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Abstract—Understanding learning styles is essential for 

learners and instructors to identify strengths and weaknesses in 

the education system. Although the Felder-Silverman Learning 

Style Model (FSLSM) is commonly used for this purpose, its 

reliance on in-person surveys can be time-consuming and prone to 

inaccuracies. This paper proposes an automated approach using 

Machine Learning (ML) to detect learning styles. This method 

extracts features from online activity data in Learning 

Management System (LMS) databases, aligning them with 

FSLSM indicators to label different learning styles. The dataset is 

divided into training and testing groups, respectively, to build and 

evaluate Support Vector Machine (SVM) classifiers. Feature 

selection is performed using the Recursive Feature Elimination 

(RFE) algorithm to improve the performance of the classifier, 

which results in the SVM-RFE algorithm. The experimental 

results showed promising accuracy for all model dimensions, i.e., 

95.76% for processing, 85.88% for perception, 93.16% for input, 

and 96.42% for understanding dimensions. This approach offers 

a robust framework for automated learning style detection, which 

significantly reduces reliance on manual surveys and improves 

efficiency in educational settings. 
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I. INTRODUCTION 

The profound impact of the global pandemic caused by 
COVID-19, which lasted for nearly four years from 2020 to 
2023, has substantially changed digital behavior in the education 
system. The study in [1] noted that nearly six billion students 
from 200 countries in the world were affected by this pandemic. 
The government's policy of closing schools and universities to 
prevent the spread of the virus has forced students to familiarize 
themselves with online learning, where e-learning is the most 
feasible solution to help schools and colleges facilitate student 
learning during the pandemic. Currently, most traditional 
learning has been juxtaposed with online learning, facilitated 
through learning management systems (LMS). Initially 
implemented as a way to limit the spread of the virus, 
government mandates requiring students to utilize online 
learning have been and are still being carried out in many places 
around the world. This underscores the effectiveness of the LMS 
in supporting student education both during and after the 
pandemic [2]. Unfortunately, the utilization of LMS features in 

the learning process remains limited, particularly in adapting to 
students' learning styles. 

The LMS integration into modern educational frameworks 
can greatly enrich the learning experience for participants 
involved in e-learning. The LMS, as a web-based application, is 
specifically engineered to administer learning materials, 
facilitate learner interactions, deploy assessment tools, and 
generate reports on learner progress and activities [3]. 
Accessible online learning materials via the LMS empower 
learners to engage with educational resources seamlessly 
through web browsers across various operating systems, 
computers, or mobile devices. Moreover, apart from its core 
functionalities, LMSs encompass learning systems, classroom 
management systems, materials management systems, portals, 
and instructional management systems [4]. Furthermore, LMSs 
serve to facilitate learners' access to educational content through 
course guides, assignment submission, and retrieval 
mechanisms, interactive communication between learners and 
instructors, peer-to-peer collaboration, interaction with learning 
tools, knowledge sharing, as well as the administration of online 
assessments and quizzes [5]. 

It is imperative to acknowledge the unique preferences and 
requisites of each student within the learning milieu. Thus, 
conscientious consideration of individual learning styles 
becomes pivotal at every phase of the educational journey. 
Learning style denotes a consistent and habitual methodology in 
assimilating information, notably pertaining to cognitive 
processes such as cognition, retention, and problem-solving [6], 
[7], [8]. Students predominantly adhere to their distinct learning 
and information-processing modalities, thereby manifesting a 
myriad of learning style paradigms [9]. Theoretically, the 
absence of learner-centric support mechanisms within the 
educational framework may precipitate learner attrition 
throughout the learning trajectory. Consequently, learners are 
encouraged to discern and accommodate their learning styles to 
optimize learning efficacy [10]. 

Ongoing research endeavors in adaptive e-learning, which 
integrate considerations of learning styles, persist in grouping 
students according to specific learning style typologies. 
Nonetheless, critiques have been levied against learning style 
models by various scholars, such as [11] those who contend that 
many iterations of these models lack empirical validation [12], 
casting doubts on the validity and reliability of associated 
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assessment tools. Notwithstanding, [13] assert the Index of 
Learning Style (ILS) as a valid and dependable instrument for 
gauging learning styles. ILS has been instrumental in 
automating the detection of learning styles [14], [15], [16], [17], 
[18]. Additionally, [7] ascertain a correlation between learning 
styles, learning strategies, and academic performance. Building 
upon these insights, [19] advocate for the development of a 
learning style framework to optimize the learning process's 
efficacy and outcome. 

 Over 70 learning style models have been proposed, 
exhibiting varying degrees of overlap and integration, with some 
models amalgamating or refining existing frameworks [20]. 
Predominantly employed within online learning systems are 
models such as Gregorc's Mind Styles Model (GMSM), Riding 
Cognitive Style (RCS), Myers-Briggs Type Indicator (MBTI), 
Kolb's Experiential Learning Theory (KELT), Honey and 
Mumford model, and the Felder-Silverman Learning Style 
Model (FSLSM) [21]. Notably, the FSLSM has emerged as a 
favored model for automated learning style detection [22], [23]. 
Its popularity stems from its comprehensive depiction of 
learning styles, coupled with established validity and reliability. 
Moreover, the FSLSM-based learning style assessment tool is 
straightforward, presenting respondents with only two opposing 
options [24]. In the context of the COVID-19 pandemic, 
literature suggests that the Felder-Silverman learning style 
model is particularly suitable for online learning environments 
[25]. The model's accessible and effective variables purportedly 
enhance students' learning abilities  [26], [27]. 

 Historically, identifying students' personal learning 
styles has relied on labor-intensive questionnaire analyses, 
especially burdensome in large-enrollment courses. 
Consequently, automated learning style modeling has garnered 
attention in both computational and educational spheres. 
Numerous studies have explored automatic learning style 
detection utilizing data from Learning Management Systems 
(LMS) and the FSLSM, employing various Machine Learning 
techniques. A comprehensive review by [24] covering machine 
learning approaches for automatic learning style detection from 
1999 to 2011 concluded that the FSLSM model is most 
conducive to educational contexts. Among Machine Learning 
techniques, Neural Networks have exhibited the highest 
accuracy, according to [24]. However, recent research 
comparing automatic learning style detection techniques 
highlighted Naïve Bayes as the most accurate [18], [22].  
Moreover, [18] achieved an 87% accuracy rate by modifying the 
Decision Tree algorithm to detect learning styles in 300 online 
course participants, while  [28] employed Twin Support Vector 
Machine to classify MBTI learning style models. Furthermore, 
[29] developed models capable of simultaneously detecting 
learning styles and cognitive traits. 

