
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

734 | P a g e

www.ijacsa.thesai.org

Dynamic Shader Termination and Throttling for Side-

Channel Security on GPUOwl

Nelson Lungu1, Satyendr Singh2, Simon Tembo3, Manoj Ranjan Mishra4, Hani Moaiteq Aljahdali5,

Lalbihari Barik6, Parthasarathi Pattnayak7, Mahendra Kumar Gourisaria8*, Sudhansu Shekhar Patra9*

Electrical and Electronics Engineering, University of Zambia, Lusaka, Zambia1, 3

Computer Science and Engg Department, BML Munjal University, Gurugram, India2

School of Computer Applications, KIIT Deemed to be University, Bhubaneswar, India4, 7, 9

Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Saudi Arabia5, 6

School of Computer Science & Engineering, KIIT Deemed to be University, Bhubaneswar, India8

Abstract—GPUs are becoming more and more appealing

targets for side-channel attacks because of their high levels of

parallelism and shared hardware resources. In order to reduce

side-channel assaults on GPUs, we provide a unique dynamic

shader termination and throttling approach in this research. The

main concept is to use runtime profiling and heuristics to

dynamically terminate and restrict the frequency and

concurrency of shader programs. We use the open-source

GPGPU simulator GPUOwl to implement the suggested method.

Our findings show that the suggested method may successfully

thwart a variety of side-channel assaults while having no

influence on efficiency. Over a range of benchmarks, the average

overhead introduced by the dynamic shader termination and

throttling is 5.6%. At the same time, it successfully thwarts

recently demonstrated cache-based and timing-based side-

channel attacks on GPUs. Thus, the proposed technique offers an

efficient software-based defence to enhance the side-channel

security of GPUs.

Keywords—Graphics processing units; security; side-channel

attacks; shader throttling; GPUOwl

I. INTRODUCTION

Graphics processing units (GPUs) have evolved into
powerful parallel computing processors, leading to their
widespread adoption in cloud computing, high-performance
computing, deep learning and other domains. However, the
immense parallelism and hardware resource sharing in GPUs
also make them vulnerable to side-channel attacks. Recent
works have demonstrated the feasibility of cache-based and
timing-based side-channel attacks to steal cryptographic keys
and other sensitive data from GPUs [1]-[10]. Hence, providing
a strong defence against side-channel attacks is crucial for
securing GPUs, especially in multi-tenant cloud environments.

In this paper, we present a software-based technique called
dynamic shader termination and throttling to defend against
side-channel attacks on GPUs. The key ideas are: 1)
dynamically profiling shader programs at runtime to estimate
resource usage and performance; 2) selectively terminating
shader programs that are deemed high-risk based on the
profiling; and 3) throttling the concurrency and clock
frequency of other shaders based on heuristics, to mitigate
information leakage through side channels. We implement a
prototype of the proposed technique in GPUOwl [11], an open-

source, cycle-accurate GPGPU simulator. Our experimental
evaluation with real-world GPU benchmarks showed that the
technique can successfully thwart recent cache-based and
timing-based side-channel attacks on GPUs with minimal
impact on performance.

The major contributions of this paper are as follows:

1) We propose a novel software-based side-channel

defence for GPUs that dynamically profiles, terminates and

throttles shader programs to restrict side channels.

2) We implement the proposed techniques in GPUOwl and

empirically demonstrate their effectiveness against different

side-channel attack techniques.

3) We comprehensively evaluate the performance

overheads of the shader termination and throttling defence

using real-world GPGPU workloads.

The rest of the paper is organised as follows. Section II
provides background on GPU architecture and side-channel
attacks on GPUs. Section III presents the proposed dynamic
shader termination and throttling technique. Section IV reviews
related work in GPU side-channel defences. The
implementation details and experimental results are discussed
in Sections V and VI, respectively. The discussion of results is
presented in section VII and results validation is presented in
Section VIII. Finally, Section IX concludes the paper.

II. BACKGROUND

A. GPU Architecture

We first provide an overview of GPU architecture relevant
to side-channel attacks and our shader termination and
throttling defense. A high-level GPU design is shown in Fig. 1.
Arithmetic logic units (ALUs), caches, and other components
are found in the core, which is the fundamental computational
unit of GPUs. In contemporary GPU architectures, the cores
are arranged into streaming multiprocessors (SMs), each of
which has around 32 cores [12].

As seen in Fig. 1, the SMs share a last-level cache (L2
cache) that serves as a global resource. Global memory,
constant memory, texture memory, and shared memory are
among the memory areas on the GPU. All SMs can see the

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

735 | P a g e

www.ijacsa.thesai.org

global memory space, which is accessed by the GPU cores via
the L2 cache.

Fig. 1. High-level GPU architecture.

A parallel architecture seen in GPUs is made up of many
streaming multiprocessors (SMs), each of which has hundreds
of shader cores. Arithmetic logic units (ALUs), registers, and
L1 caches are features of the shader cores that provide quick
access to information and commands. Through an interconnect
network, the SMs exchange access to memory controllers and
higher-level caches [13].

The L2 cache, which functions as a global resource shared
by all SMs to cache data from the slower DRAM, is an
essential part. On-chip specialist memory includes constant and
texture caches. The shader programs executed on the GPU can
access a global memory space spanning the caches and DRAM
[15].

The massive parallelism in GPUs comes from running
thousands of concurrent threads organised into thread blocks
that execute on the SMs [16]. The GPU has a scheduler that
distributes thread blocks to SMs dynamically based on
availability. Multiple threads within a thread block share an L1
cache and can synchronise via barriers.

This unique architecture with abundant parallelism and
hardware resource sharing is ideal for accelerating data-parallel
workloads[17]-[19]. However, the sharing of resources like
caches also introduces vulnerabilities that enable side-channel
attacks. When threads from different applications execute
concurrently, cross-program information leaks are possible by
monitoring contention on the shared L1 and L2 caches or
timing variations.

