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Abstract—Existing social recommendation models mostly 

directly use original social data in the social space. However, 

original social data may contain a large amount of redundant 

and noisy social relationships. Additionally, existing feature 

fusion methods struggle to adaptively fuse features between 

nodes deeply, which can degrade the recommendation 

performance of the model. Addressing these issues, this paper 

proposes an Adaptive Residual Attention Recommendation 

Model based on Interest Social Influence. Firstly, we construct a 

novel Interest Social Mapping Module to model the confidence of 

social relationships based on user interests and map original 

social data to interest social space, thereby gaining a deeper 

understanding of user interest relationships in social networks. 

Secondly, we introduce a unique Social Selection Mechanism that 

dynamically filters and removes meaningless social interactions 

in the interest social space using social confidence scores, 

effectively filtering out social information that may interfere with 

or mislead users. Finally, we design an Adaptive Residual 

Attention Mechanism to flexibly adjust the feature fusion method 

of nodes, thereby obtaining more effective node information to 

improve recommendation accuracy. Experimental results show 

that compared to several state-of-the-art methods, the proposed 

model exhibits significant improvements on the Ciao and 

Epinions datasets. 

Keywords—Social recommendation; redundant and noisy; 

interest social mapping; social selection mechanism; adaptive 

residual attention mechanism 

I. INTRODUCTION 

Recommendation systems, as an integral part of today's 
information age, aim to assist users in discovering and 
obtaining personalized content that aligns with their 
preferences. Among these systems, collaborative filtering 
stands out as a common recommendation algorithm. It works 
by analyzing user behavior and preferences to identify groups 
of users with similar interests from a large pool, thereby 
recommending items or content that users might find 
interesting. However, traditional collaborative filtering 
algorithms perform poorly when confronted with data sparsity 
and cold start issues [1]. To overcome the challenges posed by 
data sparsity and cold start, scholars have proposed various 
solutions. With the advent of post-quantum cryptography [2]-
[5], one approach is to incorporate additional auxiliary 

information to enhance the performance of recommendation 
systems. 

Guangxi Driven Development Project ( 桂 科
AA20302001). 

With the rise of social networks, researchers began to turn 
their attention to the field of social recommendation, trying to 
incorporate information from social networks into 
recommendation systems to improve the personalization of 
recommendations. Early social recommendation methods 
primarily employed matrix factorization [6]-[8]. These 
methods tend to recommend items similar to a user's historical 
behavior, potentially overlooking novel items that might be of 
interest. Subsequently, significant progress has been made in 
the development of graph neural networks for social 
recommendations. Fan et al. [9] proposed the GraphRec model, 
pioneering the use of Graph Neural Networks (GNNs) to 
capture representations of nodes in user-item interaction graphs 
and user-user social graphs for social recommendations. Fan et 
al. [10] proposed the GraphRec+ model, incorporating the 
capture of item-item relationships for rating prediction. This 
enhancement provides a more holistic view of interactions but 
may introduce additional computational overhead. 

Besides, there are some GNN models that are innovative in 
addressing selection bias, but they also add complexity and 
time overhead to the model. Chen et al. [11] introduced the 
GDSRec model, treating rating biases as vectors and 
integrating them into user and item representations, addressing 
statistical bias offset issues for users (items). Jia et al. [12] 
proposed the SoGCLR model, capturing latent relationships 
between social neighbors through social relation attention 
layers and utilizing graph contrastive learning to map 
representations of similar nodes to nearby embedding spaces, 
thus achieving smoother representations and alleviating 
exposure bias issues. Cai et al. [13] introduced the REST 
model, employing a variable autoencoder to reconstruct latent 
exposure strategies and designing a recommendation algorithm 
based on counterfactual inference using recovered exposure 
strategies to address selection bias issues in recommendation 
systems. Zhang et al. [14] proposed the GL-HGNN model, 
modeling fine-grained heterogeneous global graphs through 
heterogeneous graph neural networks to capture complex 
semantic relationships and rich topological information. 
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Fig. 1. ARAR-ISI overall framework 

Despite the good results achieved by current graph neural 
network-based social recommendation models for rating 
prediction tasks, however, inspired by the literature [14], most 
of the existing social recommendation models use the original 
social data directly in the social space, ignoring the reliability 
of the original social data. In this paper, we argue that a large 
portion of social relationships in original social data is 
redundant or even noisy, partly because original social 
connections usually only record social relationships among 
users without reflecting similarities among user preferences. 
For example, some of the social friends are likely to lack 
common interests in specific domains, or are even unrelated to 
each other in terms of interests, which results in a large portion 
of social relationships being meaningless for the 
recommendation task. These meaningless social relationships 
not only bring a huge computational and storage burden to the 
recommender system, but also reduce the accuracy and 
computational efficiency of the recommender system, which 
ultimately has a negative impact on the overall performance of 
the recommender system. In addition, the existing feature 
fusion methods are difficult to deeply adaptively fuse the 
features between the target node and the neighbor nodes. 

