degree
i j


y , y of all feature pairs ( iy , jy ), the 

feature overlap matrix of feature sequence XF can be obtained. 

Based on the upper triangular region of the overlap matrix, all 

overlapping feature pairs (
overlap

iy ,
overlap

jy ) with feature 

overlap degree higher than the predetermined threshold μ can 
be statistically calculated, and the subsequent overlapping 

features to be discarded can be marked by
overlap

iy . From this 

aspect, it can be seen that for a single pair of overlapping 

features, that is, iy  only forms an overlapping feature pair (

overlap

iy , 
overlap

jy ) with jy , then iy is considered as the 

overlapping feature 
overlap

i removey , and jy  is considered as the 

effective feature; For the case of multiple pairs of overlapping 
features, that is, there are multiple overlapping feature pairs (

overlap

iy , 
overlap

jy ), (
overlap

iy , 
overlap

ky ) composed of iy  and jy , 
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ky , and other features, the processing method is similar to the 

former, still marking iy  as the overlapping feature 
overlap

i removey  

to be discarded, and treating jy  and 
ky  as valid features. 

C. Feature Importance Calculation based on Gradient 

Booster Mechanism 

Gradient Boosting Machine (GBM) is a type of Boosting 
mechanism. The main idea of GBM is to construct multiple 
base learners. During the gradient boosting iteration, the goal 
of each base learner is to fit the negative gradient of the 
cumulative model loss function before, and then add the base 
learner to the cumulative model and gradually reduce the 
function loss of the cumulative model. In addition, GBM will 
also use different weights to linearly combine base learners, so 
that better performing base learners occupy a larger proportion 
of decision-making.  

The tree-based gradient boosting mechanism mainly uses 
the Gini index (Gi) to calculate feature importance, which is 
represented by the Feature Importance Measure (Fim). For a 

certain feature iy  of feature sequence 1 2{ , ,..., }X mF  y y y , its 

Gi index at a node p in the kth tree (k∈K) is: 

 
2

,

1

1
C

k k

p p C

C

Gi q


    (7) 

where, C represents the number of categories, and ,p C

kq  

represents the proportion of C in node p of the kth tree. 
According to Eq. (7), it can be seen that the importance of 

feature iy at node p in the kth tree is represented as: 

,i p

k k k k

p l rFim Gi Gi Gi     (8) 

where, 
k

lGi  and 
k

rGi  are the Gi indices of the two new 

nodes after splitting. Based on ,i p

kFim , it can be seen that the 

importance of feature iy  in the kth tree is: 

,i

k k

i p

p P

Fim Fim


   (9) 

where, P represents the set of nodes where feature iy  

appears in the kth tree. Then, it can be inferred that the final 

feature importance of feature iy  is: 

1

1 1

K
k

i

k
i m K

k

i

i k

Fim

Fim

Fim



 





  (10) 

According to Eq. (10), the feature importance sequence of 

feature sequence 
1 2{ , ,..., }X mF  y y y  can be obtained, that 

is, 
1 2{ , ,..., }X mFim Fim Fim Fim . Then, all features in 

XF  are sorted in descending order based on the value of feature 

importance. The sorted feature sequence is 

1 2{ , ,..., }X mF  y y y
   

, and the feature importance sequence is 

1 2{ , ,..., }X mFim Fim Fim Fim   
. Then, the feature 

importance of 
'

XFim  is accumulated, that is: 

1

( ) ,
t

X i

i

SUM Fim Fim t m


   
 (11) 

In the process of feature importance accumulation, if the 

feature accumulation value ( )XSUM Fim
 reaches the 

predetermined accumulation threshold  , the accumulated 

features are marked as retained features, and the non-
accumulated features are marked as further overlapping 

features 
overlap

i removey  to be discarded. Afterwards, all overlapping 

features marked as 
overlap

i removey  are discarded to obtain a training 

set 
trainX 

 with a reserved feature subset as the feature. Then, 

the training set 
trainX 

 is combined with LightGBM for the next 

training operation. 

