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Abstract—With the maturation of remote sensing, the 

applications of small unmanned aerial vehicles are rapidly 

expanding. Efficient image object detection algorithms have 

become crucial for information extraction in unmanned aerial 

vehicles. To meet this demand, an improved YOLOv5s algorithm 

was developed and deployed within a multi-processor system to 

optimize the performance of object detection in high-resolution 

remote sensing images captured by small unmanned aerial 

vehicles. Through adjustments to the structure and parameters of 

YOLOv5s, the algorithm was enhanced to improve object 

recognition capabilities in high-resolution remote sensing 

imagery. Experimental results demonstrated that the improved 

YOLOv5s (I-YOLOv5s) algorithm effectively mitigates 

interference from shadows and other external factors, enabling 

precise identification of objects. During training, I-YOLOv5s 

exhibited faster convergence, reaching optimal status after 

approximately 176 iterations. In performance evaluation, the 

algorithm achieved F1 and Recall values of 0.92 and 0.94, 

respectively, significantly outperforming single-shot multibox 

detectors. I-YOLOv5s attained a maximum average precision of 

0.96, markedly higher than comparative algorithms, with its Loss 

value reduced to a mere 0.06. The introduction of this enhanced 

algorithm not only enhances the accuracy and efficiency of object 

detection but also profoundly advances the further application of 

unmanned aerial vehicles in fields such as environmental 

monitoring, traffic management, and disaster assessment. 

Keywords—UAVs; remote sensing images; object recognition; 

deep learning 

I. INTRODUCTION 

Small Unmanned Aerial Vehicles (UAVs) play pivotal roles 
in various domains, such as agriculture, environmental 
monitoring, and military reconnaissance [1]. Particularly in 
high-resolution remote sensing image capture and object 
detection, small UAVs are indispensable. However, achieving 
high-resolution remote sensing image object detection on small 
UAVs remains a challenging task due to limitations in size and 
payload capacity [2]. In high-resolution remote sensing image 
detection tasks, targets often exhibit characteristics such as small, 
complex, and similar, posing great challenges to detection 
algorithms. Firstly, small targets are easily affected by image 
noise and scale changes, leading to a decrease in detection 
accuracy. Secondly, the diversity of complex backgrounds and 
target shapes requires detection algorithms to have strong 
adaptability. In addition, high-resolution remote sensing images 
have high similarity between targets, making it difficult to 
achieve accurate differentiation solely based on traditional 

feature extraction and classification methods. These issues all 
pose higher requirements for high-resolution remote sensing 
image detection algorithms. The existing high-resolution remote 
sensing image detection algorithms are mainly divided into two 
categories: based on traditional computer vision methods and 
based on deep learning methods. Traditional computer vision 
methods, such as edge detection and region growing, have 
achieved certain results in object detection, but they have 
limitations such as high computational complexity, poor 
robustness, and low detection accuracy. With the rapid 
development of deep learning technology, especially the 
application of Convolutional Neural Networks (CNN), high-
resolution remote sensing image detection has achieved 
significant improvement. However, the detection results of 
existing deep learning methods may be affected by noise and 
interference, leading to a decrease in accuracy. The Multi-
Processor System-on-Chip (MPSOC) offers a solution to this 
problem, possessing exceptional performance and a highly 
integrated design to meet the demands of high-precision object 
detection in complex environments with real-time requirements 
[3]. The proposed method in this study is based on MPSOC 
technology, which integrates processors, memory, interfaces, 
and other components into a system-level chip, offering greater 
computational power and higher energy efficiency [4]. By 
embedding the remote sensing image object detection algorithm 
into MPSOC, efficient and precise object detection can be 
achieved while meeting the payload and energy consumption 
constraints of UAVs [5]. This design exhibits innovation in 
several aspects: firstly, adopting MPSOC technology overcomes 
the speed and energy efficiency issues of traditional single-
processor systems when processing high-resolution remote 
sensing images. Secondly, employing the YOLOv5s-based 
object detection algorithm not only ensures efficient object 
detection but also meets the payload and energy consumption 
limitations of UAVs. Finally, through optimizing the YOLOv5s 
algorithm, high-precision object detection in complex 
environments with real-time requirements is achieved. This 
research can drive the development of UAVS remote sensing 
image object detection technology and elevate the application 
levels of UAVs in agriculture, environmental monitoring, 
military reconnaissance, and other fields. Moreover, it holds 
significant theoretical and practical significance for 
understanding and optimizing the application of MPSOC. The 
study is divided into five sections. Section II provides a 
summary of MPSOC and object detection domains. Section III 
is the implementation of the method proposed by the research. 
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Section IV is the verification of the UAV target detection system 
and algorithm proposed by the research. Section V is a summary 
and outlook of the research content. 