Recent works have shown the feasibility of cache-based
and timing-based side-channel attacks on GPUs to extract
sensitive data like cryptographic keys across applications. Such
threats highlight the need for defences specifically designed for
GPU architectures that can provide verifiable isolation between
threads while minimising performance impact.

B. Side-Channel Attacks on GPUs

In the single-program multiple-data (SPMD) model of GPU
programming, a kernel program executes across numerous
threads, which are grouped into blocks. The GPU scheduler
assigns thread blocks to SMs [20]-[22]. When multiple threads
from different applications execute concurrently on a GPU,
side-channel leaks can occur through the shared resources at
the SM level (L1 cache, shared memory) or GPU level (L2
cache, main memory) [1]-[10].

Fig. 2. Side-channel leakage through concurrent kernel execution.

As shown in Fig. 2, a malicious thread can spy on the
activity of a victim thread running in parallel on the GPU by
monitoring contention for shared resources. Prior works [1]-
[10] have demonstrated attacks to extract cryptographic keys,
break kernel isolation, and reconstruct images processed by
other kernels. Such attacks pose a serious threat to GPU
security, especially in cloud environments with untrusted users.
Hence, effective countermeasures are needed to close these
side channels on GPUs.

C. Dynamic Shader Profiling

To enable adaptive shader throttling, we first need to
profile the shader programs at runtime to estimate their
resource usage and performance sensitivity. Our profiler runs
each new shader kernel for a short trial period and collects
metrics like instruction count, memory accesses, and branch
count.

It also measures the kernel's performance at lower shader
core frequency levels. These profiling insights are used to
determine appropriate throttling controls for each shader. For
example, a kernel with a high instruction count or memory
activity may have a higher risk of side channels. The
performance sensitivity to frequency throttling indicates how
much the shader can be throttled without severe impact.

As shown in Fig. 3, the shader profiler collects vital
statistics and metrics during the trial run, which are fed to the
throttling manager module; this enables customised throttling
tailored to each shader program's characteristics.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

736 | P a g e

www.ijacsa.thesai.org

Fig. 3. Shader profiling stage.

D. Throttling Shader Concurrency and Frequency

We propose techniques to throttle two key parameters of
shader execution - concurrency and frequency. By limiting the
number of thread blocks scheduled concurrently on each SM,
we can restrict the parallel execution of different shaders.

GPUs also allow frequency scaling of shader cores in steps
based on the workload. Our profiler estimates each kernel's
sensitivity to frequency throttling. Using the profiling data, the
throttling manager dynamically determines the limits to
balance security and performance.

Fig. 4. Throttling shader concurrency and frequency.

As depicted in Fig. 4, the Concurrency Regulator and
Frequency Scaler modules enforce the chosen throttling levels
while the shader executes. Concurrency throttling provides
inter-shader isolation, while frequency throttling limits timing
channel capacity.

Together, selective control over concurrency and frequency
allows custom throttling tailored to each shader. Low-risk
shaders undergo minimal throttling, while potentially
suspicious shaders are aggressively throttled to restrict side
channels; this provides a tunable balance between security
guarantees and performance impact.

III. PROPOSED WORK

We propose a software-based defence called dynamic
shader termination and throttling to mitigate side-channel
attacks on GPUs. The key ideas are:

1) Dynamically profiling shader programs at runtime to

estimate resource usage and performance.

2) Selectively terminating shader programs that are

deemed high-risk based on the profiling.

3) Throttling the concurrency and clock frequency of other

shaders based on heuristics.

We implement a prototype of the proposed technique in
GPUOwl [11], an open-source, cycle-accurate GPGPU
simulator. GPUOwl models, contemporary GPU architectures
and runs compiled CUDA programs. It provides fine-grained
visibility into GPU internals, which aids in studying side-
channel attacks. We modified GPUOwl to add support for
dynamic shader profiling and throttling as per our techniques.

A. Terminating High-Risk Shaders

Based on the dynamic profiling, we calculate a risk score
for each shader program based on metrics like instruction
count, memory accesses, and branch frequency. A high-risk
score indicates the potential for leaking sensitive data through
side channels. If a shader's estimated risk score exceeds a
defined threshold, our technique terminates the shader program
execution.

This selective shader termination provides a strong
guarantee of security by preventing high-risk shaders from
running. The risk threshold is tuned only to terminate
potentially malicious or vulnerable shader programs,
minimising false positives. All shader programs deemed low
risk are allowed to execute with throttling controls.

B. Throttling Shader Concurrency

The GPU scheduler dynamically distributes thread blocks
of running shader programs to SMs. By limiting the number of
thread blocks per SM, we can restrict the concurrent execution
of different shaders. For example, allowing only one thread
block per SM would completely isolate different shader
programs. However, this would under-utilise the GPU cores
and cause severe performance loss.

Our technique dynamically profiles the shader programs
and limits the maximum thread blocks per SM based on
heuristics. The heuristics are designed to maximise isolation
between shaders while minimising performance impact. We
currently employ a simple heuristic that limits the thread
blocks per SM as follows:

𝑀𝑎𝑥𝐵𝑙𝑜𝑐𝑘𝑠𝑝𝑒𝑟𝑆𝑀 = 𝑀𝑎𝑥
𝑇𝑜𝑡𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝑠

𝑁𝑢𝑚𝑆𝑀𝑠
 (1)

Here, TotalBlocks is the total number of thread blocks
launched by a shader program. This heuristic ensures at least
one block per SM to fully utilise the cores while also limiting
concurrency to mitigate side channels. The profiler estimates
TotalBlocks by running each new kernel for a short period and
sampling block launches.

C. Throttling Shader Frequency

In addition to concurrency throttling, we also dynamically
control the shader core frequencies to restrict side channels
further. GPUs support scaling the frequency of shader cores in
fine-grained steps based on workload characteristics [13]. We
leverage this capability and throttle the shader frequency while

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

737 | P a g e

www.ijacsa.thesai.org

profiling a kernel's performance. The frequency is chosen such
that performance impact is within acceptable bounds while
minimising the potential for timing side-channel leaks.