D. Detection Model Lightweight Based on Unilateral 

Gradient Sampling 

Gradient Booster (GBM) is a general algorithm that can 

select different base learners ( , )h x   and loss functions 

( , )L y F  according to actual situations, in order to adapt to 
different scenarios and evolve into different algorithms. Due to 
the important role of samples with larger gradients in 
calculating information gain, single-sided gradient sampling 
(GOSS) eliminates a larger proportion of small gradient 
samples, allowing for very accurate information gain estimates 
with smaller data sizes and accelerating the learning process. 
With the support of GOSS, the algorithm has significant 
advantages in terms of computational speed and memory 
consumption model accuracy. 

During the training process, the unilateral gradient sampling 
mechanism GOSS of LightGBM will utilize the sample 

gradient of training set 
trainX 

 to accelerate the training process. 

Based on the sample gradient sequence of training set 
trainX 

, 

GOSS combines the sampled large gradient samples and the 
remaining small gradient samples to obtain the sub training set 

trainX 
. This is used to train a weak classifier and iterate through 

a loop: 

( 100%) ( 100%)trainX Top a Rest b     
 (12) 

where, ( *100%)Top a is the large gradient sample size 

for sampling, and a represents the sampling ratio; 

( *100%)Rest b  is the number of small gradient samples 
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sampled except for large gradient samples, and b represents the 

sampling ratio;  is the weight coefficient of small gradient 

samples, with a value of (1 ) /a b .  can increase the 

learning ability of weak learners on small gradient samples. 

After the training is completed, the test set testX  is subjected to 

overlapping feature selection and model classification detection 
on the trained detection model. 

IV. EXPERIMENTAL DESIGN 

The experiment used six publicly available datasets from 
the fields of industrial control systems and network security 
anomaly detection to validate the method proposed in this 
chapter. Among them, the Power dataset is the power 
transmission system dataset, which records sensor data and 

measurement data related to network attack behavior in the 
power transmission system. The BATDAL dataset is a dataset 
used to detect network attacks in water supply systems. The 
ISCX-URL dataset is a dataset used for analyzing and detecting 
malicious website links. The NSLKDD dataset is an optimized 
dataset of the famous KDDCUP99 network security anomaly 
detection dataset, which solves the serious problem of 
excessive redundant data in the original KDDCUP99 dataset. 
The WST (Water Storage Tank) dataset is a network attack 
traffic dataset for water storage tank systems. The UNSW-
NB15 dataset is a comprehensive dataset on network intrusion 
detection systems collected and created by the University of 
New South Wales. Table I shows the basic information of six 
datasets: dataset name, data size, feature dimension, number of 
majority classes, number of minority classes, and imbalance 
rate (IR) and overlap degree (OR). 

TABLE I.  BASIC INFORMATION OF DATASETS 

Dataset Scale Features Maj# Min# IR OR 

Power 5570 128 3921 1648 2.379 0.532 

BATADAL 12938 43 12719 219 58.078 0.43 

ISCX-URL 18982 79 13796 5186 2.660 0.259 

NSLKDD 148517 42 77054 71463 1.078 0.158 

WST 236179 23 172415 63763 2.704 0.127 

UNSW-NB15 257673 42 164673 93000 1.771 0.484 

The evaluation indicators used in the experiment include 
Accuracy, Precision, Recall, F1 score, ROC AUC value, and 
PR-AUC. Among them, the horizontal axis of the ROC curve 
represents specificity (FPR), and the vertical axis represents 
sensitivity (TPR); The horizontal axis of the PR curve 
represents Recall, and the vertical axis represents Precision. 
The relevant solution formula is shown as follows: 

TP TN
Accuracy

TP FN FP TN




  
  (13) 

TP
Precision

TP FP



  (14) 

TP
Recall TPR

TP FN
 


  (15) 

FP
FPR

FP TN



  (16) 

1 2
Precision Recall

F score
Precision Recall


  


 (17) 

The comparative classification methods used in the 
experiment are all ensemble learning classification models, 
which can combine several single weak learning models to 
obtain a strong learning model with high accuracy, robustness, 
and stability. The six contrastive ensemble learning 
classification models used in this chapter are AdaBoost, 
CatBoost, GBDT (Gradient Boosting Decision Tree), 
RandomForest, XGBoost, and LightGBM. 