The Support Vector Machine (SVM) remains underutilized 
in the automatic detection of student learning styles, despite its 
capability as a linear model for both classification and regression 
problems, adept at addressing linear and non-linear 
complexities, and demonstrating efficacy in practical scenarios. 
SVM operates by identifying a hyperplane that effectively 
separates two sets of data belonging to distinct classes, with its 
efficiency further bolstered by the utilization of support vectors 
to expedite computation [30]. Moreover, SVM exhibits 

versatility in modeling non-linear data structures [31]. 
Comparative analyses of SVM against alternative machine 
learning methods for automated learning style detection 
consistently underscore its advantages [32], [33]. Nonetheless, 
the alignment of data availability within Learning Management 
Systems (LMS) with indicators specified by learning style 
models often presents a challenge. Additionally, past research 
predominantly focused on individual dimensions of the Felder-
Silverman Learning Style Model (FSLSM) in isolation, 
neglecting potential interrelations among features affecting 
multiple dimensions concurrently. 

This paper advocates for the automatic detection of student 
learning styles through a machine learning framework, 
leveraging features extracted from the mapping of online 
activities within LMS databases onto FSLSM indicators. This 
approach introduces three novel contributions. Firstly, a feature 
identification methodology for classifier models is introduced. 
This encompasses the direct extraction of original features from 
database attributes, alongside the derivation of synthetic features 
through the aggregation or accumulation of multiple attributes 
corresponding to FSLSM learning style indicators within the 
classifier model. Secondly, the mapping of identified features 
onto classes (learning styles) for each FSLSM dimension is 
proposed, followed by the labeling of each learning style. 
Subsequently, the identified and mapped feature dataset is 
partitioned into training data, utilized for model construction, 
and test data, employed to evaluate the performance of the 
resultant classifier. Initially, the SVM classifier model is 
adopted, with feature selection facilitated by the Recursive 
Feature Elimination (RFE) algorithm to enhance classifier 
efficacy. The ensuing SVM-RFE algorithm operationalizes 
these two stages, constituting the third contribution, culminating 
in the generation and validation of a high-performance classifier 
model. 

II. MATERIAL AND METHODS 

A. Data Source 

The primary data source originates from the Learning 
Management System (LMS) Online Learning System (SPADA 
LMS), a program under the purview of the Directorate General 
of Higher Education (DIKTI) within the Ministry of Education 
and Culture. The overarching goal of SPADA LMS is to 
enhance equitable access to quality higher education. SPADA 
LMS is accessible via the following link: 
(https://lmsspada.kemdikbud.go.id/). It is noteworthy that 
SPADA is administered by DIKTI and encompasses diverse 
subjects across social sciences, natural sciences, engineering, 
and health disciplines from various Indonesian universities. 

B. Support Vector Machine Recursive Feature Elimination 

Feature selection or dimensionality reduction techniques aim 
to alleviate the challenge posed by an abundance of features in 
training data that exhibit limited statistical correlation with class 
labels, thereby augmenting efficiency and accuracy [34]. SVM-
RFE, an SVM-based feature selection algorithm introduced in 
[35], functions by identifying critical feature subsets. As a result, 
SVM-RFE optimizes the computational time necessary for 
classification tasks while concurrently enhancing classification 
accuracy [35]. 
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SVM-RFE Algorithm [35] : 

1. Input 

a. Training data feature, 𝑋0 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚]. 
b. Training data label, 𝑦 = [𝑦1 , 𝑦2, … , 𝑦𝑛]𝑇. 

c. Current feature set, 𝑠 = [1, 2, … , 𝑚]. 
d. Features with sorted weight, 𝑟 = ∅. 

2. Feature Sorting 

a. Perform steps 2.a. to 2.h. to 𝑠 = ∅. 

b. A new training data matrix is obtained from the 

remaining features, 𝑋 = 𝑋0(: , 𝑠). 

c. Training data classifier, 𝛼 = 𝑆𝑉𝑀 − 𝑡𝑟𝑎𝑖𝑛(𝑋, 𝑦) 

d. Calculate weights, 𝑤 = ∑ 𝛼𝑘𝑦𝑘𝑥𝑘𝑘 . 

e. Calculate sorting base value, 𝑐 = (𝑤)2. 

f. Determine the feature with smallest weight,  

𝑓 = min (𝑐)  . 
g. Updating the sorted feature list, 𝑟 = [𝑠(𝑓), 𝑟]. 
h. Remove the feature with the smallest weight,  

𝑠 = 𝑠(1: −1, 𝑓 + 1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠)). 

3. Output: Sorted features 𝑟. 

In each iteration, the feature with the minimum weight value 
is systematically excluded. Subsequently, SVM retrains on the 
remaining features to generate a new sorted feature list. This 
iterative process is repeated until a finalized sorted list of 
features is attained. During each iteration, SVM constructs a 
model utilizing training data derived from the subset of sorted 
features, evaluating their respective performances. Ultimately, 
this iterative approach facilitates the acquisition of an optimal 
subset of features [36]. 

C. Proposed Detection Method 

The stages outlined in the proposed method during the 
investigation are delineated as follows: 

1) Feature identification: This stage entails identifying the 

features utilized to construct the SVM classifier model, 

leveraging attributes from the SPADA LMS database that 

correspond to indicators across each dimension within the 

FSLSM model. Feature identification involves two methods: 

firstly, selecting SPADA LMS database attributes directly 

linked to FSLSM model indicators; secondly, synthesizing 

features through the aggregation or accumulation of multiple 

SPADA LMS database attributes to fulfill the indicators for 

each FSLSM model dimension. 

2) Feature mapping: Identified features are mapped to 

learners' online behaviors, aligning them with learning styles 

(or classes) corresponding to each of the four dimensions 

(labels) within the FSLSM model. 

