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Abstract—Reliable baby cry recognition plays a crucial role in 

infant care and monitoring, yet real-world environment poses 

challenges to system accuracy due to its background noises. This 

study proposes a novel CNN architecture for baby cry 

recognition under varying noise conditions, featuring three 

convolutional layers, a max pooling layer, and 0.5 dropout set, 

and compares its performance against standard RNN models. 

The models were trained for 100 epochs with a batch size of 64 

and evaluated in both clean and noisy environments. To simulate 

real-world scenarios, recordings were transformed into audio 

signals and subjected to varying levels of background noise, 

particularly at different signal-to-noise ratios (SNRs). Results 

indicate that both models achieved high accuracy (>89%) in 

noise-free conditions. However, the proposed CNN maintained 

higher precision (93%) and overall accuracy (91%) than the 

RNN under 10dB noise, demonstrating its superior noise 

robustness for baby cry recognition. This improvement is 

attributed to the CNN’s capacity to capture spatial features in 

audio signals, making it susceptible to noise disruptions. These 

findings contribute to the development of more reliable and 

robust baby cry recognition systems. 
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I. INTRODUCTION 

Deep learning has firmly established itself as a powerful 
tool for various tasks, including classification, detection, and 
noise mitigation. Its ability to improve accuracy and shorten 
processing duration, even in challenging environments, has 
attracted significant attention. Specifically, convolutional 
neural networks (CNNs) have emerged as prominent tools 
within the realm of deep learning, enabling the development of 
noise-robust speech recognition systems [1]. Hence, Automatic 
Speech Recognition (ASR) has seen remarkable advancements 
due to deep learning techniques [2-6]. 

Furthermore, in the context of baby cry recognition, voice 
recognition technology offers a promising solution, leveraging 
advanced computational methods to automatically analyze and 
classify baby cries based on their acoustic features. An 
example of such an application is the Android-based Madsaz 
Baby Cry Translator app, which translates the cries of infants 
(0-3 months old) to help parents recognize various cry types 
and other cues. This app, available in both Indonesian and 
English, has been downloaded in 175 countries. User feedback 
suggests that the Madsaz Baby Cry Translator app boosts 
parents’ confidence in childcare and enhances their 

responsiveness to their babies’ cries. Hence, due to its potential 
use, it is important to improve the app by providing timely and 
accurate translation of baby cries, particularly in real-world, 
noisy environment. 

Recent research has explored strategies to improve 
accuracy and efficiency. For instance, one study [7] 
demonstrated the conversion of baby cry signals into 
spectrograms, followed by CNN classification, achieving an 
impressive 99.83% accuracy. This approach effectively 
addresses the challenge of server workload while maintaining 
high performance. Another study [8] investigated the use of 
MFCC features extracted from baby cry signals coupled with 
CNNs, achieving an accuracy of 96.6%. 

Unlike traditional feature extraction methods, CNNs 
directly extract relevant features from audio data through 
convolutional layers, allowing them to learn complex features 
in parallel during network training. This inherent learning 
capability makes CNNs highly adaptable and well-suited for 
accurate classification tasks [9]. Notably, CNNs have achieved 
accuracy exceeding 90% in voice detection and recognition, 
including applications in infant-related research [7,8,10]. 
Moreover, deep convolutional neural networks (DCNNs) excel 
at extracting informative representations from speech signals, 
effectively handling diverse sources of variability [11]. By 
strategically harnessing the strengths of CNNs, this study aims 
to develop a more robust and accurate baby cry recognition 
system that can effectively handle real-world noise conditions. 

