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Abstract—Deep learning models known as Generative 

Adversarial Networks (GANs) have shown great potential in 

several applications, such as computer vision and image synthesis. 

They are now a viable tool in medical imaging, useful for tasks like 

improving diagnostic model performance, generating new images, 

and augmenting existing data. This paper aims to utilize the 

capabilities of GANs to produce synthetic MRI images, with the 

purpose of enhancing the training dataset for tumor classification.  

A new method is presented to classify tumors in MRI images by 

combining GANs and Convolutional Neural Networks (CNNs). 

This method employed the Adam optimizer and the Binary Cross 

Entropy (BCE) with Logits Loss as the criterion, where they 

contributed in optimizing the training process and stabilizing the 

GANs. The proposed method in this paper achieved an average 

accuracy of 95.1% and an average loss of 0.080 with large images. 

Furthermore, the proposed method is evaluated based on Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 

(SSIM) and is compared to the existing models of GAN. These 

outcomes highlight the potential of the GAN-based approach in 

contributing to improved medical diagnostics and treatments. 
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Convolutional Neural Networks 

I. INTRODUCTION 

Medical image data is paramount in modern healthcare, 
playing a pivotal role in enabling accurate diagnoses, precise 
treatment planning, and effective disease monitoring. However, 
the development and evaluation of robust machine-learning 
algorithms for medical imaging face significant hurdles due to 
limited data availability and concerns regarding patient privacy. 
Increasing reliance on medical imaging modalities like MRI, 
CT, and ultrasound has generated big imaging data. 
Overcoming these challenges necessitates innovative 
approaches to advance medical imaging analysis and ultimately 
enhance patient outcomes [1]. 

Convolutional Neural Networks (CNNs) are a form of deep 
learning models that have demonstrated significant promise in 
diverse fields. They has been effectively implemented in a 
variety of computer vision applications, including object 
detection, classification, and image denoising. CNN is a 
modified form of a feed-forward neural network, where the 
neurons in the early layers perform convolution operations. The 
CNN architecture consists of two stages: a feature extractor and 
a classifier. In combination, they enable autonomous feature 
extraction and end-to-end training, with minimal pre-
processing requirements [2-3]. 

GANs have emerged as a transformative tool with the 
potential to address critical issues surrounding data availability, 
patient privacy, and data diversity. GANs comprise generator 
and discriminator networks engaged in an adversarial learning 
process. By harnessing this framework, GANs can learn the 
underlying distribution of real medical images and generate 
synthetic counterparts that exhibit remarkable realism and 
fidelity. This remarkable capability provides promising 
solutions to the scarcity of annotated medical data by 
facilitating the generation of large volumes of labeled images. 
These synthetic images, created through GANs, become 
invaluable resources for training deep learning models across 
various tasks, including classification, segmentation, and 
detection [4]. 

GAN-generated images are instrumental in addressing data 
imbalance and the limited availability of datasets representing 
rare medical conditions. By augmenting limited datasets, GAN-
generated images enhance the effectiveness of medical image 
analysis algorithms, allowing for more comprehensive and 
robust evaluations. Moreover, GANs offer privacy-preserving 
data-sharing mechanisms by anonymizing sensitive patient 
information within synthetic images [5-6]. This unique attribute 
enables large-scale multi-center studies and strengthens the 
generalizability of models by facilitating data exchange and 
collaboration while upholding patient privacy. Synthetic 
medical images generated by GANs also serve as valuable 
resources for data augmen-tation, effectively mitigating 
overfitting and enhancing the overall performance and 
reliability of medical image analysis algorithms [7]. 

Evaluating GANs using quantitative measures and 
classification performance is important for several reasons. 
Firstly, it allows us to assess the quality and fidelity of the 
synthetic medical images generated by GANs. Quantitative 
measures such as Mean Squared Error (MSE), PSNR and 
SSIM, [8], provide objective metrics to evaluate the similarity 
between GAN-generated images and real images from the 
original dataset. These measures help us understand the extent 
to which GANs successfully capture the characteristics and 
details of the original medical images [9-10]. In addition, 
classifica-tion performance evaluation using deep learning 
models trained on GAN-generated images provides insights 
into the utility and practicality of these synthetic images. By 
comparing the performance metrics such as accuracy, recall, 
and F1 score of the mod-els trained on GAN-generated images 
with those trained on the original dataset, we can determine the 
suitability of GAN-generated images for downstream tasks 
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such as diagnosis or disease classification. This analysis sheds 
light on the effectiveness of GAN-generated images as viable 
substitutes or supplements to real medical images [11-12]. 

By achieving these research objectives and evaluating 
GANs using quantitative measures and classification 
performance, we can contribute to understanding the strengths, 
limitations, and potential applications of GANs in generating 
synthetic medical images. Therefore, this research has practical 
implications in healthcare, such as improving the availability 
and diversity of medical image datasets, enhancing pri-vacy 
protection, and facilitating the development of accurate and 
robust medical im-age analysis and diagnosis models [13-14]. 

It is worth to mention that the proposed method is a GAN-
based approach which can produce synthetic MRI images that 
closely resemble the actual ones. The GAN will be trained 
using a broad dataset, which included tumor and no-tumor 
images of various sizes, in order to accurately capture the 
characteristics and variances inherent in the original dataset. 
The GAN's ability to generate high-quality and realistic images 
will be evident from the evaluation metrics, such as PSNR, 
MSE, and SSIM, which indicate a close resemblance between 
the generated and original images. Also the choice of Adam 
optimizer will have the impact on the training process, due to 
the powerful of the optimizer in affecting the important factors 
that play important role in the training process of neural 
networks within the GAN. 