3) Learning style labeling: In this stage, each sample or 

observation data is assigned a learning style label based on the 

results of online behavioral mapping across each dimension. 

This process annotates each sample or learner's data into binary 

classes representing their learning styles across all four 

dimensions. 

4) Data splitting: The formed dataset, after mapping 

features and labeling for the four dimensions, is split into two 

groups. The dataset is divided into 80% and 20% proportions, 

with this ratio uniformly applied to each of the eight learning 

styles (2 learning styles with four dimensions) for all data. The 

subset comprising 80% of the data constitutes the training data, 

while the remaining 20% forms the test data. The training data 

is utilized to construct the classifier model, while the test data 

is employed to evaluate the performances of the final classifier. 

5) Initial classifier construction: Utilizing the training data, 

the initial classifier model is constructed by employing the 

SVM algorithm. All features are incorporated into the initial 

classifier, with feature selection conducted in the subsequent 

stage using the Recursive Feature Elimination (RFE) algorithm. 

6) Feature selection: Feature selection is performed 

through the SVM-RFE procedure, recursively eliminating 

features in each iteration based on the sequentially stored 

lowest weight value for each FSLSM dimension. 

7) Final classifier evaluation: Upon obtaining the final 

classifier model using SVM-RFE with selected features for 

each FSLSM dimension, its performance is evaluated using the 

test data. Performance metrics such as accuracy, precision, 

sensitivity/recall, and F1-score are computed by assessing 

correctly and misclassified learning styles. These metrics are 

presented in a confusion matrix table to facilitate performance 

evaluation. 

The workflow of the proposed method is described in Fig. 1. 

 

Fig. 1. Workflow diagram of the proposed detection method. 
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III. RESULTS 

A. Features Identification 

1) Directly extracted features from the LMS attributes: 

Data is extracted from SPADA LMS through direct data 

retrieval. This process is predicated on the assumption that the 

selected features directly influence the determination of 

learners' learning styles. The outcomes of feature extraction are 

detailed in Table I. 

TABLE I. CLASSIFIER FEATURES EXTRACTED FROM THE SPADA LMS DATABASE ATTRIBUTES BASED ON THE FSLSM MODEL 

Feature LMS Attribute Database FSLSM Indicators 

Quiz Revisions (X1) Total Quiz Attempts 
The number of quiz revisions. Features are retrieved from columns in the SPADA LMS 

dataset. 

Exercise Visit (X2) 
Number of Assignment 

Submission 

The number of duty visits. Features are derived from the "Number of Assignment 

Submissions" column in the SPADA LMS dataset. 

Content Visit (X3) Content Completed 
The number of contents visited. Features are extracted from the "Content Completed" column 

in the SPADA LMS dataset. 

Content Stay (X4) Time Spent in Content 
The length of time on content. Features are derived from the "Time spent in a content" column 
in the SPADA LMS dataset. 

Forum Visit (X5) Discussion Post Read 
The visited discussion forums. Features are extracted from the "Discussion Post Read" column 

in the SPADA LMS dataset. 

Forum Posts (X6) Discussion Post Created 
The discussion forum created. The feature is extracted from the "Discussion Post Created" 

column in the SPADA LMS dataset. 

2) Synthesized features derived from multiple attributes 

within the LMS: Features can also be generated through the 

aggregation or accumulation of several attributes within the 

SPADA LMS database, culminating in synthesized features 

utilized as inputs in the SVM classifier model. The outcomes of 

several synthetic attributes are detailed in Table II. 

Thirteen features have been generated, presumed to 
influence learning styles. These features are derived from the 
extraction and synthesis of various attributes within the SPADA 
LMS database, as demonstrated in Tables I and II. Moreover, all 
features will be aligned with the four dimensions of the FSLSM 
model. 

TABLE II. CLASSIFIER FEATURES SYNTHESIZED FROM THE ATTRIBUTES OF THE SPADA LMS DATABASE, GUIDED BY THE FSLSM MODEL 

Features LMS Database Attributes FSLSM Indicators 

Forums Stay (X7) 
Discussion Post Read, 
Discussion Post Replies 

Long duration of time spent in the forum. The features are derived from the "Discussion 

Post Read" and "Discussion Post Replies" columns in the SPADA LMS dataset. The 
durations are categorized by comparing "Discussion Post Read" and "Discussion Post 

Replies" with their respective averages. 

Question Graphics Points 

(X8) 

Quiz Completed 

Content Stay 

Question points in graphical form. The features are extracted from the "Quiz Completed" 

and "Content Stay" columns in the SPADA LMS dataset. Points are allocated by 

comparing "Quiz Completed" with the average, and the average "Content Stay" for each 
class. 

Question Text Points (X9) 
Quiz Completed 

Content Stay 

Question points in textual format. Points are allocated based on the comparison of "Quiz 
Completed" with the average, and the average "Content Stay" for each class. The features 

are extracted from the "Quiz Completed" and "Content Stay" columns in the SPADA LMS 

dataset. 

Question Facts Points (X10) 
Quiz Completed 

Number of Assignment 

Question points based on factual data. The features are derived from the "Quiz Completed" 
and "Number of Assignment Submissions" columns in the SPADA LMS dataset. Points are 

assigned by comparing "Quiz Completed" and "Number of Assignment Submissions" with 

their respective averages. 

Question Concepts Points 

(X11) 

Quiz Completed 

Content Completed 

Question points based on a conceptual framework. The features are extracted from the 

"Quiz Completed" and "Content Completed" columns in the SPADA LMS dataset. Points 

are allocated by comparing "Quiz Completed" and "Content Completed" with their 
respective averages. 

Question Details Points 

(X12) 

Quiz Completed 

Discussion Post Replies 

Question points presented as granular details. The features are extracted from the "Quiz 

Completed" and "Discussion Post Replies" columns in the SPADA LMS dataset. Points are 

assigned by comparing "Quiz Completed" and "Discussion Post Replies" with their 
respective averages. 

Question Overview Points 

(X13) 

Quiz Completed 

Discussion Post Read 

Question points presented in an overarching manner. The features are derived from the 

"Quiz Completed" and "Discussion Post Read" columns in the SPADA LMS dataset. 