While Convolutional Neural Networks (CNNs) have 
established their strength in multi-label classification tasks, 
further advancements in feature extraction and pre-processing 
are crucial for optimal performance. Recurrent Neural 
Networks (RNNs) were prominent in this domain [11], while 
CNNs have achieved promising accuracy rates of 94% [12]. 
Another study states that the Scatter Transform-DCNN 
algorithm [13] demonstrates noise-robustness in classifying 
normal and pathological sounds. By effectively extracting 
features related to crying sounds through log-linear filter banks 
[14], CNNs have shown success in cloud-based baby cry 
detection (86% accuracy) [15]. While CNNs excel at capturing 
local spectral and temporal variations through high-level 
feature extraction, RNNs offer complementary strengths in 
capturing extended temporal contexts within audio signals 
[16]. This constructive collaboration led to significant accuracy 
improvements in polyphonic sound detection when combining 
CNN and RNN models [16]. Hybrid systems incorporating 
Restricted Boltzmann Machines (RBNs) and CNNs have also 
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been explored for baby cry recognition, achieving 78.6% 
accuracy [17]. 

Deep Neural Networks (DNNs) have achieved significant 
progress in enhancing noise robustness for acoustic models, 
particularly regarding automatic voice recognition [10]. This 
task becomes challenging in noisy environments, but recent 
studies have shown promising results. One approach involves 
converting spectrograms into images, followed by dimension 
reduction, feature extraction, and CNN classification. This 
method achieved a 4.5% performance increase and a 97.4% 
classification success rate [18]. Another study explored a CNN 
architecture incorporating both short-term and long-term audio 
data, boosting accuracy through adaptive thresholding and 
early stopping [5]. 

Other related research explores hyperparameter 
optimization and network structures that can affect recognition 
performance while using the same input, suggesting that 
focusing on learning synchronization may be key in this 
context [23]. 

Convolutional Neural Networks (CNNs) come in various 
forms like 1D, 2D, and 3D, each offering unique strengths. For 
instance, Long Short-Term Memory (LSTM) networks 
combined with 2D CNNs have demonstrated superior 
performance in recognizing emotions from facial expressions, 
achieving 95.33% accuracy compared to 1D CNN-LSTM 
models [24]. Similarly, a 2D-3D CNN approach effectively 
captured micro-expression movements, leveraging separate 
networks for short-term a]. Additionally, multi-layered CNNs 
demonstrate a 10% noise reduction compared to traditional 
methods [19]. These advancements highlight the potential of 
DNNs for handling noise challenges in automatic voice 
recognition tasks. 

Several approaches demonstrate success in noise-robust 
speech recognition, each highlighting different strengths. One 
method integrates MFCC and CNN, utilizing spectrograms and 
the Google Speech-to-Text API for noise mitigation and secure 
passcode generation [20]. Another study focuses on Automatic 
Modulation Classification (AMC) using CNNs. The bi-
spectrum-based AMC method and AlexNet CNN enable the 
automatic extraction of significant features from images and 
subsequently assign corresponding labels, achieving a 
classification accuracy of 97.7% at or above 5 dB [21]. This 
finding aligns with research involving the utilization of CNNs 
to process time-frequency distributions for radio signal 
recognition, even at -2 dB SNR [22]. These studies suggest that 
DNN performance in the radio domain is not constrained by 
factors such as network depth or specific domains like natural 
language processing [23]. nd static features, improving 
recognition accuracy [25]. These studies highlight the 
effectiveness of 2D and 3D CNNs in video modelling, action 
recognition, and hyperspectral image analysis [26-28]. 

However, capturing complex textual features in human-
robot interaction remains a challenge. Therefore, research on 
3D CNNs for text representation continues to evolve. One 
recent study proposed a 3D-based approach that encodes 
semantic cubes, capturing local word features and sequential 
context. These representations are then fed into another 3D 
CNN to extract interactive features between sentences, 

resulting in final matching representations. This method 
achieved comparable or even better performance compared to 
existing state-of-the-art methods [29]. 

Feature extraction plays a crucial role in baby cry 
recognition systems, with Mel-Frequency Cepstral Coefficients 
(MFCC) used for their effectiveness. Research has shown that 
MFCC features can be successfully used to train 
backpropagation artificial neural networks, achieving high 
accuracy (98.9%) in identification [30]. Additionally, MFCCs 
capture feature segments sensitive to distortion, making them 
robust to common audio processing variations [31]. Studies 
comparing speaker gender recognition have highlighted the 
superiority of MFCCs over other methods like LPCC and PLP, 
achieving 99.37% accuracy with 16 coefficients [32]. Notably, 
MFCC outperformed LPCC in fixed-phrase speaker 
verification systems, demonstrating a 0% error rate [33]. The 
combination of MFCC feature extraction and a CNN algorithm 
has also shown promising results in baby cry detection, 
surpassing the performance of logistic regression classifiers 
[34]. These notions underline the value of MFCCs for accurate 
and robust baby cry recognition. 