II. RELATED WORK 

MPSOC technology is a system-level integrated circuit 
technology that integrates multiple processor cores and other 
peripherals. Its design goal is to integrate multiple processor 
cores on a single chip to provide higher computational 
capabilities and enhanced system performance. The core idea of 
MPSOC technology is to achieve parallel computation and 
distributed processing by integrating multiple processor cores on 
the same chip. Each processor core can independently execute 
different tasks and communicate and share resources through 
internal communication channels. This parallel computing 
architecture enables MPSOC systems to simultaneously handle 
multiple tasks, thereby improving overall system performance 
and efficiency. Gomez F et al. proposed a novel platform 
supported by the MPSOC platform. The research results 
indicated that it meets the security and criticality requirements 
for space missions, supports performance verification and 
diagnostics, and is expected to reach commercial maturity by 
2022. The platform will be evaluated for space use cases [6]. 
Gkeka M R and colleagues, leveraging the efficient performance 
of MPSOC, introduced a posture optimization module based on 
RGB features. The research results demonstrated that this 
module can recover the posture of a robot with an unstable gait 
when tracking fails, achieving real-time tracking exceeding 30 
fps without sacrificing the accuracy and efficiency of tracking 
and map building [7]. Bruno Sá et al. presented the first public 
implementation and evaluation of the RISC-V super extension 
(H-extension v0.6.1) on the Rocket chip core in the MPSOC 
platform. The results showed that, by enhancing the timer 
infrastructure, direct interrupt injection and low latency are 
achieved, supporting the systematic requirements [8]. Nehnouh 
C proposed an online fault detection and isolation mechanism to 
enhance the reliability of MPSOC. The research results 
indicated that this mechanism improves protective performance 
by 22 times with a 27% area overhead, ensuring high reliability 
of the network chip. The throughput was only reduced by 5.19%, 
and the average latency slightly increased by 2.40% [9]. Spieck 
J et al. introduced a hybrid application mapping method based 
on MPSOC for data-aware scenarios. The research results 
showed that machine learning-optimized mapping, significantly 
reduced the miss rate and energy consumption of soft real-time 
streaming applications, outperforming existing technologies in a 
multi-application environment [10]. 

Object detection technology is a crucial technology in the 
field of computer vision, used to accurately locate and identify 
objects of interest in images or videos. This technology finds 
wide applications in various fields such as intelligent 
surveillance, autonomous driving, drones, and facial 
recognition. Zhu Y et al. proposed a weighted truncated 
Schatten-p norm minimization model to enhance denoising 
effects in object detection. The research results demonstrated 
that the model, optimized through adaptive thresholds and 
alternating direction multiplier methods, effectively improves 
the accuracy of infrared imaging object detection [11]. Ji Y et al. 
introduced a local-to-global context-aware feature enhancement 
network. The research results showed that, through a dual-