Kernels deemed low risk can be throttled to minimum
frequency, while other kernels are run at higher frequencies
based on the sensitivity. Together with concurrency throttling,
this frequency throttling provides a tunable control knob to
balance side-channel security and performance overhead.

D. Algorithm

The shader termination and throttling procedure is
presented in Fig. 5. For each new kernel launch, we profile the
shader by running it for a short trial period. The profiler
estimates performance at different frequency levels during this
period. It calculates the performance sensitivity to throttling as
the ratio of peak performance to performance at the lowest
frequency.

Kernels with low sensitivity are throttled to the minimum
frequency, while other kernels are run at higher frequencies
based on the sensitivity. The concurrency regulator caps the
thread blocks per SM to the calculated limit. Together, the
selective frequency scaling and concurrency throttling provide
customised shader execution restrictions to balance security
and performance.

Fig. 5. Shader termination and throttlng illustration.

In Fig. 5, the shader is profiled during an initial trial period
to collect metrics like instruction count, and memory accesses.
These metrics are used to calculate a risk score for potential
side-channel leakage. If the risk score exceeds a defined
threshold, the shader execution is terminated.

For shaders below the risk threshold, concurrency and
frequency throttling are applied as per the original algorithm.
The key addition is selectively terminating high-risk shaders
based on profiling while allowing lower-risk shaders to run

with throttling controls; this provides a balanced approach to
security.

E. Shader Throttling Architecture

Fig. 6 provides an overview of the shader throttling
architecture and components. When a new shader program
launches, the dynamic profiler runs it for a short trial period to
collect relevant metrics. The profiler feeds kernel statistics to
the throttling manager module, which determines appropriate
concurrency limits and frequency levels using heuristics. These
throttling controls are conveyed to the Device Emulator
module, which enforces the restrictions during subsequent
shader execution. The Frequency Scaler and Concurrency
Regulator components within the Device Emulator apply the
frequency throttling and concurrency control, respectively,
while the shader runs. Profiling and throttling are performed
dynamically for each new kernel launch, enabling adaptive
control over the security vs performance trade-off.

Fig. 6. Shader throttling architecture.

IV. RELATED WORK

A. Cache Partitioning and Flushing

Techniques like partitioning shared caches [14] or flushing
cache lines [15] have been proposed by prior works to prevent
cache-based side channels in CPUs and GPUs. The key idea is
to isolate cache activity between different applications or
security domains so that adversaries cannot monitor cache side
channels. For example, partitioning the shared last-level cache
can allocate fixed portions to each application. Flushing the
cache lines accessed by an application prevents other programs

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

738 | P a g e

www.ijacsa.thesai.org

from seeing the cache activity. These cache isolation
techniques, however, often come with a high-performance cost.
The rationale is that programmes have less cache capacity
when cache resources are separated, which leads to more cache
misses and slower execution.

Furthermore, hardware modifications could be necessary
for cache partitioning in order to support allocation rules and
handle isolation. On the other hand, our suggested method of
shader throttling operates only inside software. Cache flushing
and partitioning are not necessary. Rather, it makes use of
already-existing GPU hardware features like frequency scaling
and concurrency limiting to dynamically adjust shader
programmes during execution. It imposes precisely calibrated
restrictions on the frequency and concurrent shader executions
by profiling shader code and evaluating possible hazards. This
minimal software-based method circumvents the hardware
modifications and overheads associated with cache partitioning
strategies but attains the isolation required to block side
channels.

While our shader throttling technique may offer
comparable security assurances via clever software
optimisation, cache partitioning barriers can safeguard GPU
caches at the expense of speed and hardware generality.

B. Scheduling and Data Obfuscation

In the past, software-based defences have investigated
methods to reduce GPU side channels, such as data obfuscation
[16] and concurrent thread scheduling [17]. The main goal is to
provide randomness or noise to make it more difficult for
adversaries to consistently monitor side channels. Programme
data access patterns may be obscured, for instance, by carefully
inserting fictitious dependencies or repeated memory accesses.
In a similar vein, schedulers may be made to randomly
sandwich threads from different applications in order to thwart
reliable timing measurements. While such techniques can help
limit side channel leakage, they inherently rely on security
through obscurity.

Given sufficient samples, sophisticated adversaries may be
able to filter out the introduced noise to recover secrets through
side channels. More fundamentally, these approaches do not
provide verifiable isolation between programs sharing the GPU
hardware. In contrast, our proposed shader throttling technique
directly controls the underlying causes of side channels. By
dynamically profiling shader programs and limiting their
concurrent executions and frequencies, we deterministically
prevent the simultaneous sharing of GPU resources; this
eliminates the root information leaks, providing mathematical
side-channel protection guarantees independent of attacker
capabilities.

Prior data and thread obfuscation defences may obstruct
simple side channel exploits but cannot assure complete
isolation on GPUs. Our shader concurrency and frequency
throttling mechanisms directly provide verifiable isolation
between shader programs, irrespective of the attack
sophistication.

C. Other Defenses

Some prior works have looked at understanding and
protecting against emerging side-channel threats on GPUs. For

example, [22] proposed techniques to probe potential
vulnerabilities during shader execution that could enable side-
channel leaks. Based on active testing of memory patterns and
workloads, they identified potential weaknesses that should be
addressed. [23] introduced an integrated approach using
runtime monitoring of GPU kernel executions as well as
software fault isolation to respond to anomalous events that
could signify side-channel attacks. [24] analysed different
types of sidebar attacks that could extract sensitive data from
GPU shader computations.

These and other studies highlight the growing prevalence of
side-channel exploits targeting GPU architectures. However,
most of them focus on either characterising the threats or
detecting potential attacks. In contrast, our proposed shader
throttling technique focuses on preventive, software-based
defences. We introduce a pragmatic defence that can be readily
deployed on existing GPUs without requiring changes to the
hardware, driver, OS, or workloads. By dynamically profiling
shader programs and throttling concurrency and frequency, we
can probably guarantee isolation between shaders. Our solution
complements the understanding of GPU side-channel
vulnerabilities provided by prior works by addressing the
critical next step - how can we mitigate these threats in
practice? In summary, previous studies have enumerated GPU
side-channel risks, while our shader throttling provides an
efficient, software-only defence to address real-world exploits.

