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Abstract—The majority of previous methods for identifying 

emotions concentrate on facial expressions rather than taking into 

account the rich contextual information that suggests significant 

emotional states. To fully utilize the contextual information in 

order to make up for the lack of emotion information. In this work, 

The Emotion Recognition Fusion Network (ERFN) is a novel 

model that uses advanced techniques for efficient context-aware 

identification of human emotion recognition. It incorporates the 

Flow Context Aware Loss Fusion (FCALF) model, which focuses 

on emotion analysis in a video sequence. The model uses deep 

feature extraction (VGG16), Farnebäck optical flow model, and 

L1 loss to calculate the Average Contextual Loss (ACL) for 

selecting key frames. The selected frames are used to obtain 

resultant optical flow images. Data augmentation techniques are 

applied exclusively to the training images. The resultant optical 

flow images undergo feature extraction using both 

InceptionResNetV2 and VGG16, fine-tuned by adding layer 

followed by GlobalMaxPool2D and a dense layer, capturing 

intricate details and flow-contextual information from face, body, 

and scene.  The fused features are fed into a Softmax layer for 

classification. Experimental results show that the ERFN 

outperforms existing models in terms of accuracy and 

generalization, contributing to its effectiveness in capturing 

context-aware emotions. The proposed approach shows promising 

results in real-world uncontrolled environments (CAER-S) and 

laboratory-controlled (CK+) datasets. 

Keywords—Context-based emotion recognitions; deep learning; 

optical flow; CNN 

I. INTRODUCTION 

Emotion is a fundamental aspect of life with significant 
impact on human thinking, knowledge, and decision-making. 
This plays an essential role recently in robotics, healthcare, 
education, and human-computer interaction[1, 2]. The majority 
of earlier research has adopted human-derived modalities, 
includes voice, text and facial emotion. Among all the facial 
emotion is most recent trend that resulting in a large number of 
facial emotion datasets and algorithms [3-5]. Earlier, facial 
emotion analyses are mainly developed using controlled dataset 
which was collected from the person who are professional 
actor. Therefore, uncertainty in the dataset. In addition, the 
dataset generated with constrained environment has uniform 
illumination, subtle background variation, frontal imaging or no 
head movement [6], which is quite different from realistic 
environment. 

The context is another component that is evidenced by 
psychological research. It has a big impact on how people 

perceive emotions, according to [7-10]. For example, the same 
facial expressions in different situations might indicate 
different mental feeling, such as a person laugh heavily at 
comedy club versus the same person pouring tears at a funeral. 
Context: the environment, people around, and situational clues 
play important cures.  So, researchers have focused to the 
important cures significant by contextual information. Hence, 
in this work the contextual information fuse with facial 
expression for robust emotional perception. 

To extract valuable contextual information which implies 
important emotion states, we introduce the attention mechanism 
for three dynamic features: face, body language and 
environmental information. To reduce the scale difference 
between the small face portions and the wide contextual 
background, we specifically identify the features around the 
body area as local contextual features and the others as context 
in general. The proposed work developed a novel the Flow 
Context Aware Loss Fusion (FCALF) Model for emotion 
recognition, which is based on the non-overlapping face, body, 
and environmental context components. The model adopts the 
typical VGG16 and optical flow model, to extract spatial 
feature and intricate dynamic motion respectively. To preserve 
the semantic and contextual features, a new contextual loss 
function is proposed in this work. At first, the model carefully 
selects context-aware frame pairings from video sequences 
which is a crucial task in our technique. 

VGG16 model is employed to extract contextual 
information from facial expression, body language and 
contextual environment for the selected frames in which 
emotions are seen. Simultaneously, Farneback optical flow is 
employed to detect the intricate dynamics motion exhibited in 
the frame. The outcomes of the VGG16 and flow are averaged 
through contextual loss function to identify four best frame 
pairings, which effectively capture the essence of dynamic 
interactions in a context-rich environment. The optical flow 
enables the encoding of spatial-temporal dynamics that are 
crucial for identifying emotions. For further enhancement, the 
model utilizes advanced transfer learning techniques such as 
InceptionResNetV2 and VGG16. 

The aforementioned methodology makes significant 
contributions to the field of emotion identification in context-
rich environments: 

 We proposed a new FCALF model for emotion 
recognition, which assists the emotion by contextually 
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learning the relationship between face, body and context 
environment. 

 We designed VGG16 and Farneback optical flow as a 
backbone of the model to extracts spatial-temporal 
dynamic features. 

 A new average contextual loss function is proposed on 
the dynamic features to select best 4 frame pairs. Those 
selected pairs are rich contextual information which 
distinguish the importance of each part such as face, 
body and environment. This selective approach 
optimizes computational resources while maximizing 
the relevance of the extracted features for emotion 
recognition tasks. 

 Fine-tuning pre-trained models extracts high-level 
features, improving the system's robustness and 
generalization capabilities 

II. RELATED WORK 

1) Emotion recognition based on face and body: Most of 

the research that has been done on recognizing emotions in 

people has focused on faces, thinking that emotions can be 

inferred from the way people look. A lot of research has been 

done on face emotion recognition in the last few years [4, 11-

15]. Early works mostly used face images taken in controlled 

laboratories [16], which only showed a few different head 

poses, lighting conditions, and other things. Recent research 

[14, 15] looks into how to recognize facial expressions in the 

wild. The emotions are also natural and come in a variety of 

forms. For recognizing facial expressions, traditional 

techniques mostly use hand-crafted appearance and geometry 

features taken from the whole face or specific local face 

regions. These include SIFT [11], LBP [11, 16], and PHOG 

[12]. These features are then fed into supervised classifiers. 

SVM [17], random forests [13], and others to figure out how 

people are feeling. Most of the new work is built on deep 

learning and uses Convolutional Neural Networks (CNNs) to 

understand feelings and extract facial features [4, 14, 15, 18], 

and they do excellent work. 

Since body language is also a big part of showing emotions 
[8], some other ways of detecting emotions use things like hand, 
shoulder, body movements, and so on. Karpouzis et al. [19] use 
hand moves to get information about emotions. In their study 
[20], Nicolaou et al. combine cues from shoulder movements 
and face reactions to figure out how people are feeling. A brain 
model by Schindler et al. [21] suggests that body language can 
be used to figure out how someone is feeling. Yang and 
Narayanan [22] use a model of body language dynamics to 
figure out how people are feeling when they are interacting with 
each other. Recently, deep learning has also been looked at for 
recognizing body language emotions [23-25]. According to 
Barros et al. [23], a Multichannel CNN can recognize emotions 
in both the face and the upper body. In [25], Nguyen et al. 
suggest a new feature-level fusion method based on multimodal 
dense bilinear pooling to combine different types of emotions 
cues, such as body language, facial expressions, and poses. 