The comparative feature selection methods used in the 
experiment cover three categories of feature selection 
engineering, namely Filter, Wrapper, and Embedded. 
Representative feature selection methods from each category 
are selected, namely ANOVA (Analysis of Variance), RFE 
(Recursive Feature Elimination), and L1-BFS (L1 Based 
Feature Selection). Three feature selection methods and the 
integrated classification model LightGBM constitute the 
ANOVA-LightGBM, RFE-LightGBM, and L1-BFS-
LightGBM classification models. 

V. RESULTS AND DISCUSSION 

A. Feature Processing Capability 

1) Results: In order to compare the feature selection 

capability of the proposed PG-LightGBM method in each 

dataset more clearly, the experimental results of feature 

dimension changes for each dataset were recorded, as shown in 

Table II. The dimension changes, as well as the amount and rate 

of change, were recorded for six datasets before and after PG-

LightGBM processing. 

As to further verify the effectiveness of feature selection of 
PC mechanism in PG-LightGBM, ANOVA -LightGBM, RFE-
LightGBM, and L1-BFS-LightGBM were selected for 
experimental comparison. To ensure the fairness of the 
experiment, the feature selection dimensions of the comparative 
method on each dataset were consistent with those of PG-
LightGBM on each dataset. The experimental results are shown 
in Table III. 
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TABLE II.  DATA DIMENSIONAL CHANGES AFTER PROCESSING BY PG-LIGHTGBM 

Dimensional change Power BATADAL ISCX-URL NSLKDD WST UNSW-NB15 

Before 128 43 79 42 23 42 

After 68 23 55 26 8 31 

Variation 60 20 24 16 15 11 

Change Rate -46.8% -46.5% -30.4% -38.1% -65.2% -26.2% 

TABLE III.  PERFORMANCE COMPARISON OF DIFFERENT FEATURE SELECTION METHODS COMBINED WITH LIGHTGBM ON 6 DATASETS WITH THE SAME 