Several studies have explored the influence of feature 
extraction and noise mitigation on baby cry recognition 
performance. Utilizing MFCC and HMMs achieved 93.89% 
accuracy in noise-free environments but dropped to 58.1% with 
noise [35]. Conversely, a system combining MFCCs and a 
codebook achieved 94% accuracy in identifying different baby 
cry types, even with noise, by incorporating RNNs [36]. A 
previous study compared LSTM and GRU architectures in 
noise-free and noisy scenarios (5-20 dB SNR). While both 
models achieved high accuracy in noise-free conditions (94% 
with GRU), GRU performance dropped slightly to 89% with 
added noise [37]. 

Subsequently, this study proposes the use of a 
Convolutional Neural Network (CNN) model in the 
recognition system of Madsaz Baby Cry Translator app to 
address noise interference. Specifically, this research aims to 
compare the performance of CNNs against Recurrent Neural 
Networks (RNNs) to evaluate their effectiveness in handling 
noise and enhancing the accuracy of baby cry recognition. The 
paper is structured as follows: Section 1 provides an overview 
of the challenges associated with baby cry recognition and the 
potential benefits of using deep learning models to address 
these challenges. Section 2 reviews relevant literature on baby 
cry analysis, deep learning technique, and model evaluation. 
Section 3 details the process of baby cry data acquisition and 
processing. Section 4 presents the results and discussion of the 
comparative analysis between CNNs and RNNs. Lastly, 
Section 5 concludes the study, highlighting key findings and 
potential implications for future research. 

II. LITERATURE REVIEW 

A. Baby Cry 

A baby's cry is more than just a sound; it is filled with 
emotions, movements, and expressions that serves as their 
primary means of communication. While often associated with 
negative emotions like discomfort or distress, cries can also 
convey hunger, fatigue, or simply a desire for interaction. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

587 | P a g e  

www.ijacsa.thesai.org 

Babies tend to cry more often during the night within a 24-
hour cycle [38]. Considered a form of communication, a baby's 
cry is classified into a speech category. In human 
communication, speech sometimes changes its signals to aid 
understanding [39-41]. Studies have broken down these sound 
signals into smaller units known as phonemes, utilizing diverse 
methods to assess each fragment within the vocal signals [40-
42]. 

1) Dunstan baby language: Dunstan Baby Language 

(DBL) is a communication method tailored for understanding 

the cries of infants aged 0–3 months, applicable across diverse 

cultures and languages1. This language identifies five distinct 

variations: 

 "Neh" indicates hunger, resembling the sound made 
when a baby tastes while breastfeeding. Recognizing 
"neh" involves detecting the insertion of the letter 'N' in 
the cry, often accompanied by actions like moving the 
tongue to the roof of the mouth, sucking fingers or the 
head, licking lips, and shaking the head from side to 
side. 

 "Owh" signifies tiredness, akin to the sound of a yawn. 
Signs include restlessness, rubbing eyes, scratching, or 
pulling ears, and squirming while arching the body. 

 "Eh" expresses the need to burp. The "eh" cry occurs 
when the baby's chest works hard to release gas, usually 
manifesting as faster and shorter in frequency as the 
baby attempts to burp. Other signs include a sensation 
of tightness in the chest, fidgety movements when laid 
down to rest, and ceasing to drink milk, becoming 
restless. 

 "Eairh" denotes bloating, indicating the presence of gas 
in the stomach causing discomfort. This cry is prompted 
by stomach gas, leading to pain (colic). Other 
indications include the baby twitching their legs and 
pulling them toward the stomach, stiffness in the body, 
and screaming due to pain. 

 "Heh" signifies discomfort. Babies might fuss because 
they feel uncomfortable, possibly due to a wet diaper, 
extreme temperatures, or other reasons. The "heh" cry 
tends to be breathless, sounding like an exhalation, with 
a notable emphasis on the letter 'H' at the beginning of 
the word. 