Face-based and body-based emotions recognition systems 
are limited because they only look at certain parts of the target 
person's face and body. However, in real life, there are many 
clues from the image's background that can be used to figure 
out how someone is feeling, but these programs don't take them 
into account. The face and body in the center may also be 
occluded or not visible, which is something that these networks 
can't really handle. 

2) Recognizing emotions in real-life scenarios: An 

individual's face and body are often seen along with the main 

scene in real life, which can greatly affect how that person 

perceives emotions [26], [27]. Lee et al. [10] recently came up 

with the idea of the Context-Aware Emotion Recognition 

Networks (CAER-Net) to help computers understand how 

people feel in real life. In order to take advantage of the scene 

environments, they hide people's faces in the picture and model 

their contributions in a way that is similar to and stronger than 

those of the human face areas. They also made a collection 

called Context-Aware Emotion Recognition (CAER) that has a 

lot of TV show video clips that have been labelled with emotion 

categories. Their suggested method, on the other hand, doesn't 

carefully model the inputs of different areas, and it can't really 

handle hidden or invisible faces, which is a common problem 

in real life. An emotional graph was made by Zhang et al. [28] 

using environments to help recognize emotions. It is based on 

the graph convolution network. The background cues, on the 

other hand, are only used to improve the main body parts and 

aren't really thought about for recognizing human emotions. 

The shapes of the main and background cues are not used as 

much as they could be. Mittal et al. [29] suggest recognizing 

emotions from many sources, such as the target person's faces 

and gaits, as well as the background scene. However, the 

analysis is not thorough enough to model how each of these 

sources contributes in particular. Some body parts, like body 

language, are also not taken into account when figuring out how 

someone is feeling. to include rich contextual information from 

the face, body, and scene, the Proposed model improves 

emotion recognition and greatly increases accuracy and 

generalization. It supports better patient-caregiver relations as 

well as the diagnosis and monitoring of mental health disorders 

in the medical field [30]. to adapt instructional strategies to 

students' emotional responses, education can improve learning 

outcomes and provide emotional support [31]. 

Most of the time, these methods worked pretty well, but 
they had trouble applying to different face emotions and 
environments. Researchers started looking for ways to add 
environmental information and temporal changes to emotion 
recognition systems after realizing that static analysis had its 
limits. 

3) Integration of contextual information: Incorporating 

contextual information has become one of the most important 

ways to improve the accuracy and strength of mood detection. 

Studies by Kosti et al. [7] and Weixin Li et al. [32] showed that 

adding scene features, body language, and social environments 

to tasks for recognizing emotions worked well. The Flow 
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Context Aware Loss Fusion (FCALF) model we suggested in 

our study builds on this by mixing information about the scene's 

context with information about how light moves through it. The 

FCALF model finds the most useful frame pairs in video 

sequences by finding the Average Contextual Loss of VGG16 

[33] and Farneback optical flow [34] features. This improves 

the representation of emotional expressions. 

4) Temporal dynamics and optical flow analysis: Optical 

flow analysis is a key part of catching time variations and 

motion patterns in video clips [35]. Simonyan et al. [36] and 

Tran et al. [37]  showed that visual flow can be useful for tasks 

like recognizing actions and analyzing gestures. When it comes 

to recognizing emotions, visual flow analysis lets you pull out 

changing body language and facial expressions, which gives 

you useful time information for figuring out what someone is 

feeling. Our study uses the benefits of both static face features 

and dynamic motion cues to make emotion detection better. It 

does this by mixing optical flow analysis with deep transfer 

learning methods. 

5) Deep transfer learning for feature extraction: Deep 

learning techniques have revolutionized the domain of 

computer vision by enabling pre-trained models to leverage 

their acquired knowledge for performing specialized tasks 

inside their domain. Transfer learning in emotion detection 

involves extracting high-level features from optical flow 

images. This facilitates the display of various types of 

emotions. The experiments conducted by [38]  and Zhang et al. 

[39] demonstrated the effectiveness of deep transfer learning in 

context-aware emotion detection tasks. These investigations 

revealed that deep transfer learning is capable of capturing 

spatial and temporal variations in emotional responses across 

various environments. 

III. PROPOSED WORK 

We introduce a sophisticated and efficient Emotion 
Recognition Fusion Network (ERFN) as seen in Fig. 2 for the 
purpose of emotion recognition. Our main objectives are: (1) 
replacing conventional image-level facial features with ERFN, 
which integrates cutting-edge techniques for context-aware 
emotion detection. The model incorporates the novel Flow 
Context Aware Loss Fusion (FCALF) model, as depicted in 
Fig. 1. This model combines deep feature extraction, L1-loss, 
and optical flow to compute the Average Contextual Loss 
(ACL) value. It then identifies the top 4 pairs of frames with the 
highest ACL value for improved spatial-temporal analysis. 
Subsequently, the chosen key pairs of frames are used to 
acquire optical flow images. (2) the two resulting optical flow 
images are used as input for feature extraction using fine-tuned 
pretrained models, specifically InceptionResNetV2 [40] and 
VGG16 [33]. Data augmentation is exclusively incorporated 
during training, contributing to improved model generalization 
across diverse emotion recognition scenarios. (3) The output of 
the two pre-trained models is concatenated and fed into the 

Softmax for classification. The detail description about each 
step is discussed as follows: 

A. Flow Context Aware Loss Fusion (FCALF) 

In the real-time video analysis of Context aware emotion 
recognition, emphasizing face, body, and scene components, a 
flow context aware loss fusion model is applied to strategically 
select the most informative frames. Employing VGG16 and 
Farnebäck optical flow technique, the algorithm focuses on the 
face, body, and scene region to capture subtle changes in 
expressions. Concurrently, body language is analysed through 
pose estimation, expanding the understanding of emotions to 
encompass gestures and posture. The broader environmental 
context is considered, with scene analysis providing insights 
into contextual elements. This algorithm systematically selects 
the best 4 key pairs of frames based on the highest ACL value 
for enhanced spatial-temporal analysis. The selected key pairs 
of frames are then used to obtain optical flow images by 
evaluating criteria such as facial expression coverage, 
comprehensive body language representation, and scene 
richness, ensuring a concise yet comprehensive representation 
of emotional cues. The integration of these components in the 
selected frames through fusion mechanisms within a FCALF 
model (see Fig. 1) enhances the interpretative depth, offering 
subtle insights into the emotional states of individuals in real-
world scenarios. 