DIMENSIONALITY 

 Dataset 
ANOVA- 

LightGBM 

RFE- 

LightGBM 

L1-BFS- 

LightGBM 

PG- 

LightGBM 

Accuracy 

Power 0.9455 0.9575 0.9449 0.9623 

BATADAL 0.9915 0.9905 0.9902 0.9920 

ISCX-URL 0.9828 0.9824 0.9822 0.9837 

NSLKDD 0.7650 0.7469 0.7707 0.8022 

WST 0.8831 0.9419 0.8229 0.9684 

UNSW-NB15 0.9597 0.9609 0.9603 0.9615 

Precision 

Power 0.9482 0.9579 0.9367 0.9567 

BATADAL 0.9932 0.9917 0.9917 0.9935 

ISCX-URL 0.9697 0.9678 0.9672 0.9717 

NSLKDD 0.6526 0.6417 0.6582 0.6927 

WST 0.8625 0.9790 0.8612 0.9962 

UNSW-NB15 0.9640 0.9650 0.9643 0.9659 

Recall 

Power 0.8676 0.8992 0.8775 0.9170 

BATADAL 0.9982 0.9987 0.9984 0.9984 

ISCX-URL 0.9659 0.9666 0.9666 0.9672 

NSLKDD 0.9719 0.9341 0.9730 0.9719 

WST 1.0000 0.9409 0.9040 0.9605 

UNSW-NB15 0.9732 0.9740 0.9738 0.9740 

F1 score 

Power 0.9060 0.9276 0.9061 0.9364 

BATADAL 0.9957 0.9952 0.9950 0.9960 

ISCX-URL 0.9678 0.9672 0.9669 0.9694 

NSLKDD 0.7809 0.7607 0.7852 0.8089 

WST 0.9262 0.9596 0.8821 0.9781 

UNSW-NB15 0.9686 0.9695 0.9690 0.9699 

2) Discussion: As shown in Table II, after the feature 

correlation and feature importance selection by PG-LightGBM, 

the feature dimensions of each dataset were significantly 

reduced. Among them, the feature dimension of the WST 

dataset decreased the most, reaching 65.2%, which means that 

more than 60% of the features were removed. However, 

significantly removing features does not mean sacrificing the 

classification performance of the detection model; The UNSW-

NB15 dataset has the smallest dimensional change, but there is 

also a 26.2% decrease; the feature dimension reduction of the 

remaining datasets remains between 30% and 50%. 

According to Table III, compared to other methods, PG-
LightGBM achieved the highest accuracy on all six datasets, 
with an accuracy of over 96% on all datasets except for the 
NSLKDD dataset. In terms of accuracy, RFE-LightGBM 
narrowly outperformed PG-LightGBM with a slight advantage 
of 0.0012, but PG-LightGBM achieved the highest accuracy on 
other datasets. In terms of recall rate, ANOVA- LightGBM 
achieved a recall rate of 1.0000 on the WST dataset. However, 
a high recall rate does not necessarily mean high performance, 
and other performance indicators need to be considered 
simultaneously. It can be observed that other indicators of 
ANOVA-LightGBM are relatively low, indicating that 
ANOVA-LightGBM classifies a large number of negative class 

samples as positive class samples during classification, 
resulting in poor overall performance and model instability; On 
the UNSW-NB15 dataset, PG-LightGBM has the same 
performance as RFE-LightGBM, but on the BATADAL and 
NSLKDD datasets, PG-LightGBM is slightly inferior to RFE-
LightGBM and L1-BFS-LightGBM with a slight disadvantage 
of 0.0003 and 0.0011, respectively. However, PG-LightGBM 
performs the best on the remaining datasets. The F1 score is a 
comprehensive indicator for evaluating the overall performance 
of a classification model, taking both the accuracy and recall of 
the classification model into account. It can be seen from the 
table that PG-LightGBM has the highest F1 score on all six 
datasets. This means that the PG-LightGBM proposed in this 
chapter has the best comprehensive performance in feature 
selection compared to the other three feature selection methods. 
It can effectively detect overlapping and low importance 
features in imbalanced data and maintain strong robustness on 
complex and diverse datasets. 

B. Anomaly Detection Performance 

1) Results: In order to further analyze the classification 

detection ability of PG-LightGBM on imbalanced data, this 

section selected six ensemble learning classification models, 

AdaBoost, CatBoost, GBDT, RandomForest, XGBoost, and 

LightGBM, as comparative classification models. In addition, 
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to further validate the ability of PG-LightGBM, another two 

similar methods of PG-GBDT and PG-XGBoost are also used, 

that are all tree-based ensemble detection method with PC 

mechanism. This comparison can also verify the advantage of 

LightGBM. The performance evaluation indicators still use 

accuracy, precision, recall, and F1 score. The relevant 

experimental results are shown in Table IV. 

In order to more intuitively demonstrate the comprehensive 
detection ability of PCC-GBDT-COSS on imbalanced data, the 
ROC curves of AdaBoost, CatBoost, GBDT, RandomForest, 
XGBoost, LightGBM, and PG LightGBM on six datasets were 
plotted in the experiment, and the area under the ROC curve 
(ROC-AUC value) was used as the comprehensive detection 
and evaluation indicator for seven integrated classification 
models. The ROC curve can intuitively reflect the impact of 
different classification thresholds on the generalization 
performance of the classification model, which helps to select 
the optimal classification threshold. Moreover, the fuller and 
closer the ROC curve is to the upper left corner, the larger the 
ROC-AUC value, indicating that the comprehensive detection 
ability of the classification model is stronger. The ROC curves 
of seven ensemble classification models on 6 datasets are 
shown in Fig. 2. 