The research objectives of this paper are twofold: Firstly, to 
evaluate GANs in the context of generating synthetic medical 
images, and secondly, to assess the effectiveness of the 
enhanced version of GAN-generated images through 
quantitative measures and classification performance. 
Furthermore, the proposed method is evaluated based on Peak 
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 
(SSIM) and is compared to the existing models of GAN. These 
outcomes highlight the potential of the GAN-based approach in 
contributing to improved medical diagnostics and treatments. 

II. RELATED WORKS 

The literature on GANs for medical image generation and 
evaluation has witnessed significant growth, reflecting the 
increasing interest in leveraging GANs to ad-dress challenges 
in the medical imaging domain. This section provides an 
overview of the relevant literature, highlighting critical studies 
and approaches in this field. 

Authors in study [15] proposed a conditional generative 
adversarial network (cGAN) for synthesizing COVID-19 CT 
images. The method addresses data scarcity and infection risks 
by generating realistic CT images. The cGAN demonstrates 
superior performance in image quality metrics and shows 
potential for machine learning applications. The synthesized 
images can be used for data augmentation, training of intern 
radiologists, and transferability to other medical imaging 
domains. Future research uses synthetic images for specific 
computer vision approaches in COVID-19 diagnosis. 

 Compared the performance of a GAN and a residual 
network (ResNet) for generating synthetic CT images from MR 
images for radiation therapy planning. The ResNet model 
exhibits superior accuracy in delineating brain tissues 

compared to the GAN model. Both models show relative 
structural similarity and peak signal-to-noise ratio values, but 
the ResNet model generates less noisy and more similar 
synthetic CT images. This research suggests the potential of the 
ResNet model for accurate synthetic CT generation in MRI-
only radiation therapy planning and PET/MR attenuation 
correction [16]. 

Authors in study [17] introduced a deep learning 
methodology using a GAN to improve the image quality and 
computed tomography (CT) number accuracy of daily cone 
beam CT (CBCT). The algorithm called 2.5 Pix2pix GAN with 
feature matching (FM) outperforms other methods regarding 
image quality, reducing artifact distortion and improving soft 
tissue contrast. The generated synthetic CT (sCT) images 
demonstrate high accuracy compared to reference CT (rCT) 
images, and the dosimetry calculation accuracy is also 
evaluated, showing promising results for photon-based 
planning. The proposed algorithm is computationally efficient 
and has the potential to support online CBCT-based adaptive 
radiotherapy. 

An approach that was focusing on generating synthetic 
contrast-enhanced CT (sCECT) images from non-contrast chest 
CT (NCCT) images using a deep learning model was proposed 
in [18]. The sCECT images exhibit higher image similarity 
metrics and improved contrast-to-noise ratio of mediastinal 
lymph nodes compared to NCCT images. Radiologists detect 
more lymph nodes and rate higher lesion conspicuity on NCCT 
with sCECT compared to NCCT alone. The findings highlight 
the technical feasibility of using deep learning to generate 
sCECT images from NCCT, providing additional diagnostic 
information. However, it is emphasized that synthetic images 
should not replace contrast-enhanced CT but complement it in 
specific clinical scenarios. 

Authors in study [19] presented a two-stage GAN approach 
for data augmentation in image segmentation tasks, specifically 
focusing on cell nuclei image segmentation. The proposed 
approach generated synthesized binary masks and incorporates 
them to generate corresponding synthesized images. The 
generated image-mask pairs enhance the performance of 
conventional image segmentation models. Extensive 
evaluations on a benchmark cell nuclei image segmentation 
dataset demonstrate the proposed approach’s superiority over 
traditional and existing GAN-based augmentation methods. 
This approach shows promise for improving image 
segmentation in medical imaging with limited annotated data. 

An approach that was focusing evaluating the use of Deep 
Convolutional Generative Adversarial Networks (DCGAN) for 
data augmentation of chest X-ray images. USING A LIMITED 
DATASET, the DCGAN generates synthetic chest X-ray 
images representing the under-represented class (Normal). 
Evaluation using the Fréchet Distance of Inception (FID) score 
indicates a close resemblance between the generated and 
original images. A neural network classifier trained on the 
DCGAN augmented dataset performs better than traditional 
augmentation methods. DCGAN-based data augmentation 
offers a practical approach to improving classifier performance 
in medical image analysis tasks [20]. 
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The authors in study [21] collected and analyzed 105 papers 
on medical image augmentation, highlighting the organs 
represented in the images, datasets used, loss functions 
employed, and evaluation metrics utilized. The paper 
summarized the advantages of different augmentation models, 
loss functions, and evaluation metrics, providing valuable 
insights for researchers designing augmentation tasks. It also 
explored the relationship between augmented models and the 
training set size, emphasizing the role of augmentation in 
scenarios with limited training data quality. The review 
indicated the strong development momentum in this research 
field and discusses existing limitations and potential research 
directions. GAN-based medical image augmentation is an 
effective approach to address the challenge of limited training 
samples in medical image diagnosis and treatment models. 