branch attention mechanism combined with pixel-level self-
attention, the method outperforms 18 advanced methods on six 
benchmark datasets, demonstrating superior object detection 
performance [12]. Wan Y and colleagues proposed a fine-
grained small target detection method with density-aware scale 
adaptation to overcome occlusion and scale issues in weak small 
target detection. Research results indicated that this method 
outperforms existing technologies with high precision on AI-
TOD, VisDrone, and UAVDT datasets [13]. Zheng Q and others 
introduced a cascaded fully convolutional network combined 
with motion attention to enhance the accuracy of video target 
detection. The results showed that this method achieves higher 
accuracy on DAVIS, ViSal, and FBMS datasets compared to 
existing technologies and simultaneously achieves real-time 
performance at 27 frames per second [14]. Liang Y and the team 
addressed the challenge of handling fuzzy contours in RGB-
based object detection algorithms by proposing a unified 
framework applicable to RGB-D and RGB-T saliency detection 
tasks. Results demonstrated that this framework performs 
exceptionally well in handling fuzzy contours and low-contrast 
scenes, exhibiting good generalization and surpassing existing 
advanced methods across multiple datasets [15]. 

Although MPSOC technology has significant advantages in 
improving system performance and efficiency, existing research 
results still have some shortcomings. Firstly, most of the 
research focuses on theoretical analysis and simulation 
verification, and the practical application and commercialization 
level still need to be improved. Secondly, although MPSOC 
technology continues to make breakthroughs in the number and 
performance of processor cores, the related system design and 
optimization techniques still need to be further improved. In 
addition, there are few customized MPSOC systems for specific 
application scenarios, which limits their widespread promotion 
in practical applications. In response to these shortcomings, a 
small UAV high-resolution remote sensing image target 
detection system design based on MPSOC has been proposed. 
This study aims to address the following issues: 1) How to use 
MPSOC technology to achieve efficient object detection 
algorithms to improve system performance and real-time 
performance; 2) How to design a hardware platform with high 
integration and low power consumption based on the 
characteristics and requirements of small UAVs; 3) How to 
optimize algorithms and system design to adapt to complex 
scenes in high-resolution remote sensing images. 

III. DESIGN OF HIGH-RESOLUTION REMOTE SENSING IMAGE 

TARGET DETECTION SYSTEM FOR SMALL UAVS 

The research focuses on constructing and designing a target 
detection system for high-resolution remote sensing images 
using small UAVs. Initially, the construction of the small UAVS 
target detection system is elucidated, emphasizing the design 
and construction process. Subsequently, the study delves into 
the construction and optimization of UAVS target detection 
algorithms, encompassing the selection of initial algorithms, 
optimization strategies and methods, and their application 
within the system. The overarching goal of the entire process is 
to achieve efficient and accurate target detection, aiming to open 
new research avenues in the field of UAVS remote sensing. 
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A. Construction of Small UAVs Target Detection System 

With the rapid advancement of technology, especially in 
UAVS and remote sensing technologies, the construction of 
small UAVS high-resolution remote sensing image target 
detection systems have become increasingly crucial. The 
application of this system spans various fields, including 
environmental protection, disaster management, urban planning, 
and agricultural monitoring [16]. The small UAVS target 
detection system enables rapid, efficient, and accurate detection 
of ground targets, significantly enhancing the efficiency of 
information acquisition and processing. Moreover, it can 
automate monitoring in environments where there are high 
safety requirements or are difficult for humans to access, 

providing real-time and accurate data support for decision-
making [17]. The system must possess the capability to rapidly 
process and analyze images and data in complex environments 
while incorporating image target detection algorithms for target 
detection. MPSOC is a hardware platform that integrates 
multiple processor cores, enabling efficient and flexible system 
level performance optimization. The study applies MPSOC to 
the processing and analysis of UAV remote sensing images, and 
achieves fast and accurate target detection of high-resolution 
remote sensing images by assigning different tasks to each 
processor core. As depicted in Fig. 1, the flow chart illustrates 
the construction of a small UAVS high-resolution remote 
sensing image target detection system based on MPSOC. 
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Fig. 1. Flow chart of the construction of a small UAVs high-resolution remote sensing image target detection system. 