2) Voice recognition of baby cry: In the field of voice 

recognition, two distinct domains emerge: speech recognition 

and speaker recognition. While speech recognition focuses on 

identifying the meaning encoded within spoken words, speaker 

recognition prioritizes identifying the individual behind the 

voice [43]. In the context of baby cry recognition, speech 

recognition algorithms strive to decode the cry itself, 

recognizing it as a distinct sound within the audio stream. This 

                                                           
1Gunawan, A. (2011). Dunstan Baby Language Indonesia. Retrieved from 

http://www.mommeworld.com/post/view/49/dunstan-baby-language-

indonesia/. 

initial step often involves comparing the captured audio with 

existing databases to assess the level of sound suppression and 

ensure compatibility with the system’s format. Once the cry is 

identified, the focus shifts to speaker recognition. Here, the 

objective is to determine the specific infant producing the cry. 

This crucial step relies on two key modules: feature extraction 

and feature matching. 

Feature extraction involves collecting and quantifying 
specific characteristics from the cry audio by extracting a 
unique "fingerprint" of the sound based on various parameters 
like pitch, rhythm, and spectral energy distribution. This 
fingerprint then becomes the basis for feature matching. The 
extracted features are compared against a database of pre-
existing cry recordings associated with individual babies [44]. 
This dual approach, combining speech recognition for cry 
identification and speaker recognition for individualization, 
holds significant promise for various applications. 

B. Deep Learning 

Artificial Intelligence (AI) embarks on a fascinating 
journey, simulating human intelligence within the realm of 
machines. From the perspective of computer science, AI 
revolves around "intelligent agents," devices that perceive their 
environment and take actions to achieve specific goals. In 
simpler terms, "AI" is often used when machines exhibit 
human-like capabilities, like learning and problem-solving. 
This brings machine learning under the umbrella of AI. 

Machine learning, a cornerstone of modern computing, 
focuses on enhancing machine intelligence through extensive 
research. Borrowing from our natural ability to learn, this field 
strives to improve the accuracy of algorithms, making 
machines smarter and more capable. Deep learning, a subfield 
of machine learning, marks a significant advancement in this 
pursuit. Its applications have been extensively explored across 
diverse domains and subdomains, offering innovative solutions 
to complex challenges. 

One key strength of deep learning lies in its ability to 
handle both feature extraction and classification within a single 
framework. This eliminates the need for manual feature 
engineering, which involves meticulously crafting features 
from raw data, often with inherent human bias. By automating 
this process, deep learning can handle vast numbers of layers 
and parameters, allowing it to learn more complex 
relationships within data [45]. Applying deep learning to baby 
cry recognition follows a similar approach. The network 
analyses the audio data, automatically extracts relevant 
features, and classifies the sounds. 

1) Convolutional neural networks: Within deep learning, 

convolutional neural networks (CNNs) have emerged as 

formidable tools, captivating researchers, and practitioners 

alike. CNNs possess the remarkable ability to learn complex 

patterns directly from raw image data, eliminating the need for 

tedious pre-processing or feature extraction. This inherent 

strength makes them ideally suited for tackling diverse tasks 

involving two-dimensional data, such as image recognition, 

video analysis, and image generation. 
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The structure of the CNN entails several elements: firstly, 
an input layer for receiving and storing raw image data; 
secondly, a convolutional layer that enhances input features 
and reduces noise by utilizing kernels with weighted cells; 
thirdly, a pooling layer responsible for subsampling input data 
by dividing it into smaller regions and applying functions like 
maximum or average pooling to each region; and finally, a 
fully connected layer that connects all neurons from the 
previous layer to every neuron in its own layer [46]. In the 
CNN model, each hij hidden unit feature value is calculated as 
in (1) [47]. 