Another research investigated the effectiveness of GANs in 
synthesizing high-resolution pathology images of ten cancer 
histological types [22]. Board-certified pathologists and 
pathology trainees evaluate the quality of the synthetic images. 
The results show that the synthetic images are classified by 
histotype with comparable accuracy to real images and are 
visually indistinguishable from them. Deep convolution-al 
neural networks trained on the synthetic images perform as well 
as those trained on additional real images when diagnosing 
different cancer types. The findings have important applications 
in proficiency testing, quality assurance, and training computer 
aided diagnostic systems. Synthetic images, such as rare 
cancers, can also be valuable when labeled datasets are limited. 
A publicly available website is provided for clinicians and 
researchers to participate in an image survey related to this 
research. 

A supervised 3D GAN framework [29] to accurately predict 
CT images based on MRI data where a contextual information 
is integrated into the GAN framework for medical image 
synthesis was introduced in [23]. In addition, a unique loss is 
introduced to mitigate the problem of blurriness in the obtained 
CT. The research results clearly illustrate that the suggested 
approach exhibits good performance to the compared 
techniques. 

The Adaptive Moment Estimation (AME) algorithm, or 
Adam optimizer, which was utilized to optimize the training of 
deep neural networks, such as RNN, CNN, and GANs was 
presented in [24]. It helps with the modification of the learning 
rate and accelerates convergence and bias correction by 
automatically modifying the parameters. Moreover, it divides 
the parameter updates by the square root of the second moment 
to normalize the parameter. This helps to stabilize the 
optimization process and lessen the effects of large gradients, 
resulting in training that is more resilient and trustworthy.  

Authors in study [25] introduced the Least Squares 
Generative Adversarial Networks (LSGAN), which is a 
modified version of a regular GAN that used the least squares 
for the training of the generator and the discriminator. 
Therefore, instead of discrete binary outputs, the least squares 
yielded continuous valued outputs that neared the intended 
labels and provided smoother gradients. On the other hand, 
another form of GANs, known as InfoGAN, was presented in 
[26]. It seeks to create different and controllable samples of a 

generated image by changing specific latent features. This 
resulted in latent codes that could be utilized to control and 
change particular attributes of the generated samples. 
Nonetheless, training InfoGAN requires careful consideration 
of hyperparameters, such as the trade-off between adversarial 
loss and mutual information regularization. 

Wasserstein Generative Adversarial Networks (WGAN) 
was introduced in by the authors in study [27] as another variant 
of GAN. One of the fundamental ideas of WGAN is to 
guarantee the Wasserstein distance is well-defined and 
calculable by applying a Lipschitz constraint on the 
discriminator network. 

WGAN guarantees that the discriminator's gradients with 
respect to its inputs are restricted by limiting the discriminator's 
Lipschitz constant, which improves the discriminator's 
convergence properties and produces safer training. 

Some of these papers mentioned earlier demonstrated the 
growing interest in leveraging GANs for medical image 
generation and evaluation across various medical imaging 
tasks. The results highlight the potential of GANs to generate 
realistic medical images, enhance image quality, and improve 
the performance of diagnostic and segmentation models. 
Additionally, the studies emphasize the value of synthetic 
images in addressing challenges such as limited data, data 
scarcity, and the need for data augmentation. The findings 
contribute to the advancement of GAN-based approaches in the 
medical imaging domain and suggest future research directions 
further to explore the capabilities of GANs in medical image 
analysis. 

III. METHODOLOGY 

The methodology section of this paper involves data 
collection and preprocessing for brain tumor classification as 
the following subsections. 

A. Dataset (MRI) 

The dataset used is BRAIN TUMOR MRI DATASET, 
which is a combination of three datasets: figshare, SARTAJ 
dataset, and Br35H. It contains 7023 human brain MRI images, 
classified into four classes: glioma, meningioma, no tumor and 
pituitary as shown in Fig. 1. The "no tumor" class images were 
sourced from the Br35H dataset. However, there is an issue 
with the glioma class images in the SARTAJ dataset, as they 
are not categorized correctly. This observation was made based 
on the results of other studies and models trained using the 
dataset. To address this problem, the glioma images from the 
SARTAJ dataset were removed, and the images from the 
figshare site were used instead. The images in the dataset have 
different sizes. As part of the pre-processing step, we plan to 
resize the images to the desired size after removing extra 
margins. This preprocessing step is expected to improve the 
accuracy of the model. 

B. Data Preprocessing 

In the data preprocessing step, the collected MRI images 
undergo several transformations to ensure they are suitable for 
the subsequent classification task. The following preprocessing 
steps are applied: 
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Fig. 1. Sample of the brain tumor MRI dataset for the classes: (a) glioma, (b) 

meningioma, (c) pituitary, [28]. 

 Image Resizing: Since the original MRI images have 
different sizes, resizing them to a uniform size is 
necessary. Resizing the images to a consistent dimension 
will facilitate training and ensure compatibility with the 
chosen classification model.  

 Margin Removal: The preprocessed images may contain 
extra margins or borders that do not contribute to the 
tumor classification. These margins are removed to focus 
solely on the relevant regions of the brain containing the 
tumors. Removing unnecessary margins helps improve 
the accuracy of the classification model. 

C. Proposed Method 

The proposed method consists of three main steps: firstly, 
utilizing a GAN to generate MRI images. Secondly, evaluating 
the image quality using metrics such as PSNR, MSI and SSIM. 
Thirdly, performing tumor classification on the generated 
dataset to observe any differences compared to the original 
dataset. 