Suppose that given a dataset D consists of 𝑉𝑂𝑖 =
{𝑉𝑂1, 𝑉𝑂2, … , 𝑉𝑂𝑘} ∈  ℝD×N  , N samples from M different 
classes, where1 ≥ i ≤ k and k is the total number of videos. 
Each video in 𝑉𝑂𝑖  is chosen to extract the frames. For 
subsequent processing, the collected frames of 𝑉𝑂𝑖  are saved in 
a local directory as shown 

𝔩𝑖 = {𝔩0, 𝔩1 … … , 𝔩𝑛−1}   (1) 

The pre-trained VGG16 model is utilized for feature 
extraction from the reference frame (𝔩0)and subsequent frames 
(𝔩𝑡) 𝑤ℎ𝑒𝑟𝑒, 𝑡 =  1,2, … 𝑛 − 1  in the image sequence. The 
layers up to the 23rd layer of the VGG16 model is selected for 
feature extraction. Each frame in the image sequence is 
preprocessed using a set of transformations. The preprocessing 
includes resizing the frames to (224, 224) pixels and converting 
them to tensor format. 

The feature extract from the Reference frame (𝔩0) can be 
denoted by 𝔩𝑓𝑟_0  and the feature extract from the subsequent 

frames {𝔩1, 𝔩2 … … , 𝔩𝑡}  can be denoted by 

{𝔩𝑓𝑟_1, 𝔩𝑓𝑟_2 … … , 𝔩𝑓𝑟_𝑡} 𝑤ℎ𝑒𝑟𝑒, 𝑡 =  1,2, … 𝑛 − 1. 

Take first frame as a Reference frame 𝔩0 and Current frame 
𝔩1. Optical Flow ℱ𝑡 = (𝑢, 𝑣)  𝑤ℎ𝑒𝑟𝑒 𝑡 =  1,2, … 𝑛 − 1 
represents the displacement of pixel (𝓍, 𝓎)  in the reference 
frame to its corresponding position in the current frame. 

Let's derive the Farnebäck optical flow energy function. The 
goal is to minimize the energy function with respect to the 
motion vectors (𝑢, 𝑣). The energy function is given by: 

ℱ𝑡 = ∑ ((𝔩0(𝓍, 𝓎) − 𝔩𝑡(𝓍 + 𝑢, 𝓎 + 𝑣))
2

. 𝒢 (||𝓍, 𝓎||
2

; 𝜎)𝓍,𝓎 (2) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

620 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 1. FCALF Model Architecture: Deep Features and Optical Flow Integration 

 

Fig. 2. The diagram illustrates the architectural structure of the Emotion Recognition Fusion Network (ERFN) model 

ℱ𝑡 is the energy function to be minimized, representing the 
mismatch between the intensities of corresponding pixels in the 
two frames. (𝑢, 𝑣) are the components of the motion vector to 
be determined for each pixel (𝓍, 𝓎). 𝔩0(𝓍, 𝓎) is the intensity of 
the pixel at position (𝓍, 𝓎)  in the Reference frame.  𝔩𝑡(𝓍 +
𝑢, 𝓎 + 𝑣)  is the intensity of the pixel in the second frame, 

warped by the motion vector (𝑢, 𝑣). 𝒢(‖𝓍, 𝓎‖2; 𝜎) = 𝑒
−‖𝓍,𝓎‖2

2𝜎2  
is a Gaussian weighting function that gives higher importance 
to pixels closer to the center of the window. 𝜎 is the standard 
deviation of the Gaussian and the expression ‖𝓍, 𝓎‖2 refers to 
the squared Euclidean norm of the spatial coordinates (𝓍, 𝓎), 
which is equivalent to 𝓍2 + 𝓎2. This term is used to measure 
the distance of a pixel from the center of the window. 

To derive the equations, we'll start by expressing the warped 
image intensity 𝔩𝑡(𝓍 + 𝑢, 𝓎 + 𝑣)  using a Taylor expansion 
around (𝓍, 𝓎): 

𝔩𝑡(𝓍 + 𝑢, 𝓎 + 𝑣) ≈ 𝔩0(𝓍, 𝓎) + 𝑢 .
𝜕𝔩0

𝜕𝓍
+ 𝑣 .

𝜕𝔩0

𝜕𝓎
      (3) 

Now, substitute this expression into the energy function 
Eq. (2) 

ℱ𝑡 = ∑ ((𝔩0(𝓍, 𝓎) − [𝔩0(𝓍, 𝓎) + 𝑢 .
𝜕𝔩0

𝜕𝓍
+𝓍,𝓎

𝑣 .
𝜕𝔩0

𝜕𝓎
])

2

. 𝒢(||𝓍, 𝓎||
2

; 𝜎)  (4) 

Simplify and collect terms: 

ℱ𝑡 = ∑ (𝑢 .
𝜕𝔩0

𝜕𝓍
+ 𝑣 .

𝜕𝔩0

𝜕𝓎
)

2

. 𝒢 (||𝓍, 𝓎||
2

; 𝜎)𝓍,𝓎     (5) 
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Reference frame 𝔩0  and optical flow  ℱ𝑡 . Output frame 
𝔩𝑂𝑝𝑡𝑖𝑐𝑎𝑙_𝐹𝑙𝑜𝑤_𝑖𝑚𝑎𝑔𝑒  = 𝔩0. For each pixel (𝓍, 𝓎) in 𝔩0: 

 Calculate the new position (𝓍′, 𝓎′ ) using optical flow 
 ℱ𝑡 : 𝓍′ = 𝓍 + 𝑣𝓍,𝓎 , 𝓎′ = 𝓎 + 𝑢𝓍,𝓎 

 If 0 ≤ 𝓍′ < ℎ𝑒𝑖𝑔ℎ𝑡(𝔩0) 𝑎𝑛𝑑  0 ≤ 𝓎′ < 𝑤𝑖𝑑𝑡ℎ(𝔩0): 

o Set 𝔩𝑂𝑝𝑡𝑖𝑐𝑎𝑙_𝐹𝑙𝑜𝑤_𝑖𝑚𝑎𝑔𝑒[𝓍′, 𝓎′] = 𝔩0[𝓍, 𝓎]. 