In order to solve the above problems, this paper proposes 
an Adaptive Residual Attention Recommendation Model based 
on Interest Social Influence (ARAR-ISI) inspired by the 
literature [10]-[23]. First, a new Interest Social Mapping 

Module (ISMM) is constructed, which is capable of modeling 
social relationships with confidence based on users' interests 
and mapping original social data to the interest social space as 
a way to understand users' interest relationships in social 
networks. Second, a unique Social Selection Mechanism 
(SSM) is introduced, which dynamically filters and removes 
meaningless socialization in the interest social space based on 
social confidence scores, and effectively filters social 
information that may disturb or mislead users. Finally, an 
Adaptive Residual Attention Mechanism (ARAM) is designed, 
which flexibly adjusts the feature fusion of the nodes and more 
effectively extracts the node information for prediction, so as to 
improve the accuracy of the recommendation. 

II. THE PROPOSED FRAMEWORK 

A. Definitions and Notations 

Let 1 2{ , ,..., }pU u u u  and 1 2{ , ,..., }qV v v v  respectively 
denote the sets of users and items, where p  and q  represent 
the total number of users and items. O  denotes the observed 
user-item ratings, 

i jR   represents the matrix of ratings for 

user-item pairs, ijr R  is the true rating of user iu  for item jv

. ( )iS u  represents the original social matrix of user iu . ( )iI u  

represents the item interaction matrix of user iu . ( )jU v  

represents the matrix of interacting users for item jv . ( )iX u  
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represents the interest social matrix of user iu . ( )N m  

represents the neighborhood matrix of target node m . iuh
 

represents the embedding of user iu . d  is the embedding size. 

jvh
 represents the embedding of item jv . The objective of this 

paper is to accurately predict the rating of user iu  for item jv  

given the provided information such as R , S , etc. 

B. An Overview of the Proposed Framework 

The overall framework of the ARAR-ISI model is 
illustrated in Fig. 1. Firstly, based on the user-item interaction 
data, the Interest Social Mapping Module (ISMM) and Social 
Selection Mechanism (SSM) are jointly utilized to remove 
meaningless social interactions from the original social data as 
accurately as possible in the interest social space, thereby 
obtaining reliable interest social relationships. Subsequently, an 
Enhanced Graph Neural Network (EGNN) with Adaptive 
Residual Attention Mechanism (ARAM) is employed to model 
the heterogeneous relationship graph composed of interest 
social relationships and user-item relationships. After obtaining 
user embedding representation and item embedding 
representation, both are fed into the prediction layer for the 
final rating prediction. 

C. The Interest Social Mapping Module 

To effectively identify meaningless social interactions in 
the original social data, this paper introduces the concept of the 
"interest social space" to describe the interest relationships 
between users in the social network. In this study, a new 
Interest Social Mapping Module is constructed. 

Firstly, considering that user-item interaction data to some 
extent represents user interests, we utilize the historical 
interaction data between users and their social connections to 
model social confidence. Additionally, the Transformer 
module [15] is effective in modeling the similarity between 
two sequences of user interaction history. Therefore, in the 
Interest Social Mapping Module, we design a Transformer-
based method for modeling social confidence. Specifically, we 
use the interaction items between users and their social 
connections to calculate the confidence of their social 
relationships, as shown in the following formula: 

Score Tf ( | , ( ))
i ku v u v i k iu U u S u     E E

       (1)

Where iu vE  represents the historical interaction item 

embedding of user iu ,   denotes the concatenation of two 

vectors, ku vE
 represents the historical interaction item 

embedding of user ju , U  represents the user matrix, ( )iS u  
represents the original social matrix of user iu , Tf  denotes the 
Transformer module, and Score  represents the confidence 
score of the social relationship between user iu  and their social 

user ku . A higher Score  indicates that user iu  has a greater 
interest similarity with their social user ku . 

After calculating the confidence score for each user's social 
relationships, each user sorts their original social relationships 
based on their social confidence scores and maps them one by 
one to the interest social space. In this way, users' interest 
relationships in the social network can be presented in the 

interest social space, facilitating the discovery of meaningful 
interest social relationships and elimination of meaningless 
social interactions in the original social data. 

D. The Social Selection Mechanism 

Relatively speaking, social relationships with high 
confidence in the interest social space represent meaningful 
interest social connections in the original social data, while 
those with low confidence represent meaningless social 
interactions in the original social data. However, it's important 
to note a question here: how much is "low"? This paper 
considers "low" as a relative concept in this context because 
each user's social relationships are diverse and unique. Some 
users have very complex social relationships, while others have 
relatively simple ones. This makes the adoption of a fixed 
threshold for uniform discarding methods potentially 
unsuitable for all users, as it may result in some users losing 
their true interest social friends, thus hindering the effective 
learning of social features and impacting the final 
recommendation performance. 