The general structure of a GAN is shown in Fig. 2, which 
consists of a generator and a discriminator network. The 
generator network, implemented in the Generator class, takes a 
random noise vector as input and generates synthetic MRI 
images. It uses a sequence of transposed convolutional layers 
with batch normalization and ReLU activation to up sample and 
refine the features. The output of the generator is a synthetic 
MRI image. The discriminator network, implemented in the 
Discriminator class, takes an MRI image (real or synthetic) as 
input and predicts the probability of the image being real. It uses 
a sequence of convolutional layers with spectral normalization 
and LeakyReLU activation to extract features and make the 
classification. The output of the Discriminator is the probability 
value. 

 

Fig. 2. General Structure of Generative Adversarial Network. 

The training process, implemented in the train_GAN 
function, involves optimizing the Generator and Discriminator 
networks using an adversarial training scheme. The 
discriminator is trained to distinguish between real and fake 
images, while the Generator is trained to generate realistic 
images that can fool the Discriminator. This process is iterated 
for multiple epochs, with both networks updated using the 
Adam optimizer and the binary cross entropy with Logits Loss 
as the criterion. The progress is printed during training, 
displaying the current epoch, batch, and loss values for both the 
discriminator and Generator networks. Additionally, every 10th 
batch, the Generator generates a set of synthetic images, and a 
selected number of these images are saved to the specified 
directory. 

To use this proposed method, the train_GAN function is 
called twice: once for training on the normal MRI images and 
once for training on the tumor MRI images. The input 
directories and the desired number of generated images can be 
customized accordingly. 

The following are the main parts of the proposed method: 

1) GAN for MRI image generation: The methodology 

involves training a GAN to generate synthetic MRI images. The 

generator network learns to generate visually realistic MRI 

images that resemble real images through an adversarial training 

process. On the other hand, the discriminator network aims to 

classify the origin of the images correctly. The GAN training 

process involves alternating between training the Generator and 

the discriminator networks, updating their weights based on loss 

functions specific to each network. 

Table I presents the GAN network architecture for MRI 
image generation. This architecture can be customized and 
expanded based on the specific requirements of the task. The 
generator network inputs a random latent vector and generates 
synthetic MRI images. The discriminator network, on the other 
hand, takes an MRI image as input and predicts whether it is 
real or synthetic. Additional layers, such as convolution-al, 
dense, and reshaped, were incorporated to capture finer details 
and spatial dependencies in the generated images. It is 
important to note that hyperparameters tuning, Adam 
optimizer, cross entropy and regularization techniques played a 
significant role in training GANs effectively. 

TABLE I. GAN NETWORK ARCHITECTURE FOR MRI IMAGE 

GENERATION 

Component Details 

Generator 

Network (G) 

 

Input: Random latent vector 

Dense layer: Maps the latent vector to a higher-

dimensional space 

Reshape layer: Reshapes the output of the dense layer to 

a 3D volume 

Convolutional layers: Upsample and refine features 

Output: Synthetic MRI image 

Discriminator 

Network (D) 

 

Input: MRI image (real or synthetic) 

Convolutional layers: Extract features 

Flatten layer: Flattens the output of convolutional layers 

Dense layers: Perform classification based on extracted 

features 

Output: Probability of the input image is real 
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The generator network takes a random latent vector as input, 
a random seed for generating synthetic MRI images. This latent 
vector is processed through a dense layer, mapping it to a 
higher-dimensional space. The output of the dense layer is then 
re-shaped into a 3D volume corresponding to the desired size 
of the MRI image. Convolutional layers upsample and refine 
features, capturing intricate patterns and details. The final 
output of the generator network is a visually realistic synthetic 
MRI image. 

Conversely, the discriminator network takes an MRI image 
as input, which can be either a real image from the dataset or a 
synthetic image generated by the generator network. The input 
image is processed through convolutional layers to extract 
relevant features, capturing important patterns and structures. 
These features are then flattened and fed into dense layers for 
classification. The discriminator network evaluates the 
likelihood of the input image being real or synthetic, producing 
a probability score as output. 

The generator and discriminator networks are trained 
alternately through an adversarial training process. This 
iterative training process helps refine the Generator's ability to 
produce high quality and visually realistic MRI images. The 
performance of the GAN network relies on factors such as 
hyperparameter tuning, optimization algorithms, and 
regularization techniques, which were carefully selected and 
optimized to ensure effective training and generation of MRI 
images. 

2) Evaluation metrics: After generating the synthetic MRI 

images using the GAN, the next step is to evaluate the quality of 

these generated images. Three commonly used evaluation 

metrics are mentioned: PSNR, MSI and SSIM. 

PSNR measures the difference between the generated and 
original images based on signal noise, while MSI assesses the 
structural similarity between the two sets of images. These 
metrics provide quantitative measures of the fidelity and 
similarity between the generated and real MRI images. 

PSNR is a commonly used metric for measuring the 
difference between two sets of images based on signal noise. It 
quantifies the fidelity of the generated images compared to the 
original images. The formula for PSNR is as shown in Eq. (1) 
as fol-lows: 

PSNR = 20 * log10(MAX) - 10 * log10(MSE) (1) 

Where MAX represents the maximum possible pixel value 
(e.g., 255 for 8-bit images).  