𝔩𝑂𝑝𝑡𝑖𝑐𝑎𝑙_𝐹𝑙𝑜𝑤_𝑖𝑚𝑎𝑔𝑒 −  The reference frame 𝔩0 with optical 

flow-based transformations. Save the 
𝔩𝑂𝑝𝑡𝑖𝑐𝑎𝑙_𝐹𝑙𝑜𝑤_𝑖𝑚𝑎𝑔𝑒 −image into specified Emotion folder. 

The Average contextual loss is calculated using feature 
frames, L1 loss, and optical flow. For each pixel in the reference 
frame feature 𝔩𝑓𝑟_0 and the corresponding pixel in the current 

frame feature 𝔩𝑓𝑟_𝑡  , the L1 loss is computed. The loss is 

accumulated over all spatial positions, resulting in the Average 
contextual loss for each pair of feature frames. 

The ACL for a current frame feature 𝔩𝑓𝑟_𝑡 with respect to the 

reference frame feature 𝔩𝑓𝑟_0is given by: 

𝐿𝐴𝐶𝐿 (𝔩𝑓𝑟_0, 𝔩𝑓𝑟_𝑡) =
1

𝑁
∑ ‖ℱ𝑡(𝓍, 𝓎)⨀ (𝔩𝑓𝑟_0(𝓍, 𝓎) − 𝔩𝑓𝑟_𝑡(𝓍 +𝑖,𝑗

𝑣, 𝓎 + 𝑢))‖
1
    (6) 

𝐿𝐴𝐶𝐿 (𝔩𝑓𝑟_0, 𝔩𝑓𝑟_𝑡): Average Contextual loss between the 

reference frame feature 𝔩𝑓𝑟_0  and the current frame feature 𝔩𝑓𝑟_𝑡. 

N: The total number of pixels in the image frames. It represents 
the normalization factor, ensuring that the loss is averaged over 
all pixels. ∑𝑖,𝑗 : Summation over all pixel positions in the 

frames. ‖. ‖1: L1 norm, also known as the Manhattan norm or 
absolute norm. It is used to measure the absolute difference 
between corresponding pixel values. 

ℱ𝑡(𝓍, 𝓎) : Optical flow field at position (𝓍, 𝓎)  for the 
current frame feature 𝔩𝑓𝑟_𝑡 . It represents the motion vector 

(displacement) of the pixel at position  (𝓍, 𝓎)  between the 
reference frame feature and the current frame feature. ⊙: 
Element-wise multiplication (Hadamard product) between the 
optical flow field ℱ𝑡(𝓍, 𝓎)  and the absolute pixel-wise 
intensity difference 𝔩𝑓𝑟_0(𝓍, 𝓎) − 𝔩𝑓𝑟_𝑡(𝓍 + 𝑢, 𝓎 + 𝑣) . This 

operation emphasizes regions where motion occurs. 
𝔩𝑓𝑟_0(𝓍, 𝓎): Intensity value of the pixel at position  (𝓍, 𝓎) in the 

reference frame feature. 𝔩𝑓𝑟_𝑡(𝓍 + 𝑢, 𝓎 + 𝑣): Intensity value of 

the pixel at the displaced position (𝓍 + 𝑢, 𝓎 + 𝑣) in the current 
frame feature. The displacement is determined by the optical 
flow vectors. Compute the frame contextual loss 

𝐿𝐴𝐶𝐿 (𝔩𝑓𝑟_0, 𝔩𝑓𝑟_𝑡):  using L1 loss and optical flow between 

reference frame features 𝔩𝑓𝑟_0 and current frame features 𝔩𝑓𝑟_𝑡 

after applying the temporally consistent flow smooth-flows. 
Append the Average contextual loss value and frame number to 
the Average contextual-losses list. Sort the list of Average 
contextual losses in descending order of loss values. Select the 
best four key pairs of frames that have the highest ACL value 
efficiently, and these selected frames are used to obtain 
resulting optical flow images. 

The FCALF model's output for chosen optical flow images 
results in a dataset with fewer training instances. The deep 
learning algorithm, which is new and developing, cannot be 
used due to insufficient data. In order to artificially enhance the 
dataset size using several modification techniques like rotation, 
shifts, and flips, among others, image augmentation is usually 
necessary.  The purpose of dataset enhancement is to reduce the 
likelihood of erroneous predictions resulting from over-fitting 
or overly rigorous pattern learning [41]. Therefore, each pixel 
in the resultant optical flow image shown in Fig. 3 is 
transformed to the new position in order to enhance the both 
appearance and dynamic changes in expressions results. This 
process is explained as follows: 

The rotation changes the resultant image pixel (p, q) into a 
new rotation. 𝜃 = 200 as 𝑝′   = 𝑝 × cos(200) − 𝑞 ×
sin(200); 𝑞′   = 𝑝 × sin(200) + 𝑞 × cos(200) to obtain 
(𝑝′, 𝑞′) the newly transformed coordinate. The next operation 
is translation, The width Trp and height Trq are moved to 20% 
in the following transformation to get the new expansion, which 
is expressed as 𝑇𝑟𝑝

′ = 𝑝 + 𝑇𝑟𝑝 and height as  𝑇𝑟𝑞
′ = 𝑞 + 𝑇𝑟𝑞 , 

where Trp = 0.2 and Trq = 0.2. At the end, the horizontal Fhp 
and vertical Fvq flipping are performed on resultant image to 
get new transformation 𝐹ℎ𝑝   ∶  𝑝′ = −𝑝 𝑎𝑛𝑑 𝑞′ = 𝑞  and 

   𝐹𝑣𝑞   ∶  𝑝′ = 𝑝 𝑎𝑛𝑑 𝑞′ = −𝑞. 

B. Transfer Learning Models 

Training a large dataset with the current deep learning 
technique takes a week. To avoid time consumption, all 
researchers have used pre-trained models [42, 43]. Both overall 
error and training time are decreased by these pre-trained 
models. A portion of the models that have already been trained 
are used by fine-tuning the top layers in order to use them for 
the proposed approach. In addition, the pre-trained model's 
weights are frozen. The proposed approach uses two existing 
models, InceptionResNetV2[40] and VGG16 [33], 
and customizes the top layer by adding or removing layers and 
adjusting weights. The Keras API provides access to these 
models, which are used to identify emotions using augmented 
resultant optical flow image. 