Considering practical considerations, the process comprises 
four main parts. Firstly, it involves selecting a dataset suitable 
for the research content based on actual application scenarios, 
thereby reducing the training cost of subsequent models and 
improving training efficiency. The next step involves image 
enhancement to minimize the impact of complex weather 
conditions on images, thereby improving image recognition 
efficiency. Subsequently, the construction of target detection 
algorithms is addressed. The study primarily utilizes the 
YOLOv5 algorithm as the foundational target detection 
algorithm, with improvements tailored to practical situations to 
enhance image detection efficiency. The final part involves the 
interactive design of the small UAVS high-resolution remote 

sensing image target detection system. The initial step in this 
part is dataset construction. Table I illustrates the integrated 
dataset constructed for the study. Due to the often limited and 
singular nature of existing datasets, which may not fulfil new 
research and application requirements regarding the 
identification of object categories, quantities, distributions, etc., 
the research opts to rebuild an integrated dataset. As UAVS 
camera resolutions improve, existing dataset resolutions may 
prove insufficient to leverage these high-resolution images. 
Advances in computational capabilities make it feasible to 
process and analyze high-resolution images, necessitating the 
reconstruction of datasets to capitalize on this advantage. 
Therefore, the study chooses to reconstruct an integrated dataset. 

TABLE I.  UAVS HIGH RESOLUTION REMOTE SENSING TARGET DETECTION INTEGRATED DATA SET 

Data set name Year of presentation Target 
Number of 

videos 

Total frame 

count 
Detail 

UAVDT 2019 Pedestrians, vehicles 100 80K 
Covers all weather and light 
conditions 

VisDrone-DET 2019 Pedestrians, vehicles 263 179K 
With a variety of scenarios and 

weather conditions 

DTB70 2017 Pedestrians 70 36.5K 
A variety of weather, lighting and 
scenes are included 

UCF-ARG 2012 Pedestrians 50 10K 
Provides a variety of activity 

scenarios in the real world 

UCSD Birds 200 2010 Birds - 12K 
Images of 200 different bird species 

are available 

Stanford Drone Dataset 2016 Pedestrians, vehicles 60 70K 
Suitable for UAVS target detection 

and tracking 

UAV123 2016 Pedestrians, vehicles 123 110K 
Covers a variety of weather, lighting, 
target sizes and speeds 

DOTA 2018 Planes, boats, vehicles - 280K 
Designed for detection of large scale 

ground targets 

Okutama-Action 2017 Pedestrians 43 66K 
Offers a variety of complex outdoor 
environments and weather conditions 

Aerial Maritime Drone Dataset 2020 Boats 7 25K 
Various boat types and weather 

conditions are included 
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As shown in Table I, a high-resolution UAV remote sensing 
image target detection dataset was reconstructed to meet 
practical requirements. The reconstructed dataset allows for the 
expansion of detected target types, enabling more detailed 
analysis. The optimized integrated dataset also promotes 
research in the remote sensing field, fostering algorithm 
innovation and optimization. By constructing datasets that 
include different geographical, climatic, and environmental 
conditions, the model's adaptability and robustness to different 
scenarios can be enhanced. 

B. Construction of UAVs Target Detection Image 

Enhancement Methods 

For high-resolution images acquired by UAVs, it is crucial 
to develop adaptive detection algorithms to guide the refinement 
and expansion of datasets. This process involves not only 
improving image quality but also considering complex 
environmental factors to ensure the effectiveness and reliability 
of the system in practical applications. The first step involves 
image enhancement processing. An image enhancement method 
was proposed under the dark channel prior principle [18]. The 
principle is a dehazing algorithm in computer vision. This 
principle suggests that in natural scenes, distant objects in an 
image appear blurry and color-distorted due to factors like light 
scattering and occlusion. The dark channel prior principle 
estimates atmospheric light and transmittance by analyzing the 
dark channel in the image, achieving image dehazing. Fig. 2 
illustrates the schematic diagram of atmospheric light scattering. 
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Fig. 2. Schematic diagram of atmospheric light scattering model. 