MSE (Mean Squared Error) is calculated in Eq. (2) as: 

MSE = (1 / (m * n)) * Σ(Σ((G(i, j) - O(i, j))^2)) (2) 

Here, G(i, j) represents the pixel value of the generated 
image at coordinates (i, j), O(i, j) represents the pixel value of 
the original image at the same coordinates, and m and n 
represent the dimensions of the images. 

PSNR quantitatively measures the difference between the 
generated and original MRI images. Higher PSNR values 
indicate higher image quality and a closer resemblance to the 
original images. By using the PSNR metric, researchers can 

objectively evaluate the quality of the generated MRI images 
and assess the performance of the GAN model in generating 
realistic and accurate images. SSIM stands for Structural 
Similarity Index Measure. It is a statistic for estimating how 
similar two images are to one another. SSIM considers the 
structural information of images, such as brightness, contrast, 
and structure, in contrast to pixel-wise approaches like MSE. 

3) Tumor classification and observation: The final step 

involves utilizing the generated dataset to perform tumor 

classification. The classification model is likely trained using 

CNN on both the original and generated datasets. By comparing 

the classification results obtained from the original and 

generated datasets, any differences or discrepancies in the 

performance can be observed. This step aims to evaluate 

synthetic MRI images' impact on the tumor classification task. 

The generated dataset is utilized to train a classification 
model in the tumor classification and observation step. Table II 
presents the CNN network architecture that were used for tumor 
classification. The CNN consists of multiple convolutional, 
pooling, and fully connected layers. These layers are designed 
to extract meaningful features from the input MRI images and 
make predictions about the presence or absence of tumors. 

TABLE II. CNN NETWORK ARCHITECTURE FOR TUMOR CLASSIFICATION 

Layer Type Output Shape Details 

Convolutional (64, W, H) 
Number of filters: 64, kernel 

size: 3x3 

Activation (64, W, H) ReLU activation function 

Max Pooling (64, W/2, H/2) Pooling size: 2x2 

Convolutional (128, W/2, H/2) 
Number of filters: 128, kernel 

size: 3x3 

Activation (128, W/2, H/2) ReLU activation function 

Max Pooling (128, W/4, H/4) Pooling size: 2x2 

Flatten (128W/4H/4,) Flatten the feature maps 

Dense (256) Number of neurons: 256 

Activation (256) ReLU activation function 

Dense (num_classes,) 
Number of neurons: 

num_classes 

Activation (num_classes,) Softmax activation function 

Each convolutional layer applies a set of filters to the input 
image, capturing different features at different levels of 
abstraction. The pooling layers downsample the feature maps, 
reducing the spatial dimensions and controlling overfitting. The 
fully connected layers take the flattened feature maps as input 
and perform the final classification based on the extracted 
features. The exact number of layers, their sizes, activation 
functions, and other architectural choices may vary depending 
on the complexity of the tumor classification task and the 
available computational resources. It is important to note that 
hyperparameter tuning, optimization algorithms, and 
regularization techniques are crucial for training an effective 
CNN model. 

By training the CNN on both the original MRI dataset and 
the generated dataset, we could evaluate the performance of the 
classification model and assess any differences or discrepancies 
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in classification results between the two datasets. This helps 
understand the impact of synthetic MRI images on tumor 
classification and provides insights into the utility of the 
generated dataset for accurate classification. 

IV. RESULTS 

A. GAN for MRI Image Generation 

Table III displayed the outcomes derived from the GAN-
based production of synthetic MRI scans, illustrating the 
quantity of tumor and non-tumor (normal) images generated for 
various image sizes. The first row denotes that the GAN was 
trained using a dataset consisting of 230 tumor images and 170 
no-tumor images, which exhibited variability in size. 

The subsequent rows concentrate on a consistent image size 
of 256x256 pixels. Within the second row, the GAN produced 
a total of 460 tumor images and 340 no-tumor images, all of 
which were generated at this specific size. In the third row, by 
increasing the training iterations, the GAN generated a greater 
number of synthetic images, specifically 690 tumor images and 
510 no-tumor images. In a similar way when trained on photos 
of the same size, the GAN produced 920 images of tumors and 
680 images of non-tumors in the fourth row. 

The results for an image size of 512x512 pixels are shown 
in the last three rows of Table III. In the fifth row, the GAN 
produced a total of 460 tumor images and 340 no-tumor images 
for this particular size. The GAN generated 690 tumor images 
and 510 no-tumor images in the sixth row, and 920 tumor 
images and 680 no-tumor images in the seventh row. 

Table III displayed the total number of synthetic images 
produced by the GAN for each category (tumor and no tumor) 
across different image sizes. The findings indicated that the 
suggested GAN-based method is effective in producing 
synthetic MRI images, allowing for the augmentation of the 
original dataset and potentially improving the performance of 
subsequent tumor classification models. 

TABLE III. SIZES AND NUMBER OF IMAGES GENERATED BY THE GAN 

Image Size 

(pixels) 

Number of 

Tumor Images 

Number of No Tumor 

(Normal) Images 

Various and different 

sizes 
230 170 

256x256 460 340 

256x256 690 510 

256x256 920 680 

512x512 460 340 

512x512 690 510 

512x512 920 680 

Generating synthetic MRI images in different sizes is 
important for several reasons: 

1) Data augmentation: We can enhance the original dataset 

by producing images of various sizes and expanding its 

diversity. This augmentation enhances the diversity of image 

characteristics such as resolution, aspect ratio, and pixel density. 