 
(a)                     (b)                       (c)                                (d)                   (e)                       (f) 

Fig. 3. Data augmentation operations on the resultant optical flow image of a sample happy emotion 
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C. Concatenation 

Let's consider the pre-trained InceptionResNetV2 and 
VGG16 models are concatenated to create the ensemble 
models: INCRESV2-VGG16 as M, which is depicted 
pictorially in Fig. 2. In the experimental part, the effectiveness 
of hybrid models that have been pre-trained is covered in detail. 
The final dense layer of the InceptionResNetV2 and VGG16 
model undergo further processing to generate ReLU activation 
functions, which are expressed as follows: 

𝑓𝑝𝑥𝑛(𝓍𝑖) = 𝑚𝑎𝑥(0, 𝓍𝑖)     

Where, xi represented by feature vector of different 
individual model InceptionResNetV2 (𝓍1  ) and VGG16 (𝓍2  ) 
are concatenated and those concatenated outputs are 
represented as follows: 

Concatenation Function: 𝐶([𝑀]) =
[𝑓𝑝𝑥𝑛(𝓍1), 𝑓𝑝𝑥𝑛(𝓍2)]   

Where,   𝑓𝑥𝑛(𝓍1) 𝑎𝑛𝑑 𝑓𝑥𝑛(𝓍2)   are the feature vector 
output of the individual pre-trained model. The concatenated 
outputs of the base models are represented by M; to create an 
outcome vector of size k, where k represents the number of 
classes, the combined features vectors pass across a fully 
connected layer using a weight matrix W along with bias vector 
b. The completely linked layer's output is represented by 
the following. 

𝓏 = 𝑊 ∗ [𝑓𝑝𝑥𝑛(𝓍1), 𝑓𝑝𝑥𝑛(𝓍2)] + 𝑏    

Next, the output vector 𝓏  is subjected to the Softmax 
function in order to generate a probability distribution across all 
possible classes. The description of the Softmax function is: 

𝑃(𝓎𝑖 = 1|𝓍) =
𝑒𝓏𝑖

∑ 𝑒𝓏𝑗𝑘
𝑗=1

   

where 𝓏 is the ith element of the outcome vector 𝓏 and 𝓎𝑖 is 
an indicator variable corresponding to the ith class (𝓎𝑖 = 1 if 
the given input corresponds to class ith and 𝓎𝑖 = 0 otherwise). 
The total exponential of each element in the output vector is the 
denominator. Finally, for ensemble model, the Softmax 
function correctly identifies the emotion. 

IV. EXPERIMENTS, RESULTS AND DISCUSSION 

A. Datasets 

For our experiments, we make use of the CAER-S dataset 
[10]. The dataset is well-suited for the task of emotion detection 
and focuses on context-aware emotion recognition. The dataset 
is comprised of video clips taken from 79 different television 
episodes. Each frame in the dataset is assigned to one of 7 
emotional states: angry, disgusted, fearful, happy, sad, 
surprised, or neutral. 

The Extended-Cohn-Kanade (CK+) dataset [44, 45] is a 
well-liked laboratory-controlled dataset of facial emotion 
detection. It consists of 327 images with labelling for 7 distinct 
emotion classes, taken from 118 distinct subjects of which 309 
sequences have been labelled with six fundamental expressions 
using the FACS. The length of a video sequence, which can 
range from 10 to 60 images per second. Every video sequence 
starts with a neutral expression and ends with its most 

expressive face. Every video might have between 12 and 56 
frames. 

B. Flow Context Aware Loss Fusion (FCALF) 

This FCALF model implements video frame processing 
using a VGG16 model for feature extraction and optical flow 
computation to assess Average contextual loss between frames, 
are discussed. Using PyTorch API, FCALF experiments are 
conducted on Google Colab GPUs. The description about the 
same is discussed as follows: the VGG16 model is loaded, 
focusing on the first 23 layers for feature extraction. Image 
preprocessing involves resizing to (224, 224) pixels and 
converting to PyTorch tensors. The FCALF model operates on 
an image sequence, using the first frame as the reference frame. 
Optical flow is calculated using Farneback's method, with 
parameters such as pyramid scale factor = 0.5, pyramid levels 
and no. of iterations at each pyramid level = 3, size of the pixel 
neighborhood used for Gaussian smoothing of the derivatives = 
5, standard deviation of the Gaussian used for smoothing the 
derivatives = 1.2, and pixel neighborhood sizes used for 
Gaussian smoothing = 15 influencing the algorithm's sensitivity 
to motion and computational efficiency,  and transformations 
are applied to the reference frame based on the flow. Average 
Contextual loss (ACL) is computed through L1 loss, frame 
features, and optical flow, with results printed for each frame, 
indicating the dissimilarity between features of the reference 
and current frames. The FCALF model selects best 4 key pairs 
of frames based on the highest ACL value for enhanced spatial-
temporal analysis. The selected key pairs of frames are then 
used to obtain optical flow images. This high ACL value 
suggests a culmination of significant changes or the resolution 
of an emotional expression. Overall, the analysis underscores 
the dynamic nature of the video, with peaks in Average 
contextual loss values serving as markers for researchers to 
explore optical flow images of particular interest. The subtle 
understanding derived from these Average contextual losses 
enriches the scientific exploration of emotional dynamics in 
facial expressions within the video sequence, providing a 
quantitative basis for identifying and investigating key 
moments in the evolving emotional narrative. 

The FCALF model apply on CAER-S datasets to extract 
best four key pairs of frames based on the highest ACL value 
for enhanced spatial-temporal analysis. The selected key pairs 
of frames are then used to obtain optical flow images, the 
provided data in Fig. 4 details the ACL values for each frame 
in a video sequence of Anger emotion, offering insights into the 
dynamic evolution of emotion. In the initial frames (1-5), ACL 
are relatively low, ranging from 18.8574 to 29.624, suggesting 
a period of stability or similarity with the reference frame. 
However, starting from Frame 6, there is a gradual increase in 
ACL, reaching 49.662 by Frame 10. This signifies a 
progression of dissimilarity, indicating potential shifts in 
emotional expression or notable changes in facial features. a 
notable spike occurs between Frames 13 and 14, where the 
ACL jumps from 58.9676 to 81.7295. This significant increase 
suggests a pivotal moment in the video, potentially capturing 
an intense emotional expression or distinct facial 
transformations. Subsequently, Frames 15 to 38 exhibit 
fluctuating ACL, reflecting a dynamic sequence with varying 
degrees of dissimilarity. In Fig. 5(a) Frames 23, 25, 26, and 28 
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shows the highest ACL values respectively, 121.5226, 
122.6208, 120.6192, 124.7423, indicating instances of 
particularly pronounced differences. These resultant optical 
flow images are crucial for more detailed analysis, as they 
likely capture critical moments in the video sequence. 