As shown in Fig. 2, the atmospheric light scattering model is 
depicted. Based on this model and computer vision techniques, 
the atmospheric scattering model for describing haze can be 
represented as Formula (1). 

        1I x J x t x A t x                         (1) 

In Formula (1), I  represents the haze image in the picture, 
J  represents the reflected light of the scene in the image, t  

represents the transmittance of light in the air, A  represents the 

global atmospheric light intensity, and  t x  represents the 

transmittance. The representation of transmittance is given by 
Formula (2). 

   d x
t x e


                                     (2) 

In the study of RGB channels for outdoor images, it is found 
that at least one channel among the three color channels has a 
very low brightness value close to zero, appearing as dark pixels. 
This is specifically represented as Formula (3). 

 
 

  
 , ,

min min C

dark
y x

C r g b

J x J Y




 
  

 
 

                 (3) 

In Formula (3), 
darkJ  represents the dark original color of 

the image, CJ  represents the color channel of the image, and 

 x  represents a square region calculated with x  as the 

center point. In image enhancement calculation, the maximum 
transmittance value in the image is selected as the initial 
transmittance to achieve image enhancement. At this point, 

darkJ  can be represented as Formula (4). 

0darkJ                                     (4) 

Assuming A  is a fixed value and constant, taking a local 
image and dividing both sides of Formula (1) by A  yields 
Formula (5). 

 

 
 

 

 
 min min min min 1

c c

c cy x c y x c

I x J x
t x t x

A A 

   
        

     (5) 

Substituting the minimum grayscale value into Formula (5), 
Formula (6) is obtained. 

 

 
min min 0

c

cy x c

J x

A

 
  

 

                     (6) 

Combining Formula (5) and (6), the real scene transmittance 
can be calculated, as shown in Formula (7). 

 
 

 
1 min min

c

cy x c

I x
t x

A

 
    

 

                (7) 

To avoid image distortion, it is necessary to maintain the 
depth of field in the image. Assuming the depth of field 

adjustment factor is denoted by  0,1 , introducing it into 

Formula (7) yields Formula (8). 

 
 

 
1 min min

c

cy x c

I x
t x

A




 
    

 

                   (8) 

To further improve the accuracy of image enhancement and 
dehazing, research explores the use of a soft matting algorithm 
for optimization [19]. Assuming the optimized transmission 
image is denoted by t , the optimal value based on the soft 

matting algorithm's principles can be calculated using Formula 
(9). 

 L U t t                                  (9) 

In Formula (9), L  represents the Laplacian matrix,   is a 

regularization parameter, and U  represents a unit matrix of the 

same size as L . To ensure no distortion in the image, the values 
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of  J x  are restricted, and the final value can be represented as 

Formula (10). 

 

  0max ,

I X A
J X A

t x t

 
  

 
 

                   (10) 

In practical situations, 
0t  is typically set to 0.1. Combining 

the above calculations, the final process of image enhancement 
and dehazing can be represented as shown in Fig. 3. 
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Fig. 3. Schematic image enhancement of the dark channel prior principle. 

C. Construction and Optimization of UAVs Target Detection 

Algorithm 

Image enhancement provides a clearer and higher-contrast 
image input for the algorithm. Next, through algorithm design, 
the effective identification and localization of objects in the 
image are achieved. Considering practical needs, YOLOv5s 
algorithm is chosen as the target detection algorithm. YOLOv5s, 
as a lightweight version in the YOLO algorithm family, 
effectively reduces computational burden through network 
structure and parameter simplification, making it an ideal choice 
for high-speed detection under limited resources. The end-to-
end design of this algorithm achieves one-time detection, 
avoiding time delays in traditional multi-stage detection 
methods. The study optimizes the YOLOv5s algorithm by 
introducing a compression excitation module and a conical 
feature fusion structure to improve the algorithm's functional 
utilization and detection accuracy. At the same time, selecting 
CIOU-Loss as the loss function accelerates the convergence 
speed of the model and improves the accuracy of regression 
localization. These improvements enable YOLOv5s to achieve 
high-speed and accurate object recognition and localization 
within limited resources. To meet specific requirements, the 
study optimizes and adjusts YOLOv5s by introducing a 
compression excitation module, enhancing its feature 
utilization, as shown in Fig. 4. 
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Fig. 4. Structure diagram of compression excitation module. 