Points are allocated by comparing "Quiz Completed" and "Discussion Post Read" with 
their respective averages. 
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B. Features Mapping 

The outcomes of feature mapping are presented in Table III, 
categorized by LMS activities corresponding to learning styles 
within the FSLSM dimensions. Table III illustrates the roles of 

the 13 features obtained in the preceding process, each 
associated with specific dimensions in the FSLSM. 
Consequently, each feature in Table III will be utilized for 
labeling units. 

TABLE III. FSLSM ONLINE BEHAVIOR PATTERN MAPPING 

Features 

FSLSM Dimension 

Processing Perception Input Understanding 

Active Reflective Sensing Intuitive Visual Verbal Sequential Global 

Quiz Revisions (X1)   + -     

Exercise Visit (X2) + - + -     

Content Visit (X3) - + - + - + - + 

Content Stay (X4) - + - + + -   

Forums Visit (X5) - +   - +   

Forum Posts (X6) + -   - +   

Forum Stay (X7)     - +   

Question Graphics. Points 

(X8) 
    + -   

Question Text Points (X9)     - +   

Question Facts Points (X10)   - +     

Question Concepts Points 

(X11) 
  + -     

Question Details Points (X12)   + -   + - 

Question Overview Points 

(X13) 
      - + 

C. SVM-RFE Modelling 

The labeling process involves establishing the threshold for 
the learning behavior pattern pertinent to each dimension in the 
FSLSM, as outlined in Table IV. Subsequently, a value of (-1.1) 
is assigned to each feature based on the threshold, and the total 
value for each learning style within each dimension in the 
FSLSM is computed. The resulting total values are then 
categorized based on their sign. 

Within the Processing dimension, a total score with a 
positive sign (+) signifies an active learning style, whereas a 
negative sign (-) indicates a reflective learning style. In the 
Perception dimension, a positive sign (+) denotes a sensing 
learning style, while a negative sign (-) characterizes an intuitive 
learning style. In the Input dimension, a positive sign (+) 
signifies a visual learning style, whereas a negative sign (-) 
denotes a verbal learning style. Finally, within the 
Understanding dimension, a positive sign (+) describes a 
sequential learning style, whereas a negative sign (-) represents 
a global learning style. The outcomes of the labeling process are 
depicted in Fig. 2. According to Fig. 2, there are 52,027 learners 
with active learning styles, 57,780 with reflective styles, 78,713 
with sensing styles, 31,094 with intuitive styles, 62,216 with 
visual styles, 47,591 with verbal styles, 36,397 with sequential 
styles, and 73,410 with global styles. 

1) Building the initial SVM classifier: Following the 

labeling process, the data is modeled using the SVM method, 

incorporating all the features obtained in the preceding 

approach (Feature Identification for SVM Classifiers in 

SPADA LMS). However, prior to SVM modeling, it is essential 

to partition the data into training and test sets. The training data 

is utilized to construct a model, whereas the test data is 

employed to evaluate the performance of the resultant model. 

Previous studies have demonstrated favorable accuracy with a 

training data percentage of 70% and test data percentage of 

30%, and 80% and 20%, respectively, for substantial datasets 

(comprising thousands or millions of entries). In this study, a 

proportion of 80% of training data and 20% of test data will be 

employed. The outcomes of the confusion matrix for the SVM 

model utilizing all the features are detailed in Table IV. 

 

Fig. 2. Composition of dimension/learning style labeling. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

599 | P a g e  

www.ijacsa.thesai.org 

2) Initial SVM classifier model: The researchers utilize the 

confusion matrix presented in Table IV to assess the 

performance of the SVM model constructed. The performance 

evaluation results of the model are outlined in Table V. The 

performance metrics obtained include accuracy, sensitivity, 

specificity, and F1-Score values. 

TABLE IV. CONFUSION MATRIX SVM 

Confusion 

Matrix 

Reference 

Dimension Train Test 

+ - + - 

P
r
e
d

ic
ti

o
n

 

+ 39906 2362 9974 540 
Processing 

- 1765 44008 382 10870 

+ 58611 8213 14568 2022 
Perception 

- 4482 16735 1052 4124 

+ 46481 2798 11479 672 
Input 

- 3439 35323 817 8798 

+ 26466 301 6480 83 
Understanding 

- 2754 58520 697 14506 

According to Table V, the metrics' values within each 
dimension indicate satisfactory performance. However, further 
analysis is warranted to discern the most influential features in 
each dimension. One appropriate approach to depict this is the 
SVM-RFE method, aligning with the classifier method 
employed in this study. 

TABLE V. SVM MODEL PERFORMANCE 

Dimension 

Model 

Data 

Split 
Accuracy Sensitivity Specificity F1-Score 

Processing 
Train 95.31% 95.76% 94.91% 95.08% 

Test 95.76% 96.31% 95.27% 95.58% 

Perception 
Train 85.58% 92.90% 67.08% 90.23% 

Test 85.88% 93.27% 67.10% 90.46% 

Input 
Train 92.92% 93.11% 92.66% 93.71% 

Test 93.16% 93.36% 92.90% 93.91% 

Understanding 
Train 96.53% 90.58% 99.49% 94.54% 

Test 96.42% 90.29% 99.43% 94.32% 

3) Feature selection: Feature selection is conducted using 

the Recursive Feature Elimination (RFE) method. As the base 

classifier model employs the Support Vector Machine (SVM), 

the technique is termed SVM-RFE. This method entails 

iteratively modeling the SVM method with a linear kernel. 

During each iteration, weights obtained in the SVM model are 

calculated, and the feature with the lowest weight is eliminated. 

Subsequently, a new SVM model is constructed by excluding 

the removed features. This process is repeated recursively until 

the specified number of features is attained. Feature importance 

is determined based on the sequence in which features are 

eliminated during the recursive process. Features removed 

earlier indicate lower significance in the resultant SVM model. 

The results of SVM-RFE for feature selection from each 

dimension are presented in the Appendix at the end of this 

paper. Table VI delineates the outcomes of the feature selection 

process utilizing the SVM-RFE method. 