Similarly, for other Emotions in CAER-S shows in Fig. 4, 
For disgust (see Fig. 5(b)), the best four resultant optical flow 
images with the highest ACL values are frame numbers 45, 49, 
61, and 48. The ACL values for these frames are 209.1001, 
209.1548, 209.9282, and 211.1884, respectively. For fear (see 
Fig. 5(c)), the best four resultant optical flow images with the 
highest ACL values are frame numbers 11, 10, 25, and 9. The 
ACL values for these frames are 148.42, 148.6847, 149.2188, 
and 159.5878, respectively. for happy (see Fig. 5(d)), the best 
four resultant optical flow images with the highest ACL values 
are frame numbers 26, 27, 29, and 28. The ACL values for these 
frames are 135.8524, 136.5378, 139.2938, and 141.5067, 
respectively. for Neutral (see Fig. 5(e)), the best four resultant 
optical flow images with the highest ACL values are frame 
numbers 27, 33, 26, and 25. The ACL values for these frames 
are 167.9817, 168.0364, 173.2646, and 176.0626, respectively. 
For sadness (see Fig. 5(f)), the best four resultant optical flow 
images with the highest ACL values are frame numbers 6, 41, 
7, and 40. The ACL values for these frames are 174.9732, 
176.3151, 181.0617, and 183.9615, respectively. For surprise 
(see Fig. 5(g)), the best four resultant optical flow images with 
the highest ACL values are frame numbers 6, 18, 15, and 17. 
The ACL values for these frames are 93.2330, 95.5876, 
95.8962, and 97.0862, respectively. Overall, the Fig. 4 and 5 

show that the ACL values for all seven emotions in real time 
video sequence the highest ACL value shows the most 
significant changes of subtle emotion in video sequence. This 
suggests that these resultant optical flow images are the most 
informative for identifying the emotions. 

The FCALF models also apply on CK+ dataset to extract 
the best 4 key pairs of frames based on the highest ACL value 
for enhanced spatial-temporal analysis. The selected key pairs 
of frames are then used to obtain optical flow images, The 
provided data in Fig. 6 details the ACL value for each frame in 
a video sequence of Anger emotion analysis reveals the 
dynamic evolution of a video sequence through distinct phases. 
Initially (Frame 1-5), frames show a gradual increase in average 
contextual loss (ACL), indicating a stable period with moderate 
dissimilarity from the reference frame. In the transition phase 
(Frame 6-10), there is a notable ACL increase, with Frame 10 
standing out at 90.5806, suggesting a significant shift in facial 
features or emotional expression. Frames 11 to 14 depict a 
continuous rise in ACL, reaching 104.8176 in Frame 14, 
capturing sustained moments of emotional intensity or distinct 
facial transformations. Frame 15 marks a peak ACL value of 
110.9438, followed by fluctuating values in Frames 16 to 20, 
suggesting dynamic changes and diverse emotional states, 
reflecting a dynamic sequence with varying degrees of 
dissimilarity. In Fig. 7(a) Frames 16, 18, 19, and 20 show the 
highest ACL values respectively, 115.0193, 116.5156, 
117.1425, 117.9241, These resultant optical flow images likely 
capture the most intense moment of the anger expression. 

 

Fig. 4. For all seven emotions in the CAER-S dataset, the proposed FCALF model plots frame number (FN) with their average contextual loss (ACL) value. 
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Similarly, for other Emotions in CK+ shows in Fig. 6, for 
Disgust (see Fig. 7(b)): Frames 16, 17, 18, and 19 have the 
highest ACL values for these frames are 111.8592, 117.0162, 
122.4170, and 124.8995. These resultant optical flow images 
might show the peak of the disgust emotion, with strong facial 
contortions. For Fear (see Fig. 7(c)): Frames 12, 11, 10, and 13 
have the highest ACL values for these frames are 136.0939, 
137.2431, 139.7179, and 142.8500. These resultant optical flow 
images likely depict the most frightened part of the fear 
emotion, with widened eyes and open mouths. For Happy (see 
Fig. 7(d)): Frames 9, 10, 11, and 12 have the highest ACL 
values for these frames are 93.5942, 97.9887, 101.7392, and 

101.7757. These resultant optical flow images probably capture 
the broadest smiles and most outward emotion of joy. For 
Sadness (see Fig. 7(e)): Frames 21, 17, 19, and 18 have the 
highest ACL values for these frames are 117.2293, 117.9838, 
119.3985, and 120.6697. These resultant optical flow images 
likely show the deepest sadness, with downcast eyes and 
furrowed brows. For Surprise (see Fig. 7(f)): Frames 10, 13, 12, 
and 11 have the highest ACL values for these frames are 
111.7967, 112.4761, 113.3418, and 115.7291. These resultant 
optical flow images probably capture the moment of surprise, 
with raised eyebrows and open mouths. 

 

Fig. 5. The following are the sample resultant optical flow images of the selected best 4 key pairs of frames with Frame Number (FN) and highest Average 

Contextual Loss (ACL) values using the FCALF model on the CAER-S dataset: a) anger; b) disgust; c) fear; d) happiness; e) neutral; f) sadness; g) surprise 
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Fig. 6. For all six emotions in the CK+ dataset, the proposed FCALF model plots frame number (FN) with their average contextual loss (ACL) value 

C. InceptionResNetV2 and VGG16 

The FCALF model generated optical flow images are split 
into 50% training, 25% validation, and 25% testing sets. 
However, because the total number of images in training set is 
small after splitting, data-augmentation methods such as 
rotation (200), both width and height shift (0.2), and vertical as 
well as horizontal flipping are used to produce extra image 
variants. This would expand the amount of data in the training 
datasets and expose the pre-trained algorithms to additional 
image variants. TensorFlow Keras API is used to train the 
model, and experiments are conducted using Google colab 
GPUs. Pretrained models are InceptionResNetV2 and VGG16. 
The output images of FCALF model are fed into a pre-trained 
model, which is then fine-tuned to extract pertinent information 
from the output images of FCALF model. The section of 
content that follows discusses the pre-trained model's 
configuration setting. 