As shown in Fig. 4, it first compresses features, then maps 
and weights them. This is mainly achieved through the use of 
global average pooling [20]. The result can be expressed as 
Formula (11). 

   
1 1

1
,

c

h w

c csq u
i j

z F u i j
h w  

 

                  (11) 

In Formula (11), 
cu  represents the output of the c -th 

feature, 
cz  represents the one-dimensional vector value of the 

c -th feature, and h  and w  represent the two dimensions of the 

feature map. To meet practical requirements, the sigmoid 
function is chosen as the activation function, obtaining 
normalized weights, as specified in Formula (12). 

       2 1, ,exs F z w g z w w w z    
        (12) 

In Formula (12),   represents the Sigmoid activation 

function,   represents the ReLU function,  ,g z w  represents 

a structure composed of two fully connected layers, where the 

dimension of 
1w  is 

c
c

r
 , the dimension of 

2w  is 
c

c
r

 , and r  

represents a parameter whose main function is scaling. The final 
output of this module is obtained through rescaling the output, 
as specified in Formula (13). 

 ,c scale c c c cX F u s u s                     (13) 

In Formula (13), 
cX  represents the final output, and 

cs  

represents the normalized weight processing result for the c -th 

feature. Through these steps, the compressed excitation module 
can be added to the YOLOv5s object detection algorithm, 
thereby improving its feature utilization. To further enhance the 
algorithm's ability to detect targets, a conical feature fusion 
structure is introduced, and its comparison with traditional 
pyramid feature fusion structures is illustrated in Fig. 5. 
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Fig. 5. Feature fusion structure comparison diagram. 

From Fig. 5, it can be observed that the study adopts a feature 
fusion structure with a special design, allowing the transmission 
of features from three layers of different sizes. This enhances the 
efficiency of feature fusion and improves the accuracy of the 
network. To further accelerate model convergence, the study 
opts for CIOU_Loss as its loss function, as defined in Formula 
(14). 
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L CIoU





   

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             (14) 

In Formula (14), IoU  represents the intersection over union 

of the bounding box and the true bounding box, b  represents 

the center point of the bounding box, 
gtb  represents the center 

point of the true bounding box,  2   represents the Euclidean 

distance, c  represents the shortest minimum enclosing 

rectangle  diagonal length of the two,   represents a positive 

balancing parameter, and v  represents the aspect ratio 

consistency between the two. Furthermore, these can be 
expressed as shown in Formula (15). 

 
2

2

1

4
arctan arctan

gt

gt

v

IoU v

w w
v

hh






  


 

  
           (15) 

In Formula (15), 
gtw  represents the width of the true 

bounding box, 
gth  represents the height of the true bounding 

box, w  represents the width of the bounding box, and h  

represents the height of the bounding box. CIOU_Loss 
incorporates penalties for distance from the center and aspect 
ratio into its loss term for both the bounding box and the true 
bounding box. This effectively improves the convergence speed 
of the predicted box during training, thereby enhancing the 
model's regression localization accuracy. 

IV. PERFORMANCE TESTING OF UAVS HIGH-RESOLUTION 

REMOTE SENSING IMAGE OBJECT DETECTION SYSTEM 

To evaluate the usability of the proposed UAVs high-
resolution remote sensing image object detection system based 
on the YOLOv5s algorithm and assess the excellence of the 
optimization conducted in the study, a cost-effective approach 
was chosen, utilizing the cloud server platform provided by 
Amazon for testing. The dataset used for testing is an integrated 
dataset constructed in the study, with 80% randomly selected for 
training and the remaining 20% for testing. For a comprehensive 
comparison of research methods, Faster Region-based 
Convolutional Neural Networks (Fast R-CNN) and Single Shot 
MultiBox Detector (SSD), which are faster alternatives, were 
chosen for comparison with the proposed improved YOLOv5s 
(I-YOLOv5s). Table II shows the software and hardware details, 
as well as parameter settings used in the testing. 