2) Discussion: Observing Table IV, it is worth mentioning 

that for the WST dataset, after PG LightGBM selection of data 

features, the dimensionality decreased from 23 dimensions to 8 

dimensions, with a decrease of up to 65.2%. As mentioned in 

the effectiveness analysis of feature selection in Section V (A), 

significantly removing features does not mean sacrificing the 

detection performance of the classification model. By 

observing the experimental results in Table IV, this can be 

confirmed: based on the experimental data in the table, although 

the four performance indicators of PG-LightGBM on the WST 

dataset are not the best, it can be observed that the experimental 

results of LightGBM and PG-LightGBM on the WST dataset 

are surprisingly consistent. Significantly reducing the 

dimensionality of data features, but achieving the same 

performance, further validates the effectiveness of PG-

LightGBM in the feature selection process. In addition, the 

performance of PG-LightGBM on the WST dataset has certain 

practical significance in the storage and detection classification 

of massive data, which can save a lot of space and 

computational resources. 

TABLE IV.  PERFORMANCE COMPARISON OF EACH CLASSIFICATION METHOD ON 6 DATASETS 

 Dataset 
Ada 

Boost 

Cat 

Boost 
GBDT RandomForest XGBoost 

Light 

GBM 

PG- 

GBDT 

PG- 

XGBoost 

PG- 

GBDT 

Accuracy 

Power 0.7798 0.9509 0.8630 0.9078 0.8594 0.9617 0.9620 0.9431 0.9623 

BATADAL 0.9889 0.9918 0.9884 0.9915 0.9915 0.9915 0.9896 0.9919 0.9920 

ISCX-URL 0.9345 0.8758 0.9073 0.9614 0.9730 0.9828 0.9371 0.9740 0.9837 

NSLKDD 0.7796 0.7999 0.7703 0.7720 0.7794 0.7935 0.7928 0.7862 0.8022 

WST 0.9691 0.9667 0.9692 0.9446 0.9691 0.9684 0.9846 0.9690 0.9684 

UNSW-NB15 0.9366 0.9459 0.9447 0.9579 0.9447 0.9613 0.9503 0.9523 0.9615 

Precision 

Power 0.6778 0.9649 0.9369 0.9422 0.8928 0.9585 0.9567 0.9376 0.9567 

BATADAL 0.9914 0.9925 0.9901 0.9927 0.9930 0.9930 0.9921 0.9926 0.9935 

ISCX-URL 0.8951 0.9584 0.9103 0.9618 0.9549 0.9709 0.9208 0.9623 0.9717 

NSLKDD 0.6682 0.6922 0.6589 0.6599 0.6677 0.6837 0.6733 0.6788 0.6927 

WST 0.9935 0.9940 0.9935 0.9905 0.9947 0.9962 0.9941 0.9863 0.9962 

UNSW-NB15 0.9484 0.9407 0.9461 0.9648 0.9434 0.9646 0.9569  0.9466 0.9659 

Recal 

Power 0.5198 0.8695 0.5870 0.7411 0.6087 0.9130 0.8895  0.7987 0.9170 

BATADAL 0.9974 0.9992 0.9982 0.9987 0.9984 0.9984 0.9884  0.9884 0.9984 

ISCX-URL 0.8557 0.9508 0.7252 0.8911 0.9436 0.9645 0.9382  0.9579 0.9672 

NSLKDD 0.9699 0.9646 0.9677 0.9715 0.9715 0.9690 0.9707  0.9715 0.9719 

WST 0.9642 0.9604 0.9642 0.9334 0.9630 0.9605 0.9717  0.9603 0.9605 

UNSW-NB15 0.9523 0.9766 0.9685 0.9694 0.9716 0.9750 0.9448  0.9745 0.9740 

F1 score 

Power 0.5884 0.9148 0.7218 0.8296 0.7239 0.9352 0.8083  0.8177 0.9364 

BATADAL 0.9944 0.9958 0.9941 0.9957 0.9957 0.9960 0.9561  0.9861 0.9960 

ISCX-URL 0.8750 0.9546 0.8073 0.9251 0.9492 0.9677 0.8403  0.9500 0.9694 

NSLKDD 0.7913 0.8060 0.7843 0.7859 0.7914 0.8017 0.7876  0.7927 0.8089 

WST 0.9786 0.9769 0.9787 0.9611 0.9785 0.9781 0.9688  0.9785 0.9781 

UNSW-NB15 0.9504 0.9583 0.9572 0.9671 0.9346 0.9561 0.9608  0.9505 0.9699 
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Fig. 2. ROC curves of each classifier on 6 datasets. 

Except for the WST dataset, PG-LightGBM achieved the 