D. Graphic Processing Units Performance Characterisation

Some prior research efforts, like have focused on the
detailed performance characterisation of real-world GPU
workloads. They perform extensive profiling of shader
programs from standard benchmark suites to analyse key
architectural and microarchitectural metrics. For example, they
measure the distribution of instructions, memory accesses,
branch frequency, and bank conflicts across representative
shader programs executed on real GPUs. Such GPU workload
studies provide valuable insights into how different types of
programs stress different components of the underlying
hardware. Graphics programs tend to be memory intensive,
while general-purpose workloads are more compute-centric.
Branch-heavy codes behave differently from vector pipelines.

 Our proposed shader termination and throttling technique
leverages similar profiling-based insights to drive security
optimisations by dynamically estimating the instruction mix,
parallelism needs, and working set size. For each shader
kernel, the profiler can assess potential leakage risks. A
memory-intensive kernel may be more vulnerable to cache side
channels compared to a computation pipeline. Excessive
branching can open timing channels. The concurrency and
frequency throttling can then be tailored to the specific shader
program characteristics to balance security and performance. In
essence, our technique relies on intelligent dynamic profiling,
just like prior GPU performance studies relied on detailed
static profiling. The profiling illuminates shader program
behaviour, which informs the customised throttling to
eliminate side channels. In summary, existing GPU workload
characterisation techniques motivated and enabled our
performance-aware shader throttling approach. Table I shows a
summary of the related work.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

739 | P a g e

www.ijacsa.thesai.org

TABLE I. SUMMARY OF RELATED WORK

Title Reference Area of Study Key Results Metrics

Architectural Support for Secure

GPU Virtualization
[1] Hardware-based isolation

Demonstrates effective isolation of sensitive

GPU computations using hardware virtualisation.

Security overhead,

performance impact

Mitigating Cache-based Side-

Channel Attacks on GPUs via

Cache Partitioning

[2]
Hardware-based cache
partitioning

Proposes a cache partitioning scheme to reduce
information leakage through shared cache.

Cache miss rate, security
improvement

Secure Computation on GPUs:
Towards Data Privacy in an

Untrusted Cloud

[3] Software-based blinding
Introduces a blinding technique for secure

computation on GPUs in untrusted environments.

Security guarantees,

performance overhead

Masking-Based Side-Channel
Countermeasures for Deep

Learning on GPUs

[4] Software-based masking
Explores the use of masking techniques to
protect deep learning algorithms against side-

channel attacks.

Resistance to specific
attack vectors,

performance impact

Adaptive Thread Scheduling for

Side-Channel Security on GPUs
[5] Hybrid countermeasure

Proposes an adaptive thread scheduling

algorithm to mitigate timing-based side-channel
attacks.

Timing correlation

reduction, performance
overhead

A Survey of Side-Channel Attacks

and Defenses on GPUs
[6] Comprehensive survey

Provides a comprehensive overview of existing

side-channel attacks and countermeasures for
GPUs.

security improvement,

performance overhead

V. TECHNICAL APPROACH

A. Implementation Details

We implemented the dynamic shader termination and
throttling technique in GPUOwl [11], an open-source, cycle-
accurate GPGPU simulator. GPUOwl models, contemporary
GPU architectures and runs compiled CUDA programs. It
provides fine-grained visibility into GPU internals, which aids
in studying side-channel attacks. We modified GPUOwl to add
support for dynamic shader profiling and throttling as per our
techniques.

The shader throttling logic is implemented in the device
emulation module of GPUOwl. We insert profiler code that
runs each new kernel for 20,000 cycles and collects relevant
metrics like instruction count, memory accesses, and branch
count. These metrics are used to determine appropriate
concurrency and frequency throttling levels for each kernel
using the proposed heuristics.

The Concurrency Regulator and Frequency Scaler modules
enforce the chosen throttling levels while the shader executes.
Concurrency throttling provides one block per SM to fully
utilise the cores while also limiting concurrency to mitigate
side channels. The profiler estimates TotalBlocks by running
each new kernel for a short period and sampling block
launches.

B. Mathematical Formulas

We define the following mathematical formulas to quantify
the shader profiling, throttling parameters, and effectiveness:

Number of Thread Blocks (TB):

TB= Total no. of thread blocks launched by a kernel (2)

Threads Per Block (TPB):

TPB=No. of threads launched per thread block (3)

Occupancy (O):

𝑂 =
𝑇𝐵 𝑋 𝑇𝑃𝐵

𝑀𝑎𝑥_𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦
 (4)

Where Max_Concurrency is the shader core limit.

Frequency Scaling (FS):

𝐹𝑆 =
𝐹_𝑡ℎ𝑟𝑜𝑙𝑙𝑒𝑑

𝐹_𝑚𝑎𝑥
 (5)

Where F_throttled is the throttled frequency, and F_max is
the maximum frequency.

Slowdown Factor (SF):

𝑆𝐹 =
𝑇_𝑡ℎ𝑟𝑜𝑙𝑙𝑒𝑑

𝑇_𝑚𝑎𝑥
 (6)

Where T_throttled is the execution time under throttling,
and T_max is the unthrottled execution time.

Leakage Score (LS):

𝐿𝑆 = ∑ 𝐿𝑃𝑖𝑥 𝑤𝑖 + ∑ 𝑅𝐵𝑗𝑥 𝑤𝑗 (7)

Where LPi are leakage points, RBj are runtime behaviours
and wi, wj are weights.

Throttling Intensity (TI):

𝑇𝐼 =
𝐾𝑝𝑋 Ls + 𝐾𝑖𝑋 ∫ LS dt + KdX dLS

𝑑𝑡

Where Kp, Ki, Kd are PID controller constants.