Dunbar's Number theory [16] suggests that the true number 
of close social friends for a person is around 5. The more 
friends one has, the more likely some of them are distant 
friends, as human intelligence allows for a limited number of 
stable social connections. Additionally, in daily life, 
individuals are genuinely interested in a relatively small circle 
and can only focus their interactions on meaningful 
information. Based on these, this paper believes that in the 
interest space, a user's interest social friends only account for a 
small portion of it. Therefore, it is decided to retain all 
relationships for sparsely connected users while reducing more 
unreliable relationships for densely connected users. This 
consideration of social quantity in the non-uniform discarding 
method is more robust than the uniform discarding method 
with a fixed threshold. 

Addressing the challenge of extracting meaningful interest 
social and meaningless social interactions from original social 
data in the interest social space, inspired by the Dynamic 
Neighborhood Sampling Mechanism [17] and Dunbar's 
Number theory [16], this paper introduces a Social Selection 
Mechanism. Firstly, it adaptively obtains the number of social 
connections to be removed for each user based on their social 
quantity. Then, based on the social confidence scores, it 
dynamically filters and removes low-confidence social 
relationships in the interest social space for each user, thereby 
eliminating meaningless social interactions. The specific 
method is shown in the following formula: 

10

0                      if  
drop_num

[log ]           else

s

s

n

n 






 

           

Where  ,  , and   are three hyperparameters used to 

control the degree of social relationship reduction, sn  
represents the original number of social relationships for a 

certain user, and drop_num  represents the number of social 
relationships that the user is advised to remove. 

In summary, the Interest Social Mapping and Social 
Selection Mechanism proposed in this paper effectively map 
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original social data to the interest social space and dynamically 
filter and remove meaningless social interactions for each user 
within this space. The Social Selection Mechanism aims to 
efficiently filter out information that may cause interference or 
misdirection to users, thereby enabling social aggregation to 
focus more on valuable and meaningful social interactions. 
This contributes to faster acquisition of superior user 
embeddings, thereby enhancing the overall prediction accuracy 
and speed. In theory, this feature is expected to significantly 
improve the accuracy and efficiency of recommendation 
systems. 

E. EGNN with Adaptive Residual Attention Mechanism 

After filtering out meaningless social relationships in the 
interest social space using the adaptive residual attention 
mechanism, relatively reliable interest social relationships are 
obtained. The next step is to utilize Graph Neural Networks 
(GNNs) to propagate and aggregate information on user 
interaction graphs and interest social graphs. In this process, 
this paper considers two issues: 

 For user target nodes, it's necessary to aggregate not 
only user-item information but also interest social 
information. However, for item target nodes, merely 
aggregating item-user information is far from sufficient. 
This is due to data sparsity, specifically the long-tail 
effect in user-item interactions, where many items are 
not widely attended to by users, resulting in these item 
target nodes being unable to aggregate item-user 
information. Therefore, it is advisable to introduce 
auxiliary information to enhance the embedding 
representation of item target nodes. 

 In addition to distinguishing the varying importance of 
each neighboring node in aggregating towards the target 
node, the combination of the target node's features with 
its aggregated neighborhood features significantly 
influences the representation of the final node features. 
However, common methods such as vector addition or 
concatenation have not yielded the best results. 

To further enhance recommendation performance, inspired 
by the Graph Neural Networks proposed by Fan et al. [9]-[10], 
[17]-[19] this paper designs an Enhanced Graph Neural 
Network (EGNN) to model the interest social graph and user 
interaction graph. It consists of an aggregation network and an 
Adaptive Residual Attention Mechanism. Specifically, in the 
aggregation network, this paper introduces item category 
information to improve the embedding quality of item target 
nodes. That is, item target nodes aggregate item-user 
information and item category information, while user target 
nodes aggregate user interaction information and interest social 
information. An attention mechanism [10] is used to 
distinguish the importance of each neighboring node. After 
obtaining the aggregated neighborhood features, the Adaptive 
Residual Attention Mechanism flexibly integrates the target 
node features and neighborhood aggregation features based on 
learned weight parameters for different nodes and situations. 
This ensures that each user (item) node obtains a satisfactory 
final embedding representation. 