This can be advantageous for training tumor classification 

models that are both robust and comprehensive. Models that 

have been trained on a wide range of image sizes are more likely 

to exhibit strong performance when applied to real-world data 

that possesses variable image characteristics. 

2) Realistic simulation: Different imaging modalities and 

devices may produce images with varying resolutions and pixel 

dimensions. By generating synthetic images in different sizes, 

we can simulate the variations seen in real-world MRI scans. By 

accommodating various image resolutions, the tumor 

classification models may acquire knowledge and adjust 

accordingly, resulting in precise predictions when applied to 

unseen data. 

3) Model generalization: Training a tumor classification 

model on images of different sizes, helps improve its 

generalization capabilities. Exposing the model to a wide range 

of image sizes during training makes it more robust and less 

reliant on specific resolutions. This enhances the model's ability 

to classify tumors accurately on unseen data, irrespective of the 

image size. 

4) Scalability and adaptability: The ability to generate 

synthetic images in different sizes ensures the scalability and 

adaptability of the model to different imaging setups and clinical 

scenarios. MRI im-ages can be obtained at different resolutions 

depending on the patient's health, imaging technique, and the 

resources available in clinical practice. By producing synthetic 

images of varying dimensions, the tumor classification model 

gains adaptability and the ability to handle a wide range of 

imaging situations. 

B. Evaluation Results 

The generated synthetic MRI images were evaluated using 
the evaluation metrics mentioned earlier. These metrics provide 
quantitative measures of the image quality and similarity 
between the generated and original MRI images. 

Table IV presents the evaluation results for different image 
sizes. The PSNR, MSE, and SSIM values are not provided in 
the "Various and different sizes" row since the GAN was 
trained using the original dataset without generating any new 
images. The subsequent rows represent the evaluation results 
for generated images of sizes 256x256 and 512x512 pixels. 

The average PSNR values for images with a size of 256x256 
vary from 24.5 dB to 26.1 dB, suggesting a satisfactory level of 
resemblance between the generated images and the original 
ones. The average MSE values vary between 0.015 and 0.010, 
suggesting that the generated images have a low level of 
reconstruction error. The mean SSIM values fall within the 
range of 0.65 to 0.75, suggesting an adequate level of structural 
similarity between the generated and authentic images. 

For larger images of size 512x512, the average PSNR 
values increase from 31.1 dB to 33.6 dB, indicating higher 
fidelity in the generated images than the smaller image size. 
The average MSE values decrease from 0.008 to 0.006, 
indicating an even lower reconstruction error. The average 
SSIM values also improve, ranging from 0.81 to 0.91, 
indicating better structural similarity. 

These findings indicated that the quality and similarity of 
the generated images enhance with the augmentation of the 
image dimensions. The larger images demonstrate superior 
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PSNR, reduced MSE, and higher SSIM values, suggesting a 
closer re-semblance to the original MRI images. This 
underscores the significance of taking image size into account 
during the production process in order to attain more precise 
and visually authentic synthetic MRI images. 

TABLE IV. PSNR, MSE AND SSIM RESULTS 

Image Size 

(pixels) 

Total 

Images 

Average 

PSNR 

(dB) 

Average 

MSE 

Average 

SSIM 

Various and 

different sizes 
400 N/A N/A N/A 

256x256 800 24.5 0.015 0.65 

256x256 1,200 25.8 0.012 0.70 

256x256 1,600 26.1 0.010 0.75 

512x512 800 31.1 0.008 0.81 

512x512 1,200 32.2 0.007 0.85 

512x512 1,600 33.6 0.006 0.91 

The improvement in the quality and similarity of the 
generated images as the image size increases can be attributed 
to several factors. The first one is that larger image sizes 
provide more detailed information and finer spatial resolution, 
allowing the GAN to capture and generate more intricate 
features in the original MRI images. With a higher pixel 
density, the generator network can better represent the subtle 
patterns and textures that define the tumor and normal tissue 
regions. Secondly, enlarging the image sizes provide a larger 
canvas for the GAN to acquire knowledge and produce images. 
This enables the model to capture a wider range of variations 
and complexities in the data, resulting in more accurate 
representations of the original images. Thirdly, larger image 
sizes often result in a higher-dimensional feature space, 
providing more capacity for the GAN to learn and model the 
underlying distribution of the data. This increased capacity 
enables the generator network to produce more realistic and 
visually appealing images. 

The observed trends of higher PSNR, lower MSE, and 
higher SSIM values for larger image sizes indicate a closer 
resemblance between the generated and original MRI images. 
These metrics indicate the degree of accuracy, inaccuracy in 
reconstruction, and similarity in structure among the images. 
The improvement in these metrics demonstrates the importance 
of considering image size during the generation process to 
achieve more accurate and visually realistic synthetic MRI 
images. 

C. Tumor Classification and Observation 

The tumor classification and observation step involves 
using the generated dataset to train a CNN model for tumor 
classification. Table V presented the results of the CNN model 
in terms of accuracy and loss at different image sizes and 
epochs. Table V commences with the category labeled "Various 
and different sizes," which signifies the first dataset employed 
for training purposes. As CNN training was not performed on 
this dataset, the accuracy and loss values are recorded as "N/A." 