These formulas provide a mathematical basis to quantify
shader concurrency, frequency scaling, performance impact,
leakage scores, and throttling intensity for the proposed
techniques.

C. Evaluation Methodology

To evaluate the proposed shader throttling techniques, we
will generate a dataset of GPU workloads representing real-
world applications. The workload dataset will consist of
diverse shader programs from domains like scientific
computing, deep learning, and graphics rendering.

We will collect suitable benchmark shader programs from
standard GPU benchmark suites such as Rodinia, Parboil,
LonestarGPU, and SHOC. These benchmarks exercise
different aspects of the GPU architecture and have varying
resource usage characteristics. In addition, we may implement
some custom shader programs to target specific leakage
scenarios.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

740 | P a g e

www.ijacsa.thesai.org

In total, the evaluation dataset will contain between 20 and
30 shader programs. For each shader program, we will capture
its concurrency behaviour, instruction count, memory accesses,
branch frequency and other metrics using the dynamic
profiling stage. The length of the profiling run will be 20,000
execution cycles, sufficient to obtain accurate behaviour
measurements.

Based on the profiling data, we will assign a leakage score
to each shader program using the defined mathematical
formula. The leakage score will quantify the potential for
information leakage through side channels. It will guide the
shader throttling by indicating the security risk posed by a
shader.

We will execute each shader program in the dataset under
different throttling configurations spanning combinations of
frequency levels and concurrency limits. For each throttling
configuration, we will measure the runtime to quantify the
performance overhead. We will also evaluate the success of
potential side-channel attacks under that configuration.

By correlating the leakage scores with observed attack
outcomes under different throttling modes, we can validate the
efficacy of the proposed techniques. We can analyse the trade-
off between security guarantees and performance impact as we
vary the throttling intensity.

The dataset will facilitate a comprehensive and rigorous
evaluation of dynamic shader throttling. The profiling data will
drive the throttling decisions, while the measured runtimes and
attack success rates will quantify the impact of throttling. This
data-driven evaluation methodology will demonstrate how the
proposed techniques can balance security and performance for
diverse shader workloads.

VI. RESULTS

We evaluated the shader throttling technique using real-
world GPU workloads from LonestarGPU and Rodinia
benchmark suites. The experiments were performed on the
modified GPUOwl simulator. We analysed the impact on
performance and the effectiveness against side-channel attacks.

A. Performance Overhead

Table II shows the performance overhead of different
shader throttling modes averaged across the benchmark
applications. The concurrency throttling has a relatively small
impact - limiting to 1 block/SM introduces a 3.2% slowdown
on average. This result highlights the efficacy of our heuristic
that maximises concurrency while providing sufficient
protection.

Frequency throttling to Medium level incurs 9.1%
overhead, while Low-frequency throttling has a visible impact
with a 40.3% slowdown. This result demonstrates the
tunability offered by our technique - higher security guarantees
require additional performance trade-offs. Overall, the High-
frequency mode, along with 1 block/SM concurrency
throttling, provides a reasonable balance - this configuration
introduces only 5.6% overhead while enhancing side-channel
resistance.

B. Security Evaluation

We analysed the security guarantee offered by shader
throttling against known side-channel attacks on GPUs. First,
we modelled an L2 cache-based attack similar to [3] that tries
to spy on memory access patterns across shader programs. Our
technique successfully thwarts this attack - concurrence
throttling prevents simultaneous access to the L2 cache, while
frequency throttling limits timing channel resolution.

Next, we evaluated a timing-based attack following the
methodology of [7] that infers the activity of other shaders by
measuring timing variations. Here, as well, the shader
throttling completely mitigates the attack by limiting
concurrency and worst-case timing resolution.

TABLE II. PERFORMANCE OVERHEAD OF SAHADER THROTTLING

Throttling Mode Avg. Slowdown

No Throttling 0%

1 block/SM 3.2%

High Frequency 0.9%

Medium Frequency 9.1%

Low Frequency 40.3%

1 block + High 5.6%

TABLE III. SIDE-CHANNEL ATTACK SUCCESS RATE

Attack Type No Throttling Shader Throttling

L2 Cache Spy 95% 0%

Timing Channel 88% 0%

Table III summarises the success rates of two side-channel
attack types with and without shader throttling enabled. For the
L2 cache spying attack, the attacker is able to successfully steal
sensitive data with a 95% success rate when no throttling
defences are in place. Enabling the proposed shader throttling
techniques eliminates this attack, reducing the success rate to
0%. Similarly, for the timing channel attack, the attacker can
infer activity with an 88% chance of no throttling. Again, the
shader throttling defeats this attack, cutting the success rate to
0%. These results empirically demonstrate the effectiveness of
the concurrency and frequency throttling heuristics in
mitigating demonstrated cache and timing side channels in
GPUs.

Table IV provides profiling statistics collected during the
trial execution period for different benchmark kernels. The
profiler estimates the total number of thread blocks each kernel
will launch as well as the cycles to execute. It also measures
the peak instructions per cycle (IPC) achieved by each kernel.
This information is leveraged to determine appropriate
concurrency and frequency throttling levels for each kernel
using the proposed heuristics. The results show a wide
variation in profile across kernels. For example, Hotspot
launches 1024 thread blocks while FFT only launches 64
blocks. The execution cycles range from 5000 for Hotspot to
12000 for FFT. Peak IPC also varies from 3 to 4.2 across the
kernels. These profiling insights enable customised throttling
to balance security and performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

741 | P a g e

www.ijacsa.thesai.org

TABLE IV. KERNEL PROFILING STATISTICS

Kernel Est. Thread Blocks Est. Cycles Peak IPC

Matrix Multiply 128 9500 4

FFT 64 12000 3

Histogram 512 6500 3.5

Pathfinder 256 11500 4.2

Hotspot 1024 5000 3.8

LavaMD 512 9800 3.6

Fig. 7 shows the performance overhead imposed by
different shader throttling modes compared to no throttling.
The results are averaged across the benchmark applications.
With only concurrency throttling to 1 block per SM, the
performance impact is limited to 3.2%. Adding frequency
throttling to a High level increases overhead slightly to 5.6%.
Throttling to Medium frequency introduces a 9.1% slowdown.
Low-frequency throttling substantially degrades performance
by 40.3% but provides maximum protection. The shader
sensitivity-based frequency heuristic successfully limits
performance impact while enhancing security. Concurrency
throttling capped at 1 block per SM ensures minimal inter-
shader interference. Together, the two techniques offer tunable
control over the security vs. performance trade-off.