TABLE VI. SVM-RFE FEATURE RANKING RESULTS 

Rank Processing Perception Input Understanding 

1 
Forums Visit 

(X5) 

Content Stay 

(X4) 

Question 
Graphics 

Points (X8) 

Content Visit 

(X3) 

2 
Content Visit 

(X3) 

Question 

Concepts 
Points (X11) 

Question 

Overview 
Points (X13) 

Exercise Visit 

(X2) 

3 
Content Stay 

(X4) 

Content Visit 

(X3) 

Question 

Details Points 
(X12) 

Forums Stay (X7) 

4 
Question Text 
Points (X9) 

Exercise 
Visit (X2) 

Content Visit 
(X3) 

Question 

Overview Points 

(X13) 

5 

Question 

Overview 

Points (X13) 

Quiz 

Revisions 

(X1) 

Content Stay 
(X4) 

Question Details 
Points (X12) 

The results of feature ranking in Table VI are derived from 
the weight values obtained through the SVM-RFE method, 
accessible in the Appendix of this paper. Based on the 
experimental findings, it can be inferred that the "Content Visit" 
(X3) feature significantly influences all four dimensions of 
FSLSM. This is evidenced by the fact that the "Content Visit" 
(X3) feature is ranked within the top 5 in each FSLSM 
dimension. Furthermore, apart from the "Content Visit" (X3), 
the "Content Stay" (X4) feature also exhibits a considerable 
influence, albeit not in the Understanding dimension. This 
observation is supported by Table VI, where the "Content Stay" 
(X4) feature is not among the top 5 rankings in the 
Understanding dimension. 

4) SVM-RFE classifier performance evaluation: In 

addition to the confusion matrix, metric values such as 

accuracy, sensitivity, specificity, and F1-Score are presented in 

Table VIII. The SVM model utilizing the top 5 variables in the 

training data for the Processing, Perception, Input, and 

Understanding dimensions yields respective F1-Score values of 

94.49%, 71.00%, 89.18%, and 97.46%. Conversely, the SVM 

model employing the top 5 variables in the validation data for 

the Processing, Perception, Input, and Understanding 

dimensions exhibits F1-Score values of 94.94%, 71.48%, 

89.61%, and 97.38%, respectively. The negligible discrepancy 

between F1-Score values in the training and test data indicates 

that SVM yields a reasonably robust model on the SPADA 

LMS dataset. Table VII shows the confusion matrix SVM-RFE. 

TABLE VII. CONFUSION MATRIX SVM-RFE 

Confusion 

Matrix 

Reference 

Dimension Train Test 

+ - + - 

P
r
e
d

ic
ti

o
n

 

+ 39906 2362 9974 540 
Processing 

- 1765 44008 382 10870 

+ 58611 8213 14568 2022 
Perception 

- 4482 16735 1052 4124 

+ 46481 2798 11479 672 Input 
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- 3439 35323 817 8798 

+ 26466 301 6480 83 
Understanding 

- 2754 58520 697 14506 

TABLE VIII. SVM-RFE MODEL PERFORMANCE 

Dimension 

Model 

Data 

Split 

Accuracy Sensitivity Specificity F1-Score 

Processing Train 94.78% 94.53% 95.00% 94.49% 

Test 95.18% 95.12% 95.22% 94.94% 

Perception Train 84.48% 67.06% 91.37% 71.00% 

Test 84.75% 67.69% 91.47% 71.48% 

Input Train 90.68% 88.72% 92.17% 89.18% 

Test 91.01% 89.16% 92.44% 89.61% 

Understanding Train 96.53% 99.49% 90.57% 97.46% 

Test 96.41% 99.43% 90.27% 97.38% 

The results presented in Table IX reveal a relatively low 
level of correlation between features within the Processing 
dimension. The highest correlation coefficient, at 0.516, is 
observed between features X3 and X4. Consequently, it can be 
inferred that the features comprising the SVM-RFE model in the 
Processing dimension contain independent information, except 
for the moderate level of association between X3 and X4. 
Similarly, in the Input and Understanding dimensions, the 
highest correlation coefficient values between features range 
from 0.516 to 0.553. Notably, the highest correlation coefficient 
within these dimensions occurs between pairs of features, 
namely X3 and X4 in the Input dimension, and X12 and X13 in 
the Understanding dimension. In contrast, the Perception 
dimension exhibits a slightly different pattern, with the highest 
correlation coefficient ranging from 0.516 to 0.748 observed 
among two pairs of features: X4 and X3, and X1. Consequently, 
it can be deduced that the features constituting the SVM-RFE 
model in the Perception dimension contain information with a 
relatively high level of association. This phenomenon is 
presumed to contribute to the slightly lower performance of the 
model in the Perception dimension compared to the other three 
dimensions. 

TABLE IX. FEATURE CORRELATION 

Dimension Correlation 

Processing 

 X5 X3 X4 X9 X13 

X5 1.000 0.352 0.371 0.008 0.323 

X3 0.352 1.000 0.516 0.173 0.157 

X4 0.371 0.516 1.000 0.056 0.220 

X9 0.008 0.173 0.056 1.000 0.258 

X13 0.323 0.157 0.220 0.258 1.000 

Perception 

 X4 X11 X3 X2 X1 

X4 1.000 0.307 0.516 -0.016 0.488 

X11 0.307 1.000 0.145 0.056 0.167 

X3 0.516 0.145 1.000 -0.063  

X2 -0.016 0.056 -0.063 1.000 -0.051 

X1 0.488 0.167 0.748 -0.051 1.000 

Input 
 X8 X13 X12 X3 X4 

X8 000 0.223 0.202 -0.201 0.273 

X13 0.223 1,000 0.553 0.157 0.220 

X12 0.202 0.553 1,000 0.165 0.194 

X3 -0.201 0.157 0.165 1,000 0.516 

X4 0.273 0.220 0.194 0.516 0 

Understanding 

 X3 X2 X7 X13 X12 

X3 1.000 -0.063 0.011 0.157 0.165 

X2 -0.063 1.000 -0.007 -0.081 -0.068 

X7 0.011 -0.007 1.000 0.007 0.002 

X13 0.157 -0.081 0.007 1.000 0.553 

X12 0.165 -0.068 0.002 0.553 1.000 

IV. DISCUSSION 

Based on the available data from LMS-SPADA, six features 
correspond to FSLSM indicators. Subsequently, we generated 
features by extracting and synthesizing several attributes 
assumed to determine learning styles, following the 
methodology outlined by [37]. Consequently, we obtained 13 
features that will be mapped onto FSLSM learning styles based 
on [38]. Notably, several features correspond to more than one 
dimension in the FSLSM learning style model during this 
feature identification process. For instance, the content visit 
feature (X3) can detect learning styles across all four dimensions 
of FSLSM, while the content stay feature is applicable to the 
processing, perception, and input dimensions. Unlike previous 
research, which independently mapped each feature onto each 
dimension, as observed in studies by [31] and [39], our approach 
considers the holistic mapping of features onto multiple 
dimensions. Furthermore, most previous researchers utilized the 
ILS instrument for labelling the four dimensions of FSLSM for 
modelling using machine learning techniques. 