The model, denoted as "model_2," comprises an input layer 
named "input_8" with a shape of (None, 224, 224, 3), indicating 
it takes images of size 224x224 pixels with three color channels 
(RGB). Two lambda layers, "lambda_12" and "lambda_15," 
transform the input data. The architecture integrates two pre-
trained models: Inception-ResNet-v2, with 5x5 filters and 

1,536 units in its last layer, and VGG16, with 7x7 filters and 
512 units. Global max pooling layers, 
"global_max_pooling2d_11"and "global_max_pooling2d_12," 
follow each pre-trained model. Two separate dense layers, 
"dense_13" and "dense_16," with 128 units each, process the 
global max pooling outputs. 

D. Concatenation 

The resulting feature vectors are concatenated using a 
concatenate layer named "concatenate_1.", with 256 filters. 
Then the output of Concatenation layers is fed into Softmax 
layer to classified emotions. overall, this model integrates 
characteristics from Inception-ResNet-v2 and VGG16 to 
improve their representations for the purpose of classifying 
emotions into different emotion classes. The performance 
metrics of the proposed model are presented below. 

E. Performance Measures 

The performance matrix provided in Table II evaluates an 
emotion recognition model on the CAER-S dataset, presenting 
precision, recall, and F1-score metrics for individual emotion 
classes. Precision values, such as 0.96 for "Anger", "Happy", 
and "Sadness", signify the model's accuracy in predicting 
positive instances, with 96% of its predictions being accurate in 
the "Anger" class. Perfect recall scores in "Neutral". 
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Fig. 7. The following are the sample resultant optical flow images of the selected best 4 key pairs of frames with Frame Number (FN) and highest Average 

Contextual Loss (ACL) values using the FCALF model on the CK+ dataset: a) anger; b) disgust; c) fear; d) happiness; e) sadness; f) surprise 

"Happy", "Surprise" and "Sadness" indicate the model's 
ability to capture all instances of true positives within these 
classes, reaching 1.00 for the "Happy" class, signifying 
complete identification of Happy instances. F1-scores, such as 
0.98 in "Disgust", "Fear", "Happy", and "Sadness," underscore 
the model's robust overall performance by balancing the trade-
off between false positives and false negatives. In summary, the 
model demonstrates strong performance on the CAER-S 
dataset, with consistently high precision, recall, and F1-scores 
across diverse emotion classes, exemplifying its effectiveness 
in recognizing emotions within this dataset. 

Similarly, the provided performance matrix in Table I offers 
a comprehensive assessment of an emotion recognition models 
proves on the CK+ dataset. This evaluation encompasses 
precision, recall, and F1-score metrics, providing a nuanced 

understanding of the model's predictive capabilities for distinct 
emotional classes. Precision, denoting the accuracy of positive 
predictions, is exemplified by the "Anger" class, where the 
model is correct 86% of the time. Recall, representing the 
model's ability to identify true positive instances, achieves 
perfection in the "Fear" class, indicating an adept capture of all 
instances of fear in the dataset. The F1-score, a harmonic mean 
of precision and recall, harmoniously balances these metrics 
and attains notable levels across classes. Noteworthy 
performances include flawless recognition in the "Fear" class 
and strong outcomes in "Surprise" with perfect precision and 
high recall, yielding an impressive F1-score of 0.98. Overall, 
the model exhibits commendable performance, demonstrating 
high precision, recall, and F1-scores across diverse emotional 
categories, affirming its effectiveness in recognizing facial 
expressions within the CK+ dataset. 
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Fig. 8. The ERFN model's confusion matrix on the a) CAER-S and b) CK+ datasets 

TABLE I. THE ERFN MODEL FOCUSES ON THE CLASSIFICATION 

PERFORMANCE PROPERTIES OF THE CK+ DATASET 

Class Precision Recall F1-Score 

Anger 0.86 0.96 0.91 

Disgust 0.96 0.92 0.94 

Fear 1.00 1.00 1.00 

Happy 0.96 0.96 0.96 

Sadness 0.96 0.92 0.94 

Surprise 1.00 0.96 0.98 

TABLE II. THE ERFN MODEL FOCUSES ON THE CLASSIFICATION 

PERFORMANCE PROPERTIES OF THE CAER-S DATASET 

Class Precision Recall F1-Score 

Anger 0.96 0.96 0.96 

Disgust 1.00 0.96 0.98 

Fear 1.00 0.96 0.98 

Happy 0.96 1.00 0.98 

Neutral 1.00 1.00 1.00 

Sadness 0.96 1.00 0.98 

Surprise 1.00 1.00 1.00 

F. Confusion Matrix 

The provided confusion matrix presents in Fig. 8(a) an 
evaluation of a proposed model on the CAER-S dataset, 
focusing on the recognition of seven emotions: Fear, Happy, 

Surprise, Sadness, Anger, Neutral, and Disgust. The diagonal 
elements indicate instances correctly classified for each 
emotion, revealing perfect accuracy for Surprise, Sadness, 
Neutral, and Happy. Disgust is recognized with high accuracy 
(96%), with a minor 4% misclassification into the Anger 
category. Similarly, Fear is identified with 96% accuracy, with 
a minor 4% misclassification into the Sadness category. 
Overall, the confusion matrix underscores the model's robust 
performance, particularly in distinguishing Neutral, Sadness, 
Happy, and Surprise emotions, but suggests a minor area for 
improvement in correctly identifying Fear, Anger, and Disgust 
emotions. 

Similarly, the confusion matrix provided in Fig. 8(b) offers 
an evaluation of a proposed model's performance on the CK+ 
dataset, focusing on six facial expressions: Surprise, Happy, 
Sadness, Fear, Anger, and Disgust. Each row represents the true 
class, while each column corresponds to the predicted class. 
The diagonal elements of the matrix represent instances 
correctly classified for each expression, revealing high 
accuracy for Fear (100%), Surprise (96%), Happy (96%), and 
Sadness (92%). However, there are notable misclassifications, 
particularly between Anger and Disgust, with 8% of Disgust 
instances mistakenly predicted as Anger. Additionally, 4% of 
Sadness expressions are misclassified as both Anger and 
Disgust. Overall, while the model demonstrates commendable 
accuracy for certain expressions, the confusion matrix 
highlights areas for improvement, particularly in distinguishing 
between Anger and Disgust, and refining the model's 
recognition of Sadness expressions. 
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Fig. 9. The ERFN model’s training and validation accuracy was assessed using the a) CAER-S and b) CK+ datasets 

 

Fig. 10. The ERFN model’s training and validation loss was assessed using the a) CAER-S and b) CK+ datasets 

G. Comparison to State-of-the-art Methods 

The ERFN model outperforms state-of-the-art techniques 
on the CAER-S and CK+ datasets, demonstrating a substantial 
improvement in emotion identification. The ERFN model 
obtains a superior accuracy of 98.29% on the CAER-S dataset 
shown in Table III, outperforming previous models with 
accuracies ranging from 73.51% to 93.26%. The ERFN model 
obtains a 98.00% accuracy on the CK+ dataset shown in 
Table III, surpassing previous techniques that have accuracies 
ranging from 87.16% to 97.79%. The results highlight the 
effectiveness and strength of our proposed method, showcasing 

its superiority in reliably identifying emotions across various 
datasets. 