TABLE II.  SOFTWARE AND HARDWARE DETAILS AND PARAMETER SETTINGS 

Hardware Software 

Name Type Argument Name Type Argument 

Cloud service Amazon Web Services OS Ubuntu 20.04 LTS 

Instance type g4dn.xlarge 
Deep learning 

framework 
PyTorch 1.8.0 

CPU Intel Xeon Platinum 8259CL Algorithm YOLOv5s V6.1 

GPU 
NVIDIA T4 Tensor 

Core 
242 teraFLOPS* Python 3.8 

RAM 16GB CUDA 11.0 

MEM EBS 125GB cuDNN Compatible version 

Network performance - 25Gbps Other Numpy, OpenCV, Matplotlib... 

Parameter setting 

Type Argument Type Argument Type Argument 

batch_size 16 lr_scheduler Cosine label_smoothing 0.0 

img_size 640 warmup_lr 0.0 anchor_t 4.0 

subdivisions 1 min_lr 0.00001 iou_t 0.2 

epochs 300 mosaic True cls_pw 1.0 

optimizer SGD mixup True obj_pw 1.0 
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Fig. 6. F1 value and recall value test results of the three algorithms. 
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Firstly, the convergence performance of the three algorithms 
was tested, with F1 and Recall values as the metrics. The test 
results are shown in Fig. 6. From Fig. 6, it can be observed that 
the I-YOLOv5s algorithm developed by the research achieved 
optimal state at a faster convergence rate. It reached its best state 
around the 176th training iteration. Moreover, compared to the 
Fast R-CNN and SSD algorithms, I-YOLOv5s exhibited 
superior F1 and Recall values, with F1 value reaching 0.92 and 
Recall value reaching 0.94. 

Next, the average precision and loss variation of the three 
algorithms were tested, and the results are presented in Fig. 7. It 
is evident from Fig. 7 that the proposed I-YOLOv5s algorithm 
attains a maximum average precision of 0.96, surpassing Fast R-
CNN and SSD by 0.24 and 0.37, respectively. The lowest loss 
value for I-YOLOv5s was 0.06, which is 0.09 and 0.13 lower 
than Fast R-CNN and SSD, respectively. 
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Fig. 7. MAP value and loss value test results of three algorithms. 

The ROC curves and P-R curves of the three algorithms were 
tested, and the results are illustrated in Fig. 8. From Fig. 8, it can 
be concluded that the curves of the I-YOLOv5s algorithm 
performed well, encompassing the curves of the other two 
algorithms in both ROC and P-R curves. This indicated that I-
YOLOv5s overall performance is superior to Fast R-CNN and 
SSD. 
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Fig. 8. Comparison results of AOC curves and P-R curves of the three 

algorithms. 

Testing of the image processing results for the three 
algorithms was conducted to evaluate their image enhancement 
capabilities. To ensure testing accuracy, two scenes were 
randomly selected from the dataset for testing, minimizing the 
impact of experimental errors. The parameters tested included 
Mean Gradient (MG), Gray Value (GV), Structural Similarity 
(SS), and Articulation (AR). The results are shown in Table III. 
It is evident that I-YOLOv5s effectively increases image clarity, 
with a significant improvement in both mean gradient (97% 
increase) and articulation (228% increase), while maintaining 
relatively stable structural similarity, indicating stronger image 
fidelity. 