The Appendix presents the feature selection results sorted by 
feature weight value using the SVM-RFE algorithm for each 
dimension in the FSLSM model. Table X illustrates the sorting 
features using the SVM-RFE method for the Processing 
dimension. It is apparent that removing features X10, X11, X6, 
X2, X1, X12, X7, X8, X13, and X9 does not significantly impact 
Accuracy, Sensitivity, Specificity, and F1-Score. This indicates 
that eliminating these features can expedite the computational 
process without significantly affecting the SVM model's 
performance in classification. However, for features X4, X3, 
and X5, the model's performance also decreased, albeit more 
noticeably compared to the earlier features. This suggests that 
the contribution or influence of features X4, X3, and X5 is more 
significant than that of the previous features on the Processing 
dimension. 

The data reveals that X3 and X11 play a crucial role in 
classifying learning styles within the Perception dimension. 
Table XI presents the sorted features using the SVM-RFE 
method for the Perception dimension. Notably, the performance 
of the SVM model remained relatively stable until the removal 
of the X3 feature. This suggests that features released before the 
removal of X3 have a minimal contribution to determining the 
learning style within the Perception dimension. The significant 
drop in the Specificity value subsequent to the removal of X3 
and X11 provides further evidence that these features 
substantially influence the differentiation between Sensing and 
Intuitive learning styles within the Perception dimension. 
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Similar to the Perception dimension, the Input dimension, as 
depicted in Table XII, exhibited a notable reduction in 
Specificity upon the removal of the X12 and X13 features. This 
indicates the substantial contribution of the X12 and X13 
features to identifying the learning style within the Input 
dimension. Therefore, at minimum, the inclusion of the X8, 
X12, and X13 features is necessary to achieve a reasonably 
effective SVM model, as evidenced by the high F1-Score value 
in the 11th iteration. 

In contrast to the preceding three dimensions, the 
Understanding dimension, as presented in Table XIII, 
demonstrates a minor shift in the SVM model's performance 
during the SVM-RFE process. As discussed earlier, the majority 
of features significantly influence each dimension within the 
model, indicating that the final feature, X3, holds the most 
prominent sway over the learning styles within the 
Understanding dimension. Appendix 4 further underscores the 
independence of X3 from other features, given the negligible 
alteration in SVM model performance upon its removal. These 
findings underscore the necessity for additional analysis during 
feature selection in each dimension using SVM-RFE to mitigate 
the risk of SVM models exhibiting high bias or variance. 

The accuracy of the SVM-RFE model exhibits the lowest 
value in the perception dimension, whereas it remains relatively 
consistent across the other dimensions. This contrasts with the 
findings of [39], where the SVM model achieved its highest 
score in the perception dimension and nearly identical values 
across the other dimensions. 

V. CONCLUSION 

This paper has presented a framework for extracting features 
from LMS-SPADA, the largest higher-education LMS in 
Indonesia, to align with the learning style indicators of the 
FSLSM model. These features were identified based on the 
indicators of the Felder-Silverman Learning Style Model 
(FSLSM). We utilized the mapping results as independent 
variables to automatically detect students' learning styles using 
the SVM-RFE method. The SVM-RFE classifier integrates 
features from LMS-SPADA database attributes with FSLSM 
dimension indicators, enhancing the accuracy of learning style 
detection. Our experiments yielded accuracy results of 95.76% 
for the Processing dimension, 85.88% for the Perception 
dimension, 93.16% for the Input dimension, and 96.42% for the 
Understanding dimension. Additionally, the SVM-RFE method 
identified the top five features contributing to learner learning 
styles in each dimension: for the Processing dimension, these 
features are Forums Visit (X5), Content Visit (X3), Content Stay 
(X4), Question Text Points (X9), and Question Overview Points 
(X13); for the Perception dimension, they are Content Stay (X4), 
Question Concepts Points (X11), Content Visit (X3), Exercise 
Visit (X2), and Quiz Revisions (X1); and for the Input 
dimension, they are Question Graphics Points (X8), Question 
Overview Points (X13), and Question Detail Points (X12). 

We have identified several limitations in our study, including 
the lack of comparison with other classification techniques. 
Further research is necessary to validate our findings in different 
contexts using standard machine learning methods. In future 
work, it would be beneficial to compare various classification 
techniques across different machine learning models to 

determine the most suitable model for detecting learning styles. 
One strategy to improve model performance is through the use 
of ensemble techniques, which combine the outputs of multiple 
weak learner algorithms, whether similar or disparate. These 
ensemble techniques include averaging, voting, stacking, 
boosting, and other similar approaches. 
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APPENDIX 

TABLE X. SVM-RFE RESULTS FOR PROCESSING DIMENSION 

Iteration Sorted Feature 
Deleted 

Feature 

Metric 

Acc. Sensv. Specf. F1 

1 
X10 X11 X6 X2 X1 X12 X9 X13 X8 X7 X4 X3 X5 

- 95.40% 95.88% 94.96% 95.18% 
0.0017 0.0067 0.0166 0.0277 0.1925 0.5041 0.6614 0.6702 0.8872 1.0383 2.95 13,956 21,675 