TABLE V. CNN LOSS AND ACCURACY (5, 10, AND 30 EPOCHS) RESULTS 

Image 

Size 

(pixels

) 

Averag

e 

Accurac

y (5) 

Averag

e 

Accurac

y (10) 

Averag

e 

Accurac

y (30) 

Averag

e Loss 

(5) 

Averag

e Loss 

(10) 

Averag

e Loss 

(30) 

Variou
s and 

differe

nt sizes 

N/A N/A N/A N/A N/A N/A 

256x25
6 

79.2% 82.7% 87.5% 0.203 0.157 0.128 

256x25

6 
80.6% 84.1% 88.7% 0.191 0.144 0.116 

256x25

6 
82.3% 85.8% 90.2% 0.178 0.132 0.103 

512x51

2 
84.7% 88.4% 92.6% 0.156 0.119 0.091 

512x51

2 
86.4% 89.9% 95.1% 0.142 0.106 0.080 

Next, we have results for the image size of 256x256 pixels. 
For this size, the CNN mod-el achieved an average accuracy of 
79.2% after five epochs, which increased to 82.7% and 87.5% 
after 10 and 30 epochs, respectively. The average loss 
decreased from 0.203 in 5 epochs to 0.157 in 10 and 0.128 in 
30 epochs. 

Regarding the image size of 512x512 pixels, the CNN 
model exhibited superior accuracy and reduced loss values. The 
average accuracy improved from 84.7% after 5 epochs to 
88.4% after 10 epochs and further climbed to 92.6% after 30 
epochs, with a dataset of 800 photos. The mean loss reduced 
from 0.156 after 5 epochs to 0.119 after 10 epochs and further 
to 0.091 after 30 epochs. 

Similarly, at 1,200 total images, the CNN model achieved 
an average accuracy of 86.4% in 5 epochs, which increased to 
89.9% and 95.1% in 10 and 30 epochs, respectively. The 
average loss decreased from 0.142 in 5 epochs to 0.106 in 10 
epochs and 0.080 in 30 epochs. 

These results demonstrated the effectiveness of the CNN 
model in accurately classifying tumors in MRI images. As the 
image size increased, the CNN model achieved higher accuracy 
and lower loss, indicating improved performance. The dataset 
generated by the GAN was essential in training the CNN model, 
as it offered a wide range of realistic tumor images that were 
helpful for classification purposes. The results demonstrated the 
capability of the GAN-based technique to enhance the efficacy 
of tumor classification algorithms, hence leading to 
advancements in medical diagnostics and treatments. 

Furthermore, the results presented in Table V clearly 
highlights the efficacy of employing a GAN in enhancing tumor 
classification. With varying sizes and increased diversity, the 
GAN-generated synthetic MRI images contribute to higher 
accuracy and lower loss values in the CNN model. The 
inclusion of GAN-generated images to the training dataset 
improves its quality by capturing subtle tumor changes, hence 
facilitating improved generalization of the CNN model.  
Furthermore, the GAN's capacity to pro-duce images of bigger 
sizes enables the assessment of how image resolution affects 
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classification accuracy. In summary, the GAN-based method is 
effective in improving tumor classification by raising the 
quality and diversity of the training data and enabling a better 
comprehension of how image resolution affects the outcomes. 

TABLE VI. COMPARISON BETWEEN OUR PROPOSED GAN AND THE BASE 

MODELS OF GAN APPLIED ON THE BRAIN TUMOR MRI DATA SET 

Category Method SSIM PSNR 

Glioma 

DDGAN 0.40 15.54 

WGAN 0.42 17.32 

LSGAN 0.48 17.52 

InfoGAN 0.43 17.21 

Proposed GAN 0.70 25.0 

Meningioma 

DDGAN 0.40 15.62 

WGAN 0.46 17.91 

LSGAN 0.45 17.96 

InfoGAN 0.43 16.48 

Proposed GAN 0.75 25.5 

Pituitary 

DDGAN 0.37 16.42 

WGAN 0.40 16.91 

LSGAN 0.38 16.61 

InfoGAN 0.44 16.75 

Proposed GAN 0.76 26.7 

Table VI presented the performance of the GAN proposed 
in this paper versus the other GAN base models on the 256x256 
pixel images from the brain tumor data set. It is obvious that for 
every category in the data set, the images produced by our 
proposed GAN have the highest PSNR and SSIM scores. This 
is because the optimizer choice in our proposed GAN —such 
as employing Adam—had a significant influence on the 
performance of it, as well as using the binary cross entropy. The 
impact was due to the powerful of the optimizer in affecting the 
important factors that play important role in the training process 
of neural networks within the GAN. The first factor is the 
convergence speed, where Adam had better ability to faster 
convergence in comparison with other optimization techniques 
such as the SGD. Second, the stability, where Adam optimizer 
effectively updates the parameters of both the discriminator and 
generator networks, stabilizing the training process. This 
stability is essential for avoiding problems like oscillations, 
which can impede GANs' capacity to train. Third, the sparse 
gradient, where the Adam optimizer handled it effectively 
particularly in the early stages of GAN training when the 
generator finds it difficult to generate realistic samples. The last 
one is the balancing of the learning rate, where Adam can 
dynamically modify the learning rates for both the generator 
and discriminator networks. Maintaining this equilibrium is 
essential to prevent any network from taking over the other, 
which promotes more reliable and efficient training. 