1) Aggregation network: Inspired by existing work [9]-

[10], [17], the model employs an embedding layer 
( )d m nR  E , where each column represents a trainable 

embedding for each node, with d being a predetermined 

parameter indicating the embedding size. In the subsequent 

sections, ue  represents a user embedding, ve  represents an 

item embedding, re  denotes a rating embedding, and ce  

signifies an embedding of item category. To acquire feature 

embeddings of the target node, the model needs to first obtain 

feature embeddings of its neighboring nodes. For the user 

target node iu , the model extracts the feature embedding 
( )n iN ue

 of its neighboring nodes based on the interaction 

information and interest social information of iu
, as shown in 

the following formula: 

( ) 2 1 ( ) ( ( )) 1 2( [ ] )
n i n i n i

T

N u N u r N u     e W W e e b b
      

Where ( )n iN u  represents any neighboring node of user iu , 

and ( ) ( ) ( )n i i iN u I u S u , ( )iI u  denotes the item interaction 

matrix of user iu , and ( )iS u  represents the interest-based 

social matrix of user iu . ( ( ))n ir N u  represents the rating given 
by user iu  to its neighboring nodes, taking interaction ratings 
when the neighboring nodes are item nodes, and interest 

confidence ratings when they are user nodes. ( )n iN ue  and 
( ( ))n ir N ue

 respectively denote the embedding vectors of 

neighboring nodes of user iu  and rating embedding vectors. 

  signifies vector concatenation, while 
2

1

d dW  and 2W , 

1b , 2

db  are trainable weights. 

( ) 4 3 ( ) ( ( )) 3 4( [ ] )
n j n j n j

T

N v N v r N v     e W W e e b b
      

For the item target node jv , it is necessary to first 
aggregate the item category information to obtain the intrinsic 
features of the item target node. Then, the embeddings of its 

neighboring nodes, ( )n jN ve
, are obtained by utilizing the 

interactions and ratings provided by users to jv . The specific 
formula is as follows: 

6 5 5 6
ˆ ( [ ] )T

mn m n      W W e e b b
               

( )

ˆexp( )

ˆexp( )

mn

mn

mnn N m










                            

( ) ( )N m mn nn N m



e e

                               

Where 
d

m Re  represents the intrinsic feature embedding 

of the target node, and 
d

n Re  signifies the feature 
embeddings of its neighboring nodes. It's worth noting that 
when the target node is a user node, the embedding of 

neighborhood nodes is denoted as ( )n in N ue e
, whereas when 

the target node is an item node, the embedding of 

neighborhood nodes is denoted as ( )n jn N ve e
. ( )   denotes 

the ReLU activation function, ( )N m  denotes the matrix of 
neighboring nodes of the user (or item) target node, and mn  is 
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used to distinguish the importance of each neighboring node to 
the target node. 

2) The adaptive residual attention mechanism: Through 

aggregation networks, the aggregated embeddings of the target 

node's neighborhood have been obtained. However, to achieve 

satisfactory embeddings of the target node, the model needs to 

more deeply adaptively fuse the intrinsic features of the target 

node with its aggregated neighborhood features. In the field of 

social recommendations, existing methods typically employ 

various approaches to fuse these two types of features, such as 

average pooling, addition, concatenation, as well as gating 

mechanism [18], and even combinations of concatenation and 

multi-layer perceptrons [19]. However, these methods have 

certain limitations: either they are difficult to dynamically 

adjust, or the trainable weight matrices used are insufficient to 

fully extract the unique information of each user, ultimately 

resulting in the inability to ensure that each target node obtains 

a satisfactory final embedding representation. 

Inspired by the gating mechanism [18], the residual idea of 
Resnet [20] and other efficient implementations [21]-[22], this 
paper proposes an Adaptive Residual Attention Mechanism. It 
can flexibly adjust the feature fusion method by learning 
weight parameters for different nodes and situations, thereby 
better capturing node information. The specific formula is as 
follows: 

7 ( ) 7tanh( ( ) )G G

m m N m  f W e e b
                  

8 ( ) 8sigmoid( ( ) )G G

m m N m  g W e e b
             

(1 ) ( )m m m m m m  h g f g W e              

Where me  represents the intrinsic feature embedding of the 

target node, ( )N me  represents the aggregated embedding of the 
neighborhood of the target node, mg  is used to adjust the 
influence of each feature on the overall feature,  represents 

the Hadamard product, tanh( )  and sigmoid( )  represent 

activation functions, while 7 8, ,d d G G d

m

 W b b  and 
2

7 8,G G d dW W  are trainable parameters. In this way, we can 

obtain more satisfactory embeddings mh  of user or item target 
nodes, thus improving the final predictive performance. 

F. Scoring Prediction and Training 

Through the Enhanced Graph Neural Network (EGNN), we 
obtained the embedded representations of user target nodes, 

denoted as iuh
, and item target nodes, denoted as jvh

. Next, 
through the prediction layer, we calculate the predicted rating 

îjr  of user iu  for item jv
: 

ˆ MLP( )
i jij u vr  h h

                    

where MLP( )  is a Multilayer Perceptron with a three-layer 
structure. 