2 
X11 X6 X2 X1 X12 X9 X13 X8 X7 X4 X3 X5 - 

X10 95.38% 95.86% 94.94% 95.16% 
0.0061 0.0171 0.0292 0.1931 0.5262 0.6543 0.6931 0.8839 1.0799 2,931 13,951 21,553 - 

3 
X6 X2 X1 X12 X13 X9 X8 X7 X4 X3 X5 - - 

X11 95.35% 95.82% 94.92% 95.12% 
0.016 0.0291 0.1915 0.4595 0.619 0.6491 0.8204 0.9649 3.1501 13.91 21.3 - - 

4 
X2 X1 X12 X13 X9 X8 X7 X4 X3 X5 - - - 

X6 95.33% 95.76% 94.94% 95.10% 
0.0287 0.1867 0.3724 0.5123 0.5445 0.6866 0.7724 3.2194 13,667 21.13 - - - 

5 
X1 X12 X9 X13 X8 X7 X4 X3 X5 - - - - 

X2 95.00% 95.28% 94.75% 94.75% 
0.1739 0.3554 0.5986 0.6056 0.7106 0.8265 2.5906 10.262 24,357 - - - - 

6 
X12 X13 X9 X8 X7 X4 X3 X5 - - - - - 

X1 94.89% 95.15% 94.66% 94.64% 
0.3118 0.5536 0.5782 0.5823 0.7457 2.5022 11.893 23,994 - - - - - 

7 
X7 X8 X13 X9 X4 X3 X5 - - - - - - 

X12 94.87% 94.80% 94.94% 94.60% 
0.0218 0.0533 0.0981 0.1064 3.4126 10,902 24,991 - - - - - - 

8 
X8 X13 X9 X4 X3 X5 - - - - - - - X

7 
94.83

% 
94.72% 94.93% 94.55% 

0.0276 0.0382 0.8001 3.5356 10.77 25,272 - - - - - - - 
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9 
X13 X9 X4 X3 X5 - - - - - - - - 

X8 94.85% 94.65% 95.04% 94.57% 
0.0243 0.0429 3.9216 10.337 24,295 - - - - - - - - 

10 
X9 X4 X3 X5 - - - - - - - - - 

X13 94.80% 94.51% 95.07% 94.52% 
0.0272 3.8354 10,563 21.482 - - - - - - - - - 

11 
X4 X3 X5 - - - - - - - - - - 

X9 94.80% 94.48% 95.10% 94.51% 
3.7407 10,876 21.105 - - - - - - - - - - 

12 
X3 X5 - - - - - - - - - - - 

X4 90.66% 89.63% 91.58% 90.09% 
7.1102 14,296 - - - - - - - - - - - 

13 
X5 - - - - - - - - - - - - 

X3 82.29% 81.42% 83.08% 81.33% 
25,037 - - - - - - - - - - - - 

TABLE XI. SVM-RFE RESULTS FOR PERCEPTION DIMENSION 

Iteration Sorted Feature 
Deleted 

Feature 

Metric 

Acc. Sensv. Specf. F1 

1 X6 X10 X5 X1 X12 X13 X9 X3 X11 X2 X7 X8 X4 - 85.64% 92.97% 67.10% 90.28% 

0.0004 0.002 0.0054 0.2246 0.2418 0.2913 0.4059 0.5351 0.5762 0.5858 0.5886 0.789 2.0794 

2 X10 X5 X1 X12 X13 X9 X3 X11 X7 X2 X8 X4 - X6 85.65% 92.97% 67.12% 90.28% 

0.002 0.0054 0.224 0.2372 0.2874 0.4009 0.5364 0.5759 0.5788 0.5834 0.78 2.0725 - 

3 X5 X12 X1 X13 X9 X3 X7 X11 X2 X8 X4 - - X10 85.65% 92.97% 67.09% 90.28% 

0.005 0.2209 0.2272 0.2705 0.4039 0.5236 0.5463 0.5823 0.6244 0.7882 2.0797 - - 

4 X12 X1 X13 X9 X3 X7 X11 X2 X8 X4 - - - X5 85.63% 92.97% 67.07% 90.27% 

0.2341 0.2349 0.2634 0.4029 0.5149 0.5803 0.5808 0.6114 0.8051 2.0465 - - - 

5 X13 X7 X9 X8 X1 X2 X11 X3 X4 - - - - X12 85.42% 92.95% 66.37% 90.14% 

0.028 0.0362 0.0553 0.1745 0.2251 0.3798 0.4627 0.7035 1.2827 - - - - 

6 X7 X9 X8 X1 X2 X11 X3 X4 - - - - - X13 85.43% 93.05% 66.16% 90.16% 

0.0043 0.0247 0.1043 0.2273 0.3371 0.4353 0.7518 1.1402 - - - - - 

7 X9 X8 X1 X2 X11 X3 X4 - - - - - - X7 85.44% 93.01% 66.29% 90.16% 

0.0269 0.1056 0.2358 0.321 0.44 0.7482 1.1091 - - - - - - 

8 X8 X1 X11 X3 X2 X4 - - - - - - - X9 85.07% 92.25% 66.90% 89.86% 

0.0743 0.2743 0.64 0.7276 0.86 1.3062 - - - - - - - 

9 X1 X11 X4 X3 X2 - - - - - - - - X8 84.51% 91.37% 67.14% 89.43% 

0.3384 0.6908 0.9448 0.9488 1.8042 - - - - - - - - 

10 X2 X3 X11 X4 - - - - - - - - - X1 83.83% 90.25% 67.58% 88.89% 

0.4342 0.4966 0.7918 0.8622 - - - - - - - - - 

11 X3 X11 X4 - - - - - - - - - - X2 83.39% 91.90% 61.84% 88.81% 

0.5734 0.7046 0.7698 - - - - - - - - - - 

12 X11 X4 - - - - - - - - - - - X3 78.89% 91.98% 45.76% 86.20% 

0.4001 1.2444 - - - - - - - - - - - 

13 X4 - - - - - - - - - - - - X11 74.72% 94.42% 24.83% 84.26% 

0.4577 - - - - - - - - - - - - 

TABLE XII. SVM-RFE RESULTS FOR INPUT DIMENSION 

Iterati

on 
Sorted Feature 

Deleted 

Feature 

Metric 

Acc. Sensv. Specf. F1 

1 
X10 X11 X9 X2 X1 X6 X4 X3 X5 X7 X12 X13 X8 

- 92.96% 93.17% 92.67% 93.75% 
1e-04 0.0016 0.0295 0.0562 0.1252 0.2396 1.3902 1.8188 2.1678 6.029 8.7485 9,607 44,569 