The difference between CNN and other neural network 
models is the convolution process within the hidden layers. 
The convolution process is calculated as in (1) [47]. In a 
convolution operation, the input is an m × M matrix. When the 
convolution kernel is an n × n matrix (K) and the stride is 1, the 
resulting matrix F has dimensions (m – n + 1) × (m – n + 1). 
Here, 𝑖 𝜖 𝑅, 𝑗 𝜖 𝑅, 𝑘𝑖𝑗  denotes the value of row i and column j in 

convolution kernel, while 𝑥𝑖𝑗  represents the value of row i and 

column j in the image matrix. 𝑏1 denotes the bias, and 𝑓is the 
activation function. 

𝐹𝑖𝑗  =  𝑓(𝑏1 + ∑ ∑ 𝑘𝑖𝑗
𝑛
𝑗=1  ×  𝑥𝑖𝑗) 𝑛

𝑖=1    (1) 

The proposed CNN for baby cry recognition adheres to the 
foundational principles of CNN architecture. It comprises two 
convolutional layers and a single dense layer leading to the 
SoftMax classifier. The hidden layers utilize a Rectified Linear 
Unit (ReLU) activation function and employ a 50% dropout 
mechanism for regularization. During the initial optimization 
of hyper-parameters, the convolutional layers are configured 
with a filter size of 1x3 [23]. Fig. 1 provides a high-level 
overview of the CNN architecture, while Fig. 2 shows the 
training and testing modules in detail. Data flows through the 
convolutional layers, establishing connections with subsequent 
layers. The SoftMax function delivers probabilistic values 
ranging from 0 to 1, facilitating classification. The 
interconnected nature of CNNs simplifies both training and 
testing procedures by using hidden layers. Backpropagation, 
the fundamental algorithm in CNN, automatically computes 
the requisite parameters. CNN offers three primary advantages 
for speech recognition: location specificity, weight distribution, 
and pooling. 

Moreover, CNN architecture incorporates these strengths to 
enhance noise resilience. Upper network layers can effectively 
handle noise due to the combination of high-level features 
extracted from each frequency band. Additionally, pooling 
reduces the number of local networks, further mitigating noise 
sensitivity [48]. 

C. Spectrogram 

Spectrograms are widely employed as a common method 
for conducting time-frequency analysis to estimate specific 
signal parameters [49]. As a type of Time-Frequency 
Distribution, a spectrogram illustrates signal energy across both 
time and frequency dimensions. It is particularly useful for 
analyzing nonstationary signals, whose attributes fluctuate over 
time [49-51]. This approach efficiently captures the dynamics 
of such signals, which exhibit varying characteristics over time 
[50]. The mathematical representation of a spectrogram is 
outlined in (2) [51]. 

𝑆𝑥(𝑡, ƒ)  =  |∫ 𝑥()𝑤( − 𝑡)𝑒−𝑗2𝜋ƒ𝑑𝑡
∞

−∞
|

2
            (2) 

The signal under analysis, denoted as x(τ), is examined 
within the observation window represented by w(t), t 
represents the time, and f the frequency. 

Spectrograms serve as instrumental tools for visualizing 
variations within the frequency spectrum of a signal, 
effectively capturing dynamic changes across both temporal 
(e.g., audio signals, earthquake waves) and spatial dimensions 
(images). In the field of machine learning, spectral information 
derived from spectrograms frequently plays a role in revealing 
intricate features and patterns within the source data. Typically, 
the frequency spectrum of a signal is acquired through the 
utilization of a Fourier Transform (FT). In the case of discrete 
data, spectral analysis relies on the Discrete Fourier Transform 
(DFT), which converts a finite sequence of N complex 
numbers representing the signal {xn} = x0, x1..., xN−1 into a 
corresponding sequence of K = N complex numbers {Xk} = 
X0, X1..., XN−1 (3) [52]. 

𝑛
 is input sequence, 𝑋𝑘  is the 

transformed input sequence, N-periodic sequence, dan k ∊ [0, 
N-1]. 

𝑋𝑘  = ∑ 
𝑛

𝑁−1

𝑛=0

𝑒−𝑖2𝜋𝑘𝑛/𝑁 

(3) 

 

Fig. 1. CNN architecture [48].
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Fig. 2. CNN architecture [34]. 