best classification performance in terms of accuracy and F1 
score on the other five datasets. In terms of accuracy, PG-
LightGBM performs slightly lower than the CatBoost ensemble 
classification model on the Power dataset, but performs the best 
on other datasets. In terms of recall, although PG-LightGBM is 
not as good as the CatBoost integrated classification model on 
the BATADAL and UNSW-NB15 datasets, the overall 
difference is small, and its performance is better than the Power, 
ISCX-URL, and NSLKDD datasets. PG-LightGBM seems to 
exhibit suboptimal performance in WST dataset. This is 

because that WST is a low dimensional dataset with only 23 
features, and its OR value is also the minimum with only 0.127. 
The above information indicates that overlap maybe not the 
major limitation for its anomaly detection. Some conventional 
detectors can also complete the classification task and identify 
anomalies. As for the proposed PG-LightGBM method, its 
selection of features may lead to certain important features 
being lost. For a high dimensional dataset, it may be acceptable, 
compared with feature overlap. As for low-dimensional dataset, 
each feature may contain a lot of useful information, to the 
feature selection must be more careful. In conclusion, the 
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proposed PG-LightGBM method is more suitable for high 
dimensional dataset, especially with higher overlap degree. 

As shown in Fig. 2, the solid red line represents the ROC 
curve of PG-LightGBM. From it, it can be seen more intuitively 
that the ROC curve of PG-LightGBM maintains a very full 
curve trend on all six datasets, that is, it maintains a high ROC-
AUC value. According to experimental data, PG-LightGBM 
achieved ROC-AUC values of 0.9854, 0.9777, 0.9982, 0.9659, 
0.9943, and 0.9949 on the Power, BATADAL, ISCX-URL, 
NSLKDD, WST, and UNSW-NB15 datasets, respectively. It 
only maintained the same highest ROC-AUC value as 
LightGBM on the WST dataset, but the ROC-AUC values on 
the other datasets were higher than those of other integrated 
classification models. This indicates that in anomaly detection 
of imbalanced data, PG-LightGBM has a relatively high 
comprehensive detection ability compared to other integrated 
classification models. The classification performance is better, 
and the model generalization performance is more impressive. 

Compared with the two similar methods of tree-based 
ensemble detection models with PC mechanism, PG-GBDT 
and PG-XGBoost, the proposed PG-LightGBM also show clear 
advantages. Although in some on some datasets, the difference 
between them is not obvious. Considering all the experimental 
results, the effectiveness and advance of this method are 
sufficient to be proven. 

C. Stability of Testing Performance 

1) Results: In order to further verify the detection stability 

of PG-LightGBM on imbalanced data, this section of the 

experiment plotted the PR curves of AdaBoost, CatBoost, 

GBDT, RandomForest, XGBoost, LightGBM, and PG-

LightGBM on six datasets, and used the area under the PR 

curve (PR-AUC value) as the detection stability evaluation 

index for seven integrated classification models. The PR curves 

of seven ensemble learning classification methods on 6 datasets 

are shown in Fig. 3. 