Since this paper focuses on the score prediction task, it is 
trained using the loss function commonly used in the score 
prediction task: 

2

,

1
ˆ( )

2
ij ij

i j O

Loss r r
O 

 
                          

Where O  represents the observed number of user-item 

ratings, ijr  denotes the true rating given by user iu  to item jv . 

To facilitate readers in quickly grasping the structure of this 
paper and replicating the study, we have introduced the 
pseudocode of the ARAR-ISI model, as shown in Table I. 

TABLE I.  PSEUDO-CODE OF ARAR-ISI 

Input: User-Item rating matrix R, User-User social matrix S 

Output: Predict the rating ijr  of user iu  for item jv  

1:  While ARAR-ISI Not Convergence do: 
2:       Initialize embedding vectors for user and item nodes; 
3:       For each user and their social connections in S do: 

4:        Calculate historical interaction item embeddings 
iu vE and 

ku vE  

based on R; 
5:            Calculate social trust score; 
6:            Sort and map original social relationships based on the score; 
7:            Obtain the list of interest social connections; 
8:            Retrieve the original social quantity; 
9:           Calculate the drop_num of social connections to be removed; 
10:         Remove meaningless social connections based on the list and 
drop_num; 
11:     Obtain the interest social matrix X; 
12:     Combine X with R to obtain the heterogeneous graph; 
13:     Aggregate neighborhood embedding for user and item target nodes; 
14:   Adaptively fuse the intrinsic features of target node with its aggregated 

neighborhood features to obtain mh ; 

15:    Feed the final embedded representations 
iuh  and 

jvh  of iu  and item 

jv  into the prediction layer to obtain the predicted rating ijr ; 

16:     Calculate the loss value based on ijr  and îjr ; 

17      Optimize the model using gradient descent algorithm; 
18: end while 

G. Complexity Analysis 

In this paper, we compare the complexity of the ARAR-ISI 
model with important components of the baseline model such 
as GDSRec [11]. In terms of spatial complexity, compared to 
the baseline models, the ARAR-ISI model introduces an 
additional 28 categories of item information embedding. 
Besides this, other trainable parameters are consistent with the 
baseline models. In contrast, the 28 categories of item 
information embedding are far fewer than the sum of user 
embeddings and item embeddings (at least 170,000). Therefore, 
it is considered that they are consistent in spatial complexity. 

Next, the main analysis focuses on the time complexity 
during the model training process, which mainly includes three 
parts: Social Selection, GNN embedding propagation and 
aggregation, and Loss Calculation, with specific time 

complexities as shown in Table II. Assuming E  represents the 

number of edges in the user-item interaction graph, 1E  
represents the number of user-user edges in the interest social 

graph, d  represents the embedding size,   represents the 
average drop ratio of the ARAR-ISI model for the original 
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social relationships, and 1  represents the sampling ratio of 
the GDSRec model for the original neighbors. 

TABLE II.  THE COMPARISON OF TIME COMPLEXITY 

Component GDSRec ARAR-ISI 

Social 
Selection 

- 
1(2 (3 ) )O E d E 

 
GNN 

Operation 1 1( (2 ) )O E E Ld 
 1((2 ) )O E E Ld

 
Loss 

Calculation 
( )O E d

 
( )O E d

 

The Social Selection of the ARAR-ISI model consists of 
Interest Social Mapping module and Social Selection 
Mechanism. Therefore, the overall time complexity of social 

selection is 1(2 (3 ) )O E d E  . For the L-layer GNN 

embedding propagation and aggregation, since (1 )  
proportion of meaningless social connections has been 
removed, the time complexity reduces from 

1((2 ) )O E E Ld  to 1((2 ) )O E E Ld , where  <1. 
Regarding the Loss Calculation, the time complexity is 

( )O E d . Hence, the overall time complexity of the model is 

1 1((2 ) 3 (3 ) )O E E Ld E d E     . 

This paper intentionally includes constants in the time 
complexity shown in Table II to facilitate fine-grained 
comparisons. From Table II, it can be observed that although 
the model proposed in this paper requires some time for social 
selection operations, this time is comparable to the time saved 
by GNN operations. Therefore, it can be considered that the 
time complexity of the model proposed in this paper is 
consistent with that of other GNN-based social 
recommendation models. 

III. EXPERIMENT 

This section describes the experimental procedure of the 
study including dataset description, baseline model description, 
experimental settings, experimental results and conclusions to 
validate the effectiveness of the proposed ARAR-ISI model. 

A. Datasets 

This paper evaluates the effectiveness of the proposed 
model on two widely used datasets, Ciao and Epinions, both 
sourced from real social networking platforms, with rating 
scales ranging from {1, 2, 3, 4, 5}. The Ciao dataset stores user 
ratings for various products and the connections between users, 
providing rich social relationships. The Epinions dataset is 
extensive and contains diverse information relationships, 
covering user ratings for movies and social information among 
users. The statistical information for these two datasets is 
shown in Table III. 