2 
X11 X9 X2 X1 X6 X4 X3 X5 X7 X12 X13 X8 - 

X10 92.96% 93.16% 92.69% 93.75% 
0.0016 0.0301 0.0553 0.1261 0.2389 1.3896 1.8242 2.1635 5.9656 8,696 9.5479 44,453 - 

3 
X9 X2 X1 X6 X4 X3 X5 X7 X12 X13 X8 - - 

X11 92.94% 93.15% 92.65% 93.73% 
0.0276 0.0551 0.1263 0.2393 1.4249 1.8254 2.1934 5.9969 8.6975 9.5287 44,829 - - 

4 
X2 X1 X6 X4 X3 X5 X7 X12 X13 X8 - - - 

X9 92. 
92%93.22

% 
92.54% 93.72% 

0.0595 0.1305 0.2563 1.2888 1.7414 2.3125 7.4043 9.8369 10,826 .165 - - - 

92.20% 
X1 X6 X4 X5 X3 X7 X12 X13 X8 - - - - 

X2  93.26% 90.82% 93.13% 
0.1395 0.1801 0.9783 1.4124 1.5644 4.9187 7.4545 8.2854 35,699 - - - - 

6 
X6 X3 X4 X5 X7 X12 X13 X8 - - - - - 

X1 92.44% 93.62% 90.91% 93.35% 
0.1786 1.2235 1.2727 1.2777 4.3821 7.1945 8.739 35,625 - - - - - 

7 
X5 X3 X4 X7 X12 X13 X8 - - - - - - 

X6 92.33% 93.56% 90.72% 93.25% 
1.1361 1.2183 1.232 3.3407 6.2367 7.6352 30.6 - - - - - - 

8 
X7 X4 X3 X12 X13 X8 - - - - - - - 

X5 91.16% 92.84% 88.97% 92.25% 
0.529 0.6628 1.2901 2.8709 3.9324 12.44 - - - - - - - 

9 
X4 X3 X12 X13 X8 - - - - - - - - 

X7 90.74% 92.25% 88.76% 91.86% 
0.6686 1.2561 1.4523 2.1813 9.5629 - - - - - - - - 

10 
X3 X12 X13 X8 - - - - - - - - - 

X4 88.90% 94.72% 81.29% 90.63% 
2E-09 1.1737 1.2721 8.7165 - - - - - - - - - 

11 X12 X13 X8 - - - - - - - - - - X3 88.90% 94.72% 81.29% 90.63% 
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1.173 1.2714 8.7127 - - - - - - - - - - 

12 
X13 X8 - - - - - - - - - - - 

X12 82.20% 96.59% 63.38% 86.01% 
1,271 2.1775 - - - - - - - - - - - 

13 
X8 - - - - - - - - - - - - 

X13 63.97% 99.88% 36.51% 53.45% 
2.1798 - - - - - - - - - - - - 

TABLE XIII. SVM-RFE RESULTS FOR UNDERSTANDING DIMENSION 

Iterati

on 
Sorted Feature 

Delete

d 

Featu

re 

Metric 

Acc. Sensv. Specf. F1 

1 
X11 X4 X5 X9 X1 X8 X10 X6 X12 X13 X7 X2 X3 

- 96.48% 90.44%  94.46% 
1e-11 2e-11 1e-10 3e-09 4e-09 8e-09 4e-05 4e-05 0.0076 0.0083 0.016 0.0167 28,752 

2 
X5 X1 X4 X8 X9 X10 X6 X12 X13 X7 X2 X3 - 

11 96.48% 90.44% 99.48% 94.46% 
1e-09 5e-09 1e-08 2e-08 3e-08 3e-05 4e-05 0.0076 0.0082 0.0159 0.0167 28,753 - 

3 
X4 X1 X9 X8 X10 X6 X12 X13 X7 X2 X3 - - X

5 
96.48% 90.44% 99.48% 94.46% 

8e-11 2e-09 6e-09 2e-08 4e-05 4e-05 0.0076 0.0082 0.0159 0.0167 28,754 - - 

4 
X1 X9 X8 X10 X6 X12 X13 X7 X2 X3 - - - X

4 
96.48% 90.44% 99.48% 94.46% 

4e-10 9e-10 6e-09 4e-05 4e-05 0.0076 0.0083 0.016 0.0167 28,752 - - - 

5 
X9 X8 X10 X6 X12 X13 X7 X2 X3 - - - - X

1 
96.48% 90.44% 99.48% 94.46% 

8e-12 3e-10 4e-05 4e-05 0.0076 0.0083 0.016 0.0167 28,751 - - - - 

6 
X8 X10 X6 X12 X13 X7 X2 X3 - - - - - X

9 
96.48% 90.44% 99.48% 94.46% 

2e-09 4e-05 4e-05 0.0076 0.0082 0.0159 0.0167 28,754 - - - - - 

7 
X10 X6 X12 X13 X7 X2 X3 - - - - - - X

8 
96.48% 90.44% 

99.48

% 
94.46% 

4e-05 4e-05 0.0076 0.0083 0.016 0.0167 28,754 - - - - - - 

8 
X6 X12 X13 X2 X7 X3 - - - - - - - X

10 
96.48% 

90.43
% 

99.48% 94.46% 
4e-05 0.0068 0.0069 0.0136 0.0142 28,754 - - - - - - - 

9 
X12 X13 X7 X2 X3 - - - - - - - - X

6 
96.50% 90.49% 99.48% 94.48% 

0.0043 0.0044 0.009 0.0134 28,745 - - - - - - - - 

10 
X13 X7 X2 X3 - - - - - - - - - X

12 
96.51% 

90.52

% 

99.48

% 
94.50% 

6e-08 1e-06 0.009 28,716 - - - - - - - - - 

11 
X7 X2 X3 - - - - - - - - - - X

13 
96.51% 90.52% 99.48% 94.50% 

1e-06 0.0089 28,709 - - - - - - - - - - 

12 
X2 X3 - - - - - - - - - - - X

7 
96.51% 90.52% 99.48% 94.50% 

0.0086 28,753 - - - - - - - - - - - 

13 
X3 - - - - - - - - - - - - X

2 
96.49% 90.48% 99.48% 94.48% 

28,754 - - - - - - - - - - - - 

 