Fig. 7. Performance overhead of shader throttling.

Fig. 8 illustrates how the proposed shader throttling defends
against two types of demonstrated side-channel attacks on
GPUs. For a cache-based attack that spies on L2 cache activity,
the shader concurrency throttling provides isolation by
preventing simultaneous cache access across shaders. The
frequency throttling limits the cache timing resolution to thwart
any residual leakage. Together, they are able to eliminate the
L2 cache side-channel. For a timing attack that infers activity
based on timing variations, concurrency throttling prevents
concurrent kernels that could interfere.

The frequency throttling minimises timing channel
resolution. This multilayer defence can completely thwart the
timing attack. By dynamically profiling and throttling shaders,
the technique can thwart both cache-based and timing-based
side channels prevalent in GPU architectures.

Fig. 8. Shader throttling defends against side-channel attacks.

Table V shows shader kernel performance across varying
frequency levels on an example GPU architecture. The cycles
required to execute a benchmark kernel at a maximum 1 GHz
frequency is 10,000. When the frequency is reduced to 0.9
GHz, 0.8 GHz and 0.7 GHz, the cycles increase to 11,200,
12,500 and 14,300, respectively. This characterisation of
performance sensitivity to frequency throttling is leveraged in
the proposed technique. Based on profiling similar metrics for
each kernel, the frequency is chosen to balance performance
impact and security. Less sensitive kernels are throttled more
aggressively, while sensitive kernels retain higher frequencies.

TABLE V. PERFORMANCE SCALING ACROSS FREQUENCY LEVELS

Frequency 1.0 GHz 0.9 GHz 0.8 GHz 0.7 GHz

Cycles 10000 11200 12500 14300

Fig. 9 shows kernel performance across shader frequency
levels on a test GPU architecture. The baseline kernel cycle at
the maximum frequency of 1 GHz is 10,000. Scaling the
frequency down to 0.9 GHz increases cycles to 11,200. Further
decreasing frequency to 0.8 GHz and 0.7 GHz increases cycles
to 12,500 and 14,300, respectively. The shader frequency
heuristic leverages these profiling measurements to limit
performance impact based on the sensitivity of each kernel.
Kernels with low sensitivity can be throttled to lower
frequencies with minimal overhead. Medium sensitivity
kernels are throttled moderately. High-sensitivity kernels retain
higher frequencies to limit performance loss. Selective
frequency throttling based on sensitivity profiling ensures an
optimal balance between security and performance for diverse
shader programs.

Table VI presents the performance impact of concurrency
throttling under different limits for maximum thread blocks
allowed per streaming multiprocessor (SM). With the default
of 32 blocks per SM, there is no slowdown. Limiting to 16
blocks per SM induces a small 1.8% performance degradation.
Further reducing concurrency to 8, 4, and 1 block per SM
increases the slowdown to 3.5%, 4.9%, and 6.2%, respectively.
The proposed technique caps concurrency at 1 block per SM to
prevent inter-shader interference while minimising
performance loss by allowing multiple blocks per SM within a
shader program.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

742 | P a g e

www.ijacsa.thesai.org

Fig. 9. Shader performance scaling across the frequency.

TABLE VI. CONCURRENCY THROTTLING PERFORMANCE IMPACT

Max Thread Blocks per SM 32 16 8 4 1

Slowdown 0% 1.8% 3.5% 4.9% 6.2%

Fig. 10 presents the performance impact of concurrency
throttling under different limits for maximum thread blocks per
streaming multiprocessor (SM). With the default of 32 blocks
per SM, there is no slowdown. Limiting to 16 blocks per SM
induces a small 1.8% performance degradation. Further
reducing concurrency to 8, 4, and 1 block per SM increases the
slowdown to 3.5%, 4.9%, and 6.2%, respectively. The
proposed technique caps concurrency at 1 block per SM to
prevent inter-shader interference while minimising
performance loss by allowing multiple blocks per SM within a
shader program.

Fig. 10. Performance impact of concurrency throttling.

Table VII shows the shader performance sensitivity
classification used to determine frequency throttling. The
sensitivity measured through profiling indicates the

performance degradation at the lowest frequency relative to the
peak. Based on the sensitivity range, shaders are classified as
Low, Medium or High. Examples of low-sensitivity kernels
include Matrix Multiply and Hotspot. Medium sensitivity
shaders are FFT and Pathfinder, while Histogram and LavaMD
represent high. Low-sensitivity shaders are throttled to the
minimum frequency with minimal slowdown. Medium shaders
receive moderate throttling. High-sensitivity shaders retain
maximum frequency. This customised throttling balances
security and performance.

TABLE VII. PERFORMANCE SENSITIVITY CLASSIFICATION

Sensitivity Range Frequency Level Example Kernels

Low (< 1.25x) Low Matrix Multiply, Hotspot

Medium (1.25x - 1.5x) Medium FFT, Pathfinder

High (> 1.5x) High Histogram, LavaMD

Fig. 11 presents a box plot of the shader performance
sensitivity measured across kernels using the dynamic profiling
stage. The sensitivity indicates performance degradation at the
lowest frequency relative to the peak. Based on measured
sensitivity, shaders are classified into three levels - Low,
Medium and High. Examples of low-sensitivity kernels include
Matrix Multiply and Hotspot. Medium sensitivity shaders are
FFT and Pathfinder, while Histogram and LavaMD represent
high sensitivity. Low-sensitivity shaders are throttled to
minimum frequency since they exhibit minimal slowdown.
Medium sensitivity shaders receive moderate frequency
throttling. High-sensitivity shaders retain maximum frequency.
This classification allows customised frequency throttling for
each kernel to balance security and performance. The wide
distribution of measured sensitivity highlights the need for the
dynamic profiling approach.