TABLE III.  STATISTICAL INFORMATION OF THE DATASET 

Dataset Ciao Epinions 

#of Users 7317 18088 

#of Items 104975 261649 

#of Ratings 283319 764352 

#Density(Ratings) 0.0368% 0.0161% 

#of Social Connections 111781 355813 

#of Density(Social Relations) 0.2087% 0.1087% 

#of Item Category 28 27 

B. Evaluation Metrics 

In order to evaluate the rating prediction performance of the 
proposed model, Mean Absolute Error (MAE) and Root Mean 
Square Error (RMSE) are used as the evaluation metrics for the 
experiments in this paper. The smaller values of MAE and 
RMSE indicate better prediction accuracy. 

C. Baselines 

To validate the effectiveness of the ARAR-ISI model 
proposed in this paper, it is compared with other state-of-the-
art recommendation models in the rating prediction task. These 
include classic CF models (PMF [7], SoRec [8]) and GNN 
recommendation models (GraphRec [9], ConsisRec [17], 
GraphRec+ [10], GSFR [23], GDSRec [11], MGMASR [24], 
REST [13], FIR-REC [25]). 

D. Experimental Settings 

For two dataset, 80% is used as the training set, 10% as the 
validation set, and 10% for the final performance comparison 
test set. Through grid search, the batch size is set to 128, 
embedding size to 16, learning rate to 0.001, and the model is 
trained using the Adam optimizer with a weight decay of 
0.0001. To address overfitting, early stopping strategy is 
employed. If the RMSE metric on the validation set does not 
decrease for five consecutive rounds, training is halted. 

E. Experimental Results and Analysis 

This paper presents a comprehensive comparison of the 
experimental results between ARAR-ISI and other 
recommendation models on the Ciao and Epinions datasets. 
The experimental results are summarized in Table IV, 
revealing the following observations: 

TABLE IV.  COMPARISON OF EXPERIMENTAL RESULTS OF VARIOUS 

MODELS 

Model Ciao Epinions 

MAE RMSE MAE RMSE 

PMF 0.9021 1.1238 0.9952 1.2128 

SoRec 0.8410 1.0652 0.8961 1.1437 

GraphRec 0.7387 0.9794 0.8168 1.0631 

ConsisRec 0.7394 0.9722 0.8046 1.0495 

GSFR 0.7297 0.9718 0.8018 1.0501 

GDSRec 0.7323 0.9740 0.8047 1.0566 

MGMASR 0.7365 0.9816 0.8257 1.0640 

REST 0.7320 0.9635 0.8013 1.0413 

FIR-REC 0.7234 0.9658 0.8020 1.0512 

ARAR-ISI 0.7059 0.9463 0.7835 1.0307 

Improvement 2.42% 1.79% 2.22% 1.02% 

From the experimental results, it is evident that SoRec 
outperforms PMF, indicating that user trust information in 
social networks can effectively enhance recommendation 
performance. In contrast, graph neural network-based models 
such as GraphRec, ConsisRec, GraphRec+, GSFR, GDSRec, 
MGMASR, REST, and FIR-REC significantly outperform 
previous models. This demonstrates that GNNs have a strong 
potential for representation learning on graph-structured data. 
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The evaluation metrics of the proposed ARAR-ISI model 
on the two datasets significantly outperform all baseline 
models. Compared to the state-of-the-art performance of 
current mainstream models, on the Ciao dataset, the MAE and 
RMSE metrics respectively improved by 2.42% and 1.79%, 
while on the Epinions dataset, they improved by 2.22% and 
1.02%. This superiority can be attributed to the effectiveness of 
the proposed model. The Interest Social Mapping Module 
proposed in this paper is able to map the original social data to 
the interest social space according to the user's interests, and 
deeply understand the user's interest relationships in the social 
network. Combined with the Social Selection Mechanism, it 
can dynamically filter and remove meaningless social 
interactions in the interest social space, effectively filter social 
information that may interfere with or mislead the user, and 
retain only meaningful interest social relationships, which 
enables social aggregation to focus on more valuable and 
meaningful social interactions, thus improving the quality and 
efficiency of the recommendation system. In addition, the 
EGNN based on adaptive residual attention mechanism can 
obtain more accurate embedding of user and item target nodes, 
which further improves the accuracy of the recommender 
system. 

F. Ablation Study 

The ablation experiments were designed to investigate the 
impact of each key component of the ARAR-ISI model on the 
final recommended performance. 