The Short-Time Fourier Transform (STFT) generates 
spectrogram based on the magnitude of a discrete signal with 
length L. This technique leverages the Discrete Fourier 
Transform (DFT) to partition the signal into N segments, 
where N < L. This segmentation results in a complex matrix S, 
containing the signal's magnitude and phase across both 
frequency and time domains for each segment. Typically, the 
columns of the matrix represent the temporal dimension, while 
the rows correspond to different frequency bands. The chosen 
value of N depends on the intended spectral representation. 
Lower N values offer higher temporal resolution but lower 
frequency resolution, while higher N values yield the opposite 
effect. Furthermore, the STFT allows for segment selection by 
varying the segment index m, ranging from 0 to N-1, resulting 
in high temporal definition and low frequency resolution for 
smaller N or vice versa for higher N. Additionally, segments 
can be overlapped by m samples within the range of 0 and N-1, 
offering further control or flexibility over the desired resolution 
[52]. 

D. Model Evaluation 

Model evaluation ensures a classification model's 
effectiveness. Evaluating a classification model goes beyond 
just checking its overall accuracy. A deeper dive into various 
metrics promotes understanding of its effectiveness in 
distinguishing between distinct categories. For both binary and 
multiclass classification problems, the confusion matrix holds a 
central position as an indispensable evaluation tool [53]. 

Table I displays the structure of the tool in the field of binary 
classification as the essence of the confusion matrix, providing 
an illustration of the model's performance [54]. 

TABLE I.  CONFUSION MATRIX SCHEME 

 Predicted Class 

True Class 
True Positive (TP) True Negative (TN) 

False Positive (FP) False Negative (FN) 

Classification models generate four key values: True 
Positive (TP), False Positive (FP), False Negative (FN), and 
True Negative (TN). Each value provides insights into the 
model's ability to distinguish between various categories. TP 
denotes the number of instances correctly identified and 
predicted as positive, while FP indicates the number of 
instances incorrectly identified as positive when they are 
actually negative. FN signifies the count of instances 
incorrectly identified as negative when they are positive, while 
TN signifies the count of instances accurately identified and 
predicted as negative. Performance metrics commonly 
employed in classification tasks including the accuracy value 
(ACC) (4), precision (P), representing the probability of a case 
being predicted as positive when it truly belongs to the positive 
category (5), F-score value (6), and recall (7). 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (4) 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (5) 

 

𝐹𝑠𝑐𝑜𝑟𝑒 = 2𝑋
𝑃𝑥𝑆𝑛

𝑃+𝑆𝑛
   (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (7) 

III. BABY CRY DATA ACQUISITION AND PROCESSING 

This research explores the performance of a Convolutional 
Neural Network (CNN) for baby cry recognition, comparing it 
to an existing Recurrent Neural Network (RNN) approach 
previously implemented in Madsaz Baby Cry Recognition 
dataset [37]. The dataset comprises 175 records data 
categorized into five distinct cry types, with balanced 
representation in both training (80%) and validation (20%), 
respectively. To simulate real-world noise interference, the 
study integrated the original baby cry signals with Gaussian 
noise. This type of noise was chosen because it closely 
resembles background noise commonly encountered in real 
environments. To control the intensity of the noise, the signal-
to-noise ratio (SNR) was varied between 5 and 20 dB, 
representing a range from moderate to significant noise levels. 
Examples of the noise-free and noise-added cry signals are 
presented in Table II for visual comparison. 
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TABLE II.  BABY CRY DATA 

Classification Signal and spectrogram without noise-added data  Signal and spectrogram with noise-added data 

Eairh 

 

 

 

Eh 

 

 

 

Heh 

 

 

 

Neh 

 

 

 

 

 

 

Owh 

 

 

 

 

 

 

 

Fig. 3 illustrates the proposed CNN architecture, featuring 
three stacked convolutional layers followed by a max-pooling 
layer and a dropout layer (set to 0.5). Each convolutional layer 
utilizes various filter sizes (64, 128, and 256) with a 3x3 
kernel, employing the same padding and ReLU activation 
function for nonlinearity. The extracted features are then 
flattened and fed into a fully connected layer with 512 units, 
again using ReLU activation. Another dropout layer (0.5) 
precedes the final output layer with a SoftMax activation 

function, capable of assigning probabilities to each of the five 
cry categories. 