The previous text used ROC curves, which can reflect the 
comprehensive detection ability and generalization 
performance of the model and can be applied to most 
classification and detection scenarios. However, due to the 
characteristics of ROC curves, they are not very sensitive to the 
degree of data imbalance. That is, when the degree of data 
category imbalance is high, the ROC curve cannot well reflect 
the impact of data imbalance on the classification model. 
Therefore, this section of the experiment introduces a PR curve, 
with the horizontal axis representing recall and the vertical axis 

representing precision. The PR curve is sensitive to the degree 
of data imbalance and can accurately reflect the stability of the 
classification model when detecting imbalanced data. Similar 
to the ROC curve, the fuller and closer the PR curve is to the 
upper right corner, the larger the PR-AUC value, indicating that 
the classification model has higher detection stability and better 
detection performance for imbalanced data. 

2) Discussion: As shown in Fig. 3, the solid red line in the 

figure represents the PR curve of PG-LightGBM. It can be seen 

that in the six datasets, the PR curve of PCC-GBDT-GLOSS 

has a more prominent trend and is quite full. The PR-AUC 

values of PG-LightGBM on the Power, BATADAL, ISCX-

URL, NSLKDD, WST, and UNSW-NB15 datasets were 

0.9766, 0.9996, 0.9959, 0.9590, 0.9977, and 0.9971, 

respectively. PG-LightGBM maintained the best PR-AUC 

value compared to LightGBM on the WST dataset, while the 

PR-AUC value on the NSLKDD dataset was slightly lower than 

LightGBM. However, in other cases, PG-LightGBM had higher 

PR-AUC values than other ensemble classification models. 

From this, it can be concluded that PG-LightGBM has strong 

adaptability to imbalanced data, effectively overcoming data 

imbalance and overlapping data features. Compared with other 

integrated classification models, it exhibits strong model 

stability, further demonstrating the effectiveness of feature 

selection and its excellent classification detection performance. 

D. Calculation Cost of Algorithm 

1) Results: Calculation cost is one of the factors that 

detection methods need to focus on. Assume that a detection 

method has high detection performance, but consumes a lot of 

computational costs, this is not friendly for some application 

scenarios with limited computing resources. Therefore, 

achieving high detection performance while minimizing 

computational resources is an ideal state for detection methods. 

In order to verify the computational cost of PG-LightGBM, this 

section analyzes the training time cost of PG-LightGBM with 

AdaBoost, CatBoost, GBDT, RandomForest, XGBoost, and 

LightGBM ensemble learning detection methods on the Power, 

BATADAL, ISCX-URL, NSLKDD, WST, and UNSW-NB15 

datasets from the perspective of method training time cost. The 

operating platform used in the experiment is uniformly Apple 

M1 processor with 16GB of memory. The training time cost 

results of each ensemble learning detection method obtained are 

shown in Table V, measured in seconds (s). 

TABLE V.  TRAINING TIME COST OF EACH ENSEMBLE LEARNING DETECTION METHOD (S) 

Dataset AdaBoost CatBoost GBDT 
Random 

Forest 
XGBoost 

Light 

GBM 
PG-LightGBM 

Power 1.106 6.135 5.800 1.249 0.737 0.395 0.324 

BATADAL 0.960 0.399 5.220 2.078 0.584 0.357 0.224 

ISCX-URL 1.186 2.287 6.123 1.516 0.944 0.506 0.465 

NSLKDD 3.498 2.140 15.519 6.044 4.217 0.685 0.547 

WST 2.267 1.986 7.712 6.983 0.447 0.985 0.438 

UNSW-NB15 12.549 0.842 55.595 1.064 0.848 0.963 0.821 
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Fig. 3. PR curves of each classification method on 6 datasets. 