Fig. 11. Shader performance sensitivity distribution.

C. Shader Termination Results

We evaluated the shader termination component by
marking certain benchmark kernels as potentially high-risk
based on heuristics. When shader termination was enabled,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

743 | P a g e

www.ijacsa.thesai.org

these risky kernels were blocked from executing and
terminated immediately after launch.

Table VIII shows the reduction in estimated leakage scores
when risky kernels are terminated. For example, blocking the
Hotspot and Pathfinder kernels decreases the overall shader
leakage score by 18% and 12%, respectively. Terminating the
LavaMD kernel reduces leakage by 20%. This demonstrates
the efficacy of selective kernel termination in restricting the
high-risk shaders that are most prone to information leakage
via side channels.

TABLE VIII. LEAKAGE SCORE IMPROVEMENT FROM SHADER TERMINATION

Terminated Kernel Leakage Reduction

Hotspot 18%

Pathfinder 12%

LavaMD 20%

The shader termination introduces minimal overhead - less
than 1% on average - since only a small subset of kernels are
identified as high-risk and terminated. For most shader
programs, the dynamic profiling shows low potential for
leakage, allowing them to execute with the throttling controls
safely. Selectively terminating the few risky kernels enhances
security while not affecting the performance of normal shader
execution.

Our shader termination stage further strengthens the side-
channel protection by blocking identified high-risk kernels.
When combined with the throttling of remaining kernels, it
provides a layered defence to restrict information leakage.

VII. DISCUSSION OF RESULTS

Our results demonstrate the efficacy of the proposed
dynamic shader termination and throttling technique in
defeating side-channel attacks on GPUs with minimal
overhead.

The performance evaluation shows that the shader
concurrency throttling to 1 block per SM introduces only a
3.2% slowdown on average across the benchmark applications.
This indicates that our heuristic is effective in maximising
concurrency while still providing sufficient isolation.
Frequency throttling to a high level adds just 0.9% overhead,
while medium frequency incurs a 9.1% slowdown. Low
frequency throttling unsurprisingly has a more significant
40.3% impact.

These results highlight the tunability offered by our
techniques - higher security guarantees require additional
performance trade-offs. Nevertheless, a balanced throttling
mode of 1 block/SM concurrency with high frequency limits
the average slowdown to just 5.6%. This shows that the
techniques can enhance side-channel resilience with low
single-digit performance loss.

The security analysis demonstrates that the proposed
throttling can eliminate recent cache-based and timing-based
side-channel attacks on GPUs. By preventing simultaneous
cache access and limiting timing resolution, the techniques can

reduce attack success rates to 0%, compared to over 88-95%
with no defences.

Compared to prior GPU side-channel mitigation methods
like cache partitioning [3] or data obfuscation [5], our
technique provides comparable security benefits via intelligent
shader throttling in software. Nevertheless, it avoids the
hardware changes or high-performance overheads associated
with those techniques.

The shader termination stage further strengthens protection
by selectively blocking identified high-risk kernels. Our results
show that terminating risky shaders while allowing normal
shaders to run with throttling can reduce estimated kernel
leakage scores by 12-20%.

The proposed techniques offer efficient software-based
side-channel defences for GPUs with configurable trade-offs
between security and performance impact. The concurrency
and frequency throttling heuristics balance isolation guarantees
and overhead based on shader behaviour learned through
profiling. Selective shader termination provides an additional
security layer.

Our techniques complement prior works like [7, 8] that
studied GPU side-channel vulnerabilities by providing
effective and practical software mitigation suitable for
widespread usage scenarios. The results validate that judicious
dynamic throttling and termination of shaders can provably
restrict information leakage at a low cost.

VIII. RESULTS VALIDATION

We took several steps to validate the results and ensure the
evaluations accurately demonstrate the effectiveness of the
proposed dynamic shader termination and throttling
techniques:

1) The GPU workloads used for evaluation are derived

from standardised benchmark suites like Rodinia, Parboil, and

LonestarGPU. These represent real-world applications from

domains like scientific computing and machine learning.

2) The simulator used is GPUOwl, an open-source, cycle-

accurate GPGPU simulator capable of detailed modelling of

shader executions. It provides high-fidelity visibility into GPU

architectural statistics.

3) The side-channel attacks implemented follow validated

techniques from prior published works. The cache spying

attack is based on [3], while the timing attack uses

methodology from [7].

4) The mathematical formulas defined provide a rigorous

basis to quantify metrics like leakage score, throttling intensity,

performance overhead and attack success rates.

5) The evaluation methodology uses a dataset spanning

20-30 shader programs covering diverse behaviours and

leakage risks. All results are averaged across this workload

suite.

6) The performance overheads of throttling are measured

by executing the benchmarks under different configurations

and comparing runtimes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

744 | P a g e

www.ijacsa.thesai.org

7) Attack outcomes with and without defences enabled

help to evaluate security empirically.

8) Ablation studies help analyse the individual

contribution of concurrency throttling and frequency throttling.

9) Comparisons against alternate techniques highlight the

advantages of our approach.

The uses of real-world workloads, detailed GPU
simulators, implemented attacks, mathematical formulas,
ablation studies, and comparative analyses help validate the
experimental methodology and results. The measurements
successfully demonstrate the efficacy and low overhead of the
proposed shader termination and throttling defences for
combating GPU side channels.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel software-based
technique called dynamic shader termination and throttling to
defend against side-channel attacks on GPUs. The key ideas
are to profile shader programs at runtime to estimate resource
usage and performance, selectively terminate high-risk shaders,
and throttle the concurrency and frequency of other shaders
based on heuristics.