1) Effect of interest social mapping module: To verify the 

effectiveness of the proposed Interest Social Mapping Module 

(ISMM), this study designed three variant models, as shown in 

Table V. Specifically, the ARARISI-I variant model was 

designed, representing the model without the ISMM. This 

means that the original social data is not modeled for 

confidence and ordered arrangement, but instead, the 

confidence scores of all users' social relationships in the 

original social data are set to a score of 1, and the social 

relationships are randomly sorted. Since ISMM mainly maps 

based on the confidence scores of social relationships, to 

verify the effectiveness of the Transformer-based social 

confidence modeling method in ISMM, two variant models, 

ARARISI-P and ARARISI-M, were designed. Here, 

ARARISI-P represents its replacement with a pooling-based 

item merge confidence modeling method, while ARARISI-M 

represents its replacement with an MLP-based social user 

node representation modeling method. Specific results are 

shown in Fig. 2. 

TABLE V.  VARIANT DESCRIPTION OF INTEREST SOCIAL MAPPING 

MODULE 

Variant Models Variant Description 

ARARISI-I ARARISI Removes ISMM 

ARARISI-P 
ISMM replaced with Pooling-based item merge 
confidence modeling method 

ARARISI-M 
ISMM replaced with MLP-based social user node 

representation modeling method 

From the results in Fig. 2, it can be seen that ARAR-ISI 
outperforms the ARARISI-I variant in terms of metrics on both 
datasets, indicating that the proposed Interest Social Mapping 
Module is effective, which is due to the fact that the Interest 
Social Mapping Module maps the original social data from the 
social space to the interest social space based on the user's 
interests, enabling the model to remove the social noise based 
on the confidence scores. In addition to this, it can be seen that 
the metrics of ARAR-ISI on both datasets are better than the 
two variants of the model, ARARISI-P and ARARISI-M, 
which indicates that the Transformer-based social confidence 
modeling approach is more effective than the other two 
variants of the approach due to the fact that the user-item 
interaction data characterizes the user's interests to some 
degree, and that the Transformer module is able to model the 
similarity between historical sequences of user interactions 
well. 

2) Effect of social selection mechanism: To verify the 

effectiveness of the proposed Social Selection Mechanism 

(SSM), this study designed two variant models, as shown in 

Table VI. Specifically, the ARARISI-S variant model was 

designed to represent the model without the Social Selection 

Mechanism, meaning that social data information was not 

filtered out. Additionally, the ARARISI-G variant model was 

designed to represent the adoption of the traditional fixed 

threshold uniform dropout method to replace the Social 

Selection Mechanism proposed in this paper. It is worth noting 

that the fixed thresholds in the Ciao and Epinions datasets 

were set to 4 and 10, respectively, and these thresholds are 

consistent with the average number of social interactions 

removed in the Social Selection Mechanism. Specific results 

are shown in Fig. 3. 

TABLE VI.  VARIANT DESCRIPTION OF SOCIAL MAPPING MODULE 

Variant Models Variant Description 

ARARISI-S ARARISI Removes SSM 

ARARISI-G 
SSM replaced with traditional fixed threshold  

uniform dropout method 

From Fig. 3, it can be observed that ARAR-ISI outperforms 
the two major variant models on both datasets, indicating that 
the proposed Social Selection Mechanism is not only effective 
but also superior to the traditional uniform dropout method. 
This is because the Social Selection Mechanism can 
dynamically remove unreliable social connections for each user 
in the interest social space, retaining only interest social users 
to improve accuracy. Furthermore, considering the diversity of 
social connections for each user, the idea of sparse connection 
users retaining all relationships and dense connection users 
cutting more unreliable relationships is adopted, which is more 
robust than uniform dropout without considering the quantity 
of social connections. 

3) Effect of adaptive residual attention mechanism: To 

validate the effectiveness of the proposed Adaptive Residual 

Attention Mechanism (ARAM) in E-GNN, this paper designs 

three variant models, as shown in Table VII. Specifically, 

ARARISI-cat represents its replacement with vector 
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concatenation, ARARISI-gate represents its replacement with 

gate mechanism, and ARARISI-mlp represents replacement 

with combination of concatenation and multi-layer perceptron. 

Specific results are illustrated in Fig. 4. 
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Fig. 2. Effectiveness analysis of interest social mapping module 
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Fig. 3. Effectiveness analysis of social selection mechanism 
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Fig. 4. Effectiveness analysis of adaptive residual attention mechanism 
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Fig. 5. The Impact of social relationship reduction ratio on evaluation indicators 

TABLE VII.  VARIANT DESCRIPTION OF ADAPTIVE RESIDUAL ATTENTION 

MECHANISM 

Variant Models Variant Description 

ARARISI-cat ARAM replaced with vector concatenation 

ARARISI-gate ARAM replaced with gating mechanism 

ARARISI-mlp 
ARAM replaced with combination of concatenation and 

multi-layer perceptron 

From Fig. 4, it is evident that the performance metrics of 
ARAR-ISI outperform those of the three major variant models 
across both datasets. This indicates that the proposed adaptive 

residual attention mechanism can better integrate the features 
of target nodes with their aggregated neighborhood features, 
thereby enhancing the representation capability and robustness 
of the target node embedding vectors. Consequently, each 
target node can obtain a satisfactory final embedding 
representation, thus improving the ultimate predictive 
performance. 