The model is trained with an input size of 64x64, utilizing 
the Adam optimizer and the sparse categorical cross-entropy 
loss function. During training, batches of 64 samples are 
processed for 100 epochs. The performance is evaluated using 
various metrics, including precision, recall, F1 score, and 
overall accuracy. 

 

Fig. 3. CNN architecture. 
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IV. RESULTS AND DISCUSSIONS 

The results highlight the remarkable robustness of the CNN 
method to noise interference, primarily due to its inherent 
convolutional architecture. This feature allows the CNN to 
extract more comprehensive features from the data, particularly 
when sound signals are converted into visual representations. 
This translates to more robust and generalizable results, even in 
the presence of noise. The CNN achieved 94% accuracy with 
noise-free data and maintained a 91% accuracy when noise was 
introduced. Fig. 4 and 5 compare the training and validation 
accuracy under both noise-free and noise-added conditions, 
visually demonstrating the CNN’s resilience. Additionally, 
Fig. 6 provides a confusion matrix for the CNN when applied 
to noise-added data, offering further insights into its 
performance. 

 
Fig. 4. Graph of training and validation accuracy without noise. 

 
Fig. 5. Graph of training and validation accuracy with noise. 

 

Fig. 6. Evaluation mode using methods with noise-added data. 

Building upon the above result of superior CNN 
performance, further analysis delves into the specific 
advantages it holds compared to Recurrent Neural Networks 
(RNNs) like Gated Recurrent Unit (GRU) and Long Short-
Term Memory (LSTM) for baby cry recognition using Mel 
spectrograms. While all three models process the Mel 

spectrogram data, their fundamental approaches differ 
significantly, impacting their resilience to noise and 
recognition accuracy. The goal is to assess their robustness 
against noise in the input data. A detailed comparison of the 
performance between RNN and CNN methods can be referred 
to Table III. Precision considers only positive predictions, 
which can result in high precision even if there are numerous 
negative instances misclassified as false negatives. Recall 
measures the model's ability to identify all positive instances 
within the dataset. Conversely, accuracy considers all 
predictions, both positive and negative, thus providing a more 
comprehensive reflection of overall model performance. This 
is particularly useful when the dataset in this research is 
balanced, i.e. the number of positive and negative instances is 
almost equal [55]. 

TABLE III.  COMPARATIVE PERFORMACE OF RNN AND CNN METHODS IN 

BABY CRY RECOGNITION SYSTEM  

 Precision Recall F1 Score Accuracy 

RNN-GRU (noise-

free data) 
91% 89% 88% 89% 

RNN-GRU (noise-
added data) 

91% 89% 88% 89% 

RNN-LSTM (noise-

free data) 
91% 89% 88% 89% 

RNN-LSTM (noise-
added data) 

96% 77% 77% 77% 

CNN 

(noise-free data) 
96% 94% 94% 94% 

CNN 

(noise-added data) 
93% 91% 91% 91% 

Table III demonstrates the findings revealing that CNNs 
consistently outperformed GRUs and LSTMs with higher 
accuracy in both noise-free and noise-added settings. This 
advantage stems from CNNs' ability to extract spatial features 
from the Mel spectrograms. These features capture the patterns 
and characteristics of baby cries, allowing the CNN to 
recognize them more accurately and sustain its performance 
level. 

While GRU and LSTM are powerful for sequential data, 
they face challenges when applied to baby cry recognition 
using Mel spectrograms, which are spatial representation. This 
study shows that RNNs rely on connections throughout the 
data sequence, leading to the vanishing gradient problem where 
information gets lost over time. Moreover, RNNs need to be 
adapted for spatial data, despite being designed for sequences. 
A detailed comparison between the two RNN models revealed 
that GRU outperformed LSTM, especially in noise-added 
settings. The result of analysis indicates that the benefit of 
GRU lies in its simpler and more efficient architecture with 
only two gates, the reset and update gates. This streamlined 
design helps mitigate the vanishing gradient problem and 
balances model complexity with the ability to understand the 
context of the Mel spectrogram. 