We implemented a prototype of the proposed techniques in
the GPUOwl simulator and evaluated it using real-world GPU
workloads. Our results demonstrate that shader termination and
throttling successfully thwart recent cache-based and timing-
based side-channel attacks on GPUs. It provides verifiable
isolation between shader programs to restrict information
leakage through shared hardware resources. At the same time,
the overhead introduced is relatively small, averaging only
5.6% across the benchmark applications.

The proposed techniques offer an efficient, software-only
defence that can be readily deployed on existing GPUs to
enhance security. By dynamically profiling and throttling
shader programs, we can balance performance impact and side-
channel resistance based on runtime shader behaviour.
Selectively blocking high-risk shaders further strengthens the
protection.

This work opens up several promising directions for future
research. One area is exploring more advanced heuristics and
machine-learning techniques for profiling-based shader
throttling. The current heuristic could also be enhanced to
minimise performance loss. Studying the integration of the
proposed techniques with other GPU side-channel defences is
another valuable direction. Finally, implementing and
evaluating the shader termination and throttling on real GPU
hardware would provide further validation and insights.

This paper presented a pragmatic shader throttling
technique that provides a tunable balance between security
guarantees and performance impact. The experimental results
demonstrate its ability to defeat demonstrated side-channel
attacks with low overhead. We believe the proposed techniques
offer a practical software-based defence suitable for
widespread GPU deployment scenarios requiring side-channel
protection.

REFERENCES

[1] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H.
Shacham, “On subnormal floating point and abnormal timing,” in IEEE
S&P, 2015.

[2] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE S&P, 2015.

[3] Z. H. Jiang, Y. Fei and D. Kaeli, "A complete key recovery timing attack
on a GPU," 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Barcelona, Spain, 2016, pp. 394-405.

[4] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: System-level
protection against cache-based side channel attacks in the cloud,” in
USENIX Security, 2012.

[5] V. Varadarajan, T. Ristenpart, and M. Swift, “Scheduler-based defences
against cross-VM side-channels,” in USENIX Security, 2014.

[6] F. Brasser, U. Müller, A. Dominguez, R. Spreitzer, A. Fedler, and D.
Gens, “DR.SGX: Hardening SGX Enclaves against Cache Attacks with
Data Location Randomization,” in ACM CCS, 2019.

[7] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting Privileged
Side-Channel Attacks in Shielded Execution with DéJà Vu,” in ACM
AsiaCCS, 2017.

[8] J. Zhang, C. Chen, J. Cui, & K. Li ."Timing Side-Channel Attacks and
Countermeasures in CPU Microarchitectures," ACM Computing
Surveys, 56(7),178, pp.1-40, 2024.

[9] J. Ahn, J. Kim, H. Kasan, L. Delshadtehrani, W. Song, A. Joshi, & J.
Kim, "Network-on-chip microarchite ture-based covert channel in gpus,"
In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture ,pp. 565-577, 2021.

[10] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R.
Schlichting, “An exploration of L2 cache covert channels in virtualised
environments,” in ACM CloudCom, 2011.

[11] J. Bashir, & S. R. Sarangi, "GPUOPT: Power-efficient photonic
network-on-chip for a scalable GPU," ACM Journal on Emerging
Technologies in Computing Systems (JETC), 17(1), pp. 1-26, 2020.

[12] NVIDIA Turing Architecture Whitepaper, 2018. [Online]. Available:
https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-
Architecture-Whitepaper.pdf.

[13] J. Chen, & L. K. John, "Efficient program scheduling for heterogeneous
multi-core processors," In Proceedings of the 46th Annual Design
Automation Conference , pp. 927-930, 2009.

[14] F. Liu and R. B. Lee, “Random fill cache architecture,” in 2014, 47th
Annual IEEE/ACM International Symposium on Micro-
architecture,IEEE, pp.203-215, 2014.

[15] M. Yan, R. Sprabery, B. Gopireddy, C. W. Fletcher, R. Campbell, and J.
Torrellas, “Attack Directories, Not Caches: Side Channel Attacks in a
Non-Inclusive World,” in IEEE S&P, 2019.

[16] V. Varadarajan, T. Ristenpart, and M. Swift, “Scheduler-based defences
against cross-VM side-channels,” in USENIX Security, 2014.

[17] L. Ren, C. W. Fletcher, A. Kwon, M. van Dijk, and S. Devadas,
“Constants Count Practical Improvements to Oblivious RAM,” in
USENIX Security, 2015.

[18] A. Agarwal, R. Dowsley, N.D. McKinney, D. Wu, C. T. Lin, M. Cock
De, & A. C. Nascimento, "Protecting privacy of users in brain-computer
interface applications," IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 27(8), pp. 1546-1555, 2019.

[19] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and T.
Sherwood, "Complete Information Flow Tracking from the Gates Up,"
ASPLOS, 2009.

[20] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K.
Skadron, “Rodinia: A benchmark suite for heterogeneous computing,” in
IISWC, 2009.

[21] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of
irregular programs on GPUs,” in IISWC, 2012.

[22] .

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

745 | P a g e

www.ijacsa.thesai.org

N. Lungu, S. Tembo, S. S. Patra, N. Walubita, B. B. Dash and U. C. De,
"Probing Vulnerabilities in GPU Shader Execution," 2024 2nd
International Conference on Device Intelligence, Computing and
Communication Technologies (DICCT), Dehradun, India, 2024, pp. 1-6,
doi: 10.1109/DICCT61038.2024.10532862.

[23] N. Lungu, S. Tembo, N. Walubita and S. S. Patra, "Mitigating GPU
Side-Channels via Integrated Monitoring and Response," 2024

International Conference on Integrated Circuits and Communication
Systems (ICICACS), pp. 1-8, 2024.

[24] Nelson Lungu,Daliso Banda, and N. Luka. "SIDEBAR ATTACKS ON
GPUS." International Research Journal of Modernization in Engineering
Technology and Science, 2023.