TABLE III.  EVALUATION OF ACTUAL IMAGE PROCESSING CAPABILITY OF 

THREE ALGORITHMS 

Scenario Algorithms MG GV SS AR 

Scenario 
1 

Original 2.6514 86.5182 1 2.1547 

I-YOLOv5s 4.6298 91.2647 0.9751 6.9328 

Fast R-
CNN 

4.1852 85.2648 0.9432 4.2518 

SSD 3.9541 87.6249 0.9215 3.5184 

Scenario 

2 

Original 2.1659 83.2614 1 2.3591 

I-YOLOv5s 4.9251 92.0518 0.9820 6.8521 

Fast R-

CNN 
3.2691 86.9248 0.9532 5.1244 

SSD 2.9518 85.2694 0.9152 4.2697 
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Fig. 9. The actual target detection test of three algorithms. 

Finally, the practical object detection performance of the 
three algorithms was tested, as in Fig. 9. Only the I-YOLOv5s 
algorithm proposed by the research achieved complete 
recognition of vehicle targets in the images. Other algorithms 
faced challenges in recognizing shadow targets and exhibited 
difficulties in identifying adjacent targets. In conclusion, the 
proposed UAV object detection system based on the YOLOv5s 
algorithm exhibits excellent performance and demonstrates 
precise target recognition, showcasing strong practicality. 

According to the above test results, it can be seen that the 
proposed UAV high-resolution remote sensing image object 
detection system based on the YOLOv5s algorithm exhibits 
excellent performance and strong practicality. The I-YOLOv5s 
algorithm outperforms traditional Fast R-CNN and SSD 
algorithms in terms of convergence performance, average 
accuracy, loss function, ROC curve, and P-R curve. In addition, 
I-YOLOv5s significantly improves the clarity and fidelity of 
images. In practical object detection applications, the proposed 
I-YOLOv5s algorithm can achieve complete recognition of 
vehicle targets in images, while other algorithms face certain 
challenges in identifying shadow targets and adjacent targets. 
These results fully demonstrate the superiority and feasibility of 
the research method. By combining cloud computing platforms, 
this efficient and accurate object detection system can be applied 
to UAV remote sensing image analysis, providing accurate data 
support for fields such as agriculture, forestry, and urban 
planning. In summary, the study provides a cost-effective 
solution for target detection in high-resolution remote sensing 

images of drones. The proposed detection system based on 
YOLOv5s algorithm has shown superiority in both performance 
and practicality, and is expected to contribute to the 
development of UAV remote sensing applications in China. 

V. CONCLUSION 

The application of small UAVs is becoming increasingly 
widespread. Achieving precise target detection with high-
resolution remote sensing imagery on small UAVS platforms is 
a highly meaningful topic, holding significant importance in 
fields such as resource monitoring, disaster assessment, and 
environmental monitoring. Therefore, research was conducted 
to enhance the YOLOv5s algorithm based on the MPSOC 
system, thereby improving the accuracy and efficiency of target 
detection on UAVs. The study involved the modification of the 
original YOLOv5s algorithm to optimize the performance of 
target detection in high-resolution images acquired by small 
UAVs. The I-YOLOv5s algorithm, through structural and 
parameter adjustments, significantly enhanced the efficiency 
and accuracy of target detection. Data analysis demonstrated 
that the algorithm effectively identified objects in images, 
overcoming interference from shadows and other external 
factors. After training optimization, I-YOLOv5s achieved its 
optimal performance state after approximately 176 training 
iterations, with an F1 value of 0.92 and a Recall value of 0.94, 
significantly outperforming Fast R-CNN and SSD algorithms. 
Additionally, the mAP reached 0.96, and the Loss value 
decreased to 0.06, indicating superior performance compared to 
similar algorithms. This research provides an efficient solution 
for high-resolution remote sensing target detection on small 
UAVs. The optimized algorithm accelerates convergence, 
offering feasibility for real-time remote sensing data processing. 
The main limitation of this study is the lack of robustness testing 
for algorithms and systems in complex environments. Future 
research can address this issue by testing the performance of 
algorithms and systems under challenging conditions to validate 
the practicality and reliability of UAV target detection systems 
in various complex environments. In addition, algorithms and 
system design can continue to be optimized to adapt to more 
complex high-resolution remote sensing image scenes, further 
improving the accuracy and efficiency of object detection. 
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