The reset gate in GRU plays a role in preventing vanishing 
gradients by allowing the model to selectively “forget” less 
relevant information, including noise, preventing it from 
accumulating and impacting the recognition process. In 
contrast, LSTM’s three gates, including the input gate, forget 
gate, and output gate, retain information for longer durations 
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due to its extended memory. While this can be beneficial for 
some tasks, it also increases the risk of preserving noise, 
hindering accurate recognition. However, it is important to 
remember that the selection between GRU and LSTM also 
hinges on the specific attributes of the dataset and the 
requirements of the task. For recognizing baby cries from Mel 
spectrograms, GRU's simpler architecture and ability to handle 
noise seem to offer an advantage. 

GRU consistently maintains high precision, recall, F1-
Score, and accuracy rates (91%, 89%, 88%, and 89%) across 
data in both noise-free and noise-added settings. This 
highlights the model’s robust and consistent ability to 
accurately identify baby cries, minimizing both false positives 
and negatives. In comparison, LSTM delivered similar results 
on noise-free data. However, its performance noticeably 
decreased by approximately 8.79% for precision, 13.48% for 
recall, 12.50% for F1-score, and 13.48% for accuracy with the 
addition of noise. This underscores the LSTM’s higher 
susceptibility to noise interference in classifying baby crying 
sounds. On the other hand, the CNN model exhibits excellent 
performance in both scenarios, outperforming the GRU and 
LSTM. The performance of the CNN model decreased by 
around 3.13% for precision, 3.19% for recall, 3.19% for F1-
score, and 3.19% for accuracy in the presence of noise. Despite 
the decrease, the CNN model remained superior in identifying 
baby crying sound patterns compared to both GRU and LSTM 
in noise-free data settings. The results of this study also 
strengthen [56], which shows that CNN has better performance 
than other deep learning models in classifying baby crying 
sounds using spectrogram features. 

Research combining CNN and RNN models [57] provides 
an accuracy of around 94%, but the model does not 
accommodate recognition in the presence of noise. Overall, the 
CNN exhibits superiority in robustness in this study, making it 
a valuable tool for baby cry recognition in real-world settings 
with potential noise interference. The performance of CNNs, 
particularly in noisy environments, has significant implications 
for practical applications like baby monitoring systems. The 
ability to accurately recognize cries despite background noise 
can enhance safety and responsiveness, contributing to 
improved care and well-being. 

V. CONCLUSION 

This study explored the potential of deep learning 
approaches for enhanced baby cry recognition while mitigating 
noise interference. Using comparative analysis, two 
architectures were evaluated, i.e., Recurrent Neural Networks 
(RNNs) and Convolutional Neural Networks (CNNs). The 
evaluation was conducted with both noise-free and noise-added 
data (SNR 5-20 dB), revealing the superior robustness of 
CNNs against noise. 

The advantage comes from CNNs' ability to extract noise-
resistant features from the Mel spectrogram representation of 
audio signals. These features, such as spectral energies and 
formant frequencies, are crucial for cry recognition and remain 
relatively intact even in noisy environments. In contrast, 
RNNs, particularly LSTMs, might capture irrelevant noise 
information due to their longer memory retention, leading to 
performance degradation. 

The findings demonstrate that the CNN achieved an 
impressive 94% accuracy on noise-free data, maintaining an 
outstanding 91% accuracy on noise-added data. This minimal 
performance drop displays the significant advantage of CNNs 
in real-world scenarios with potential noise interference. 
Further analysis revealed that CNNs excel in understanding the 
spatial structure of data, crucial for analyzing Mel 
spectrograms. Their inherent flexibility in handling image-like 
representations, regardless of noise, contributes to a stable and 
accurate recognition process. In conclusion, this study 
highlights the potential of CNNs for robust baby cry 
recognition, particularly in noisy environments. The ability to 
extract noise-resistant features and utilize spatial information 
positions CNNs as a valuable tool for applications requiring 
accurate cry detection in real-world settings. 
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