2) Discussion: From Table V, it can be seen that the 

training time cost of PG-LightGBM is lower than the other six 

contrastive ensemble learning detection methods on all six 

datasets. The main reason for this is that PG-LightGBM can 

eliminate overlapping features in the data and train models on 

the basis of effective feature subsets, avoiding unnecessary 

redundant feature calculations. It also organically combines 

LightGBM's GOSS mechanisms, further reducing the data and 

feature size during the training process, accelerating the 

training process, effectively reducing the consumption of 

computing resources during the training process, and reducing 

computational costs. 

This chapter focuses on anomaly detection of imbalanced 
data, and proposes a lightweight gradient boosting ensemble 
learning detection and classification method PG-LightGBM 
based on Pearson correlation coefficient (PCC) and gradient 
boosting machine (GBM) for overlapping feature selection 
from the perspective of class overlap. 
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Experimental results have shown that the method proposed 
in this chapter can effectively detect overlapping features in 
imbalanced data and select effective features, reducing the 
interference of redundant features on the performance of 
classification models, enhancing the learning ability and 
stability of classification models. At the same time, combining 
the GOSS mechanisms of LightGBM, PG LightGBM is 
generally superior to other comparison methods in terms of 
feature selection effectiveness and comprehensive detection 
performance on the Power, BATADAL, ISCX URL, 
NSLKDD, WST, and UNSW-NB15 datasets. In addition, PG-
LightGBMalso has strong model stability and robustness, and 
is suitable for large-scale datasets and highly imbalanced 
datasets. In the real world where the data scale is increasingly 
large and rare data is increasingly hidden, PG-LightGBM has 
good real-world usability. 

VI. CONCLUSION 

This paper proposes a method for anomaly detection of 
overlapping data, PG-LightGBM, based on Pearson correlation 
coefficient and gradient boosting machine, from the perspective 
of feature processing. Introducing Pearson correlation 
coefficient (PCC), calculating the correlation between two 
feature variables, and obtaining an overlap matrix based on the 
correlation between different feature pairs to quantify the 
degree of feature overlap. Introducing gradient boosting 
decision trees to calculate the importance of overlapping 
features, while accumulating and sorting feature importance 
values to obtain important and non-important feature sets, and 
then removing the intersection features of overlapping and non-
important feature sets to solve the problem of feature overlap 
selection. Introducing a unilateral gradient sampling 
mechanism, using sample gradients for training, selecting large 
and small gradient samples in a certain proportion to train the 
detection model, reducing data size, improving training 
efficiency, and achieving performance enhancement of weak 
learning machines through iterative training. The experimental 
results show that PG-LightGBM can effectively detect 
overlapping features in the data and select effective features, 
reducing the interference of redundant features on the 
performance of classification models, enhancing the learning 
ability and stability of classification models. At the same time, 
combined with the GOSS mechanism, PG-LightGBM is 
generally superior to other comparison methods in terms of 
feature selection effectiveness and comprehensive detection 
performance on the Power, BATADAL, ISCX-URL, 
NSLKDD, WST, and UNSW-NB15 datasets. In addition, PCC-
GBDT-COSS also has strong model stability and robustness, 
and is suitable for large-scale datasets and highly imbalanced 
datasets. In the real world where the data scale is increasingly 
large and rare data is increasingly hidden, PG-LightGBM has 
good real-world usability. 

In the PG-LightGBM detection method, its sensitivity to 
feature dimension is its potential drawback. Because the feature 
selection mechanism is essentially dimensionality reduction, so 
certain important information may be lost for lower 
dimensional datasets. So, it is more suitable for high 
dimensional dataset, especially with higher overlap degree. In 
addition, the overlapping feature threshold and feature 
importance accumulation threshold of the data require human 

intervention to be set, which may lead to potential feature over 
elimination and loss of effective feature information. Future 
work will study on feature stitching instead of feature selection, 
and design adaptive threshold mechanisms to prevent potential 
risks caused by human intervention. 
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