G. Effect of Social Relationship Reduction Ratio 

The Social Selection Mechanism is a method of non-
uniform discard that considers the quantity of user social 
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connections, where three hyperparameters,  ,  , and  , are 

used to control the degree of social relationship reduction. The 
social relationship reduction ratio refers to the ratio of the 
average number of social connections removed per user to the 
average original number of social connections per user. To 
observe the influence of the degree of social relationship 
reduction on the final predictive performance of the model, this 
paper conducted related experiments, and the results are shown 
in Fig. 5 and 6. 

Fig. 5 illustrates the impact of the social relationship 
reduction ratio (denoted as p) on the evaluation metrics. As 
shown in Fig. 5, on both the Ciao and Epinions datasets, the 
optimal predictive performance is achieved when the social 
relationship reduction ratio is around 16% and 33%, 
respectively. Taking the Ciao dataset as an example, as the 
reduction ratio p increases from 0 to 16%, an improvement in 
the metrics is observed, attributed to the removal of 
meaningless social connections in the Ciao dataset. However, 
when the reduction ratio p increases from 16% to 29%, a 
significant deterioration in the metrics is evident. This is 
because excessive reduction in social relationships removes 
reliable interest-based connections, leading to the failure to 
aggregate some meaningful social interactions, thus decreasing 
the model's accuracy. 

 

Fig. 6. Effect of social relationship reduction ratio on computational 

efficiency 

Fig. 6 illustrates the relationship between the time spent on 
one training cycle and the reduction ratio p on the Epinions 
dataset. As shown in Fig. 6, reducing social connections by 33% 
on the Epinions dataset results in a decrease in training time of 
3.28% per cycle. Moreover, as the reduction ratio p of social 
connections increases, the time spent on model training 
decreases, and the computational efficiency of the model 
increases. This is because the model can generate a more 
concise social graph based on user interests, retaining only 
meaningful social connections. 

H. Effect of Embedding Size 

In order to observe the effect of the embedding size of users 
and items on the prediction performance of the model, this 
paper designs relevant experiments, and Fig. 7 demonstrates 
the performance comparison of the ARAR-ISI model of this 
paper with the change of embedding size on the Ciao and 
Epinions datasets. 

From the experimental results in Fig. 7, it can be seen that 
the model performance first increases and then decreases as the 
embedding size increases. Increasing the embedding size from 
8 to 16 significantly improves the performance. However, 
when the embedding size is increased from 16 to 32, the 
performance starts to decrease and further decreases when it is 
increased to 256. It can be seen that the model performs best on 
the Ciao and Epinions datasets when the embedding size is 16. 
This is due to the fact that smaller embedding sizes are not 
sufficient to represent the node information, while larger 
embedding sizes increase the complexity of the model, 
resulting in a tendency to overfitting problems. Therefore, we 
need to find a suitable embed size to balance the performance 
and the complexity as much as possible. 
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Fig. 7. Effect of embedding size on ciao and Epinions datasets 

IV. CONCLUSIONS AND FUTURE WORK 

This study proposes an Adaptive Residual Attention-based 
Recommendation Model with Interest Social Influence 
(ARAR-ISI). Firstly, the Interest Social Mapping Module 
designed in this paper can map the original social data from the 
social space to the interest social space based on interest 
confidence modeling, thereby deepening the understanding of 
interest relationships among social users in the social network. 
Combined with the Social Selection Mechanism, it effectively 
filters out meaningless social interactions in the interest social 
space, retaining only meaningful interest social relationships. 
This resolves the issue of a large amount of redundant and 
noisy social relationships in the original social data. 
Additionally, the adaptive residual attention mechanism 
designed in this paper can flexibly adjust the feature fusion 
method through learned weight parameters, thereby obtaining 
more effective node information to improve recommendation 
accuracy. Compared to traditional fusion methods, this 
mechanism has more advantages and can further enhance the 
representation ability of node embedding vectors. Experimental 
results on the Ciao and Epinions datasets demonstrate the 
effectiveness of the proposed ARAR-ISI model. It can reliably 
reduce meaningless social relationships, retain only meaningful 
interest-social relationships, and generate more concise interest 
social networks. This feature not only contributes to improving 
the computational efficiency of recommendation algorithms 
but also enhances recommendation accuracy, thus having 
significant practical value in recommendation systems. 
Considering that ratings and social information in real life are 
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dynamic, future work will delve into dynamic graph neural 
networks to enhance the practicality of recommendation 
systems. 
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