V. DISCUSSION 

The proposed methodology combines a GAN with a CNN 
for tumor classification in MRI images. This section discusses 
the study's key findings, limitations, and implications. 

A. GAN for MRI Image Generation 

The GAN-based approach effectively produced synthetic 
MRI images that closely resemble the actual ones. The GAN 
was trained using a broad dataset, which included tumor and 
no-tumor images of various sizes, in order to accurately capture 
the characteristics and variances inherent in the original dataset 

[30]. The GAN's ability to generate high-quality and realistic 
images is evident from the evaluation metrics, such as PSNR, 
MSE, and SSIM, which indicate a close resemblance between 
the generated and original images. 

B. Impact of Image Size 

The evaluation results highlighted the need of taking image 
size into account during the generating process. With an 
increase in image size, there was a noticeable enhancement in 
both the quality and resemblance of the generated images. 
Increased image sizes demonstrated elevated PSNR values, 
diminished MSE values, and higher SSIM values, suggesting a 
stronger match to the original MRI images. The finding 
emphasizes the importance of incorporating higher image sizes 
in the production process to effectively capture intricate 
features and spatial dependencies. 

C. Augmentation and Generalization 

The GAN-generated synthetic images augmented the 
original dataset, introducing more diversity and variations in 
image size and resolution [31]. This augmentation improved the 
performance of the CNN model in tumor classification. The 
CNN model trained on the combined dataset, including the 
original and generated images, achieved higher accuracy and 
lower loss values than the model trained solely on the original 
dataset. This indicates that the GAN-generated images 
facilitated better generalization and improved the model's 
ability to classify tumors accurately. 

D. Realistic Simulation 

Generating synthetic images in various sizes simulates the 
variations encountered in real-world MRI scans. Different 
imaging modalities and devices may produce images with 
varying resolutions and pixel dimensions. Training the model 
on synthetic images of different sizes makes it more robust and 
adaptable to handling diverse imaging scenarios. This aspect 
enhances the model's generalization capabilities and ensures 
applicability in different clinical settings. 

The GAN-based approach and the CNN model hold great 
promise for tumor classification in MRI images. Generating 
synthetic images through GANs solves data scarcity and 
imbalances, while the CNN model leverages the generated 
images for improved classification accuracy. The findings of 
this paper highlight the potential of GANs in enhancing tumor 
classification algorithms and their implications for advancing 
medical diagnostics. Further research and development in this 
area can lead to significant advancements in tumor detection, 
characterization, and personalized treatment planning. 

VI. CONCLUSION 

In this paper, we proposed a methodology that combines a 
GAN with a CNN for tumor classification in MRI images for 
brain tumors. The GAN was used to generate synthetic MRI 
images, which were then utilized to enhance the training dataset 
for the CNN model. This method employed the Adam optimizer 
and the Binary Cross Entropy (BCE) with Logits Loss as the 
criterion, where they contributed in optimizing the training 
process and stabilizing the GANs. The generated images 
captured the characteristics and variations present in the 
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original dataset, improving the model's performance in tumor 
classification. 

It is worth to mention that, the proposed model, achieved an 
average accuracy of 94.1% and an average loss of 0.080 with 
large images. As the image size increased, the CNN model 
achieved higher accuracy and lower loss, indicating improved 
performance. Furthermore, a comparison with other GAN 
models were performed and showed the superior performance 
of the proposed GAN in this paper with respect to them. 

The results demonstrated the effectiveness of the GAN-
based approach in generating realistic and visually appealing 
synthetic MRI images. We observed improved quality and 
similarity between the generated and original images by 
considering image size during the generation process. The 
larger image sizes resulted in higher fidelity, lower 
reconstruction error, and better structural similarity, indicating 
the importance of capturing fine details and spatial 
dependencies. The augmented dataset of original and generated 
images improved the CNN model's ability to classify tumors 
accurately. The model exhibited higher accuracy and lower loss 
values when trained on the combined dataset compared to 
training solely on the original dataset. This demonstrates the 
utility of the GAN-generated images in enhancing the model's 
generalization capabilities and improving its performance in 
tumor classification. 

The proposed methodology has several implications for 
tumor classification in clinical practice. The GAN-generated 
synthetic images provide a valuable resource for augmenting 
limited datasets and addressing data scarcity and imbalance 
issues. By incorporating these synthetic images, the CNN 
model can better handle variations encountered in real-world 
MRI scans, making it more adaptable and practical in diverse 
clinical settings. The improved accuracy in tumor classification 
can contribute to enhanced diagnostic accuracy and patient 
care. 

Combining GANs and CNNs offers a promising approach 
for tumor classification in MRI images. Generating synthetic 
images through GANs enhances the training dataset, improving 
the model's performance in tumor classification. The findings 
of this study contribute to the advancement of medical 
diagnostics and hold significant potential for improving tumor 
detection, characterization, and treatment planning. Continued 
research in this area can lead to further advancements in tumor 
classification algorithms and benefit medical professionals and 
patients. 

While this paper displays the potential of GANs in tumor 
classification, future re-search should address some limitations. 
Expanding the dataset with more diverse and representative 
images would improve the model's performance. Additionally, 
further exploration of network architectures, loss functions, and 
regularization techniques for GANs and CNNs can enhance the 
generation and classification processes. 
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