H. Visualization using Grad-Cam 

The qualitative outcomes of trained Grad-Cam maps 
produced by Grad-CAM [75] using optimized VGG16Net are 
displayed in Fig. 11. It should be noted that images in Fig. 11 
were accurately identified using refined VGG16Net to ground 
truth emotion categories. In the CAER-S dataset, Grad-Cam 
effectively localizes context information, which can improve 
the performance of emotion identification in a context-aware 
model. 
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TABLE III. THE STUDY FOCUSES ON THE TWO PROVIDED DATASETS AND COMPARES THEM WITH ALTERNATIVE METHODOLOGIES 

Datasets Methodology Accuracy (%) 

CAER-S 

CAER-Net-S[10] 

CAAGR[28] 
MobileNet-V2[46] 

MHCAN[47] 

Attention-Guided-CAESR[48] 
GCN-In-Context[49] 

ResNet-18[39] 

Body-Object Attention (BDA)[32] 
Res2Net-50[50] 

EfficientFace[51] 

MATF[52] 
MA-Net[53] 

GLAMOR-Net[54] 

CAER-VRD[55] 
HCBER-with-Scene-Graph[56] 

Hierarchical Attention Module (HAM)[57] 

GFFT[58] 
CD-Net[59] 

ERFN(Our) 

73.51 

77.02 
79.23 

79.64 

81.00 
81.31 

84.67 

84.82 
85.35 

85.87 

86.11 
88.42 

89.88 

90.49 
90.83 

92.86 

92.98 
93.26 

98.29 

CK+ 

IT-RBM[60] 

GM-WLBP+GLCMRM+CNN-LSTM[61] 
LGC-HD[62] 

Optical Flow Reconstruction[63] 

LPQ-LBP- HOG- MSVM[64] 
DCNN-HSA[65] 

SCD Learning[66] 
ExNet[67] 

DAM-CNN[68] 

EIFN[69] 
RASnet-ERSnet-MAblocks[70] 

Multi-modal + EEG + BiLSTM[71] 

Improved-RNN[72] 
RGCFace[73] 

SISTCM-TLSTM[74] 

ERFN(Our) 

87.16 

91.42 
92.30 

92.80 

94.20 
95.71 

95.73 
95.81 

95.88 

96.02 
96.28 

96.36 

96.37 
97.30 

97.79 

98.00 

 

Fig. 11. Sample resultant optical flow image of a happy emotion in CAER-S dataset along with Grad-CAM maps in different layers 

I. Training and Validation Graph 

The Proposed model is trained separately using training, 
validation and test set on CAER-S and CK+ Datasets. In the 
proposed model on CAER-S and CK+ Dataset, Categorical-
cross entropy loss function and the Nadam optimizer are used 
with a learning rate of 0.00001 and 0.0001 respectively. The 
Proposed model is trained with batch size of 32 for 80 epochs. 
To avoid overfitting, this epoch value (80) will be stopped 
earlier. In the experiment the proposed model used early 
stopping according to the training and validation accuracy of 
the proposed model on CAER-S and CK+ Dataset stopped 
improving after 58 and 24 epochs respectively which is shown 
in Fig. 9 (a and b). It is observed from the Fig. 9(a) that the 
validation (98.29%) and training (98.29%) accuracy both are 

same and also observed from the Fig. 9(b) that the validation 
(98%) and training (97.67%) accuracy. This means the 
proposed model is able to classified emotion for new data. 
When the validation and training accuracies reach the same 
value, the training process is stopped early to avoid overfitting. 
Early stopping allows the model to train for fewer epochs, 
which can save time and computational resources. Fig. 10(a) 
and (b) illustrates the observed loss performance results for the 
proposed model. The loss for each epoch is shown on the epoch 
vs. loss graph. As epochs increase, loss values decrease, as 
shown in Fig. 10(a) and (b). It is observed from the Fig. 10 (a) 
and (b) that the validation loss and training loss has very small 
gap and low loss. This means the proposed model is performing 
well on both the training and validation set, and is likely to 
generalize well to unseen data. It is observed from the Fig. 10(a) 
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that the training (0.1067) and validation (0.1136) loss and also 
observed from the Fig. 10(b) that the training (0.0622) and 
validation (0.0670) loss. Out of all the state-of-the-art model, 
ERFN model performed the best in terms of Accuracy, loss, 
Precision, recall, and F1-score.  

V. CONCLUSION AND FUTURE WORK 

The proposed work looks into the problems with current 
methods of emotions recognition that relies mostly on facial 
movements. The model suggests the Emotion Recognition 
Fusion Network (ERFN), a new model that uses body and 
contextual information to make up for the lack of specific facial 
cues. Advanced methods are used in the ERFN process. One of 
these is the Flow Context Aware Loss Fusion (FCALF) model. 
This model uses deep feature extraction (using VGG16), 
Farneback optical flow analysis, and L1 loss to find the 
Average Contextual Loss (ACL). Finding the four pairs of 
frames with the highest ACL values, getting optical flow 
images from these frames, and improving model generalization 
through pre-trained model are the most important parts of our 
method. We fine-tune both InceptionResNetV2 and VGG16 
models, incorporating GlobalMaxPool2D and Dense layers to 
capture intricate details and flow-contextual information from 
face, body, and scene. We make strong feature representations 
by joining the results from these models together. According to 
the results of our experiments, the ERFN is more accurate and 
useful than other models. It is particularly effective at picking 
up on context-aware emotions, making it effective in real-world 
uncontrolled environments. The proposed method could help 
make emotions recognition technology better. Future work will 
focus on developing and integrating audio processing 
techniques to analyze speech and vocal tones, which, when 
combined with visual data, can significantly enhance the 
model's performance in real-world applications. 
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