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Abstract—GPUs are becoming more and more appealing 

targets for side-channel attacks because of their high levels of 

parallelism and shared hardware resources. In order to reduce 

side-channel assaults on GPUs, we provide a unique dynamic 

shader termination and throttling approach in this research. The 

main concept is to use runtime profiling and heuristics to 

dynamically terminate and restrict the frequency and 

concurrency of shader programs. We use the open-source 

GPGPU simulator GPUOwl to implement the suggested method. 

Our findings show that the suggested method may successfully 

thwart a variety of side-channel assaults while having no 

influence on efficiency. Over a range of benchmarks, the average 

overhead introduced by the dynamic shader termination and 

throttling is 5.6%. At the same time, it successfully thwarts 

recently demonstrated cache-based and timing-based side-

channel attacks on GPUs. Thus, the proposed technique offers an 

efficient software-based defence to enhance the side-channel 

security of GPUs. 

Keywords—Graphics processing units; security; side-channel 

attacks; shader throttling; GPUOwl 

I. INTRODUCTION 

Graphics processing units (GPUs) have evolved into 
powerful parallel computing processors, leading to their 
widespread adoption in cloud computing, high-performance 
computing, deep learning and other domains. However, the 
immense parallelism and hardware resource sharing in GPUs 
also make them vulnerable to side-channel attacks. Recent 
works have demonstrated the feasibility of cache-based and 
timing-based side-channel attacks to steal cryptographic keys 
and other sensitive data from GPUs [1]-[10]. Hence, providing 
a strong defence against side-channel attacks is crucial for 
securing GPUs, especially in multi-tenant cloud environments. 

In this paper, we present a software-based technique called 
dynamic shader termination and throttling to defend against 
side-channel attacks on GPUs. The key ideas are: 1) 
dynamically profiling shader programs at runtime to estimate 
resource usage and performance; 2) selectively terminating 
shader programs that are deemed high-risk based on the 
profiling; and 3) throttling the concurrency and clock 
frequency of other shaders based on heuristics, to mitigate 
information leakage through side channels. We implement a 
prototype of the proposed technique in GPUOwl [11], an open-

source, cycle-accurate GPGPU simulator. Our experimental 
evaluation with real-world GPU benchmarks showed that the 
technique can successfully thwart recent cache-based and 
timing-based side-channel attacks on GPUs with minimal 
impact on performance. 

The major contributions of this paper are as follows: 

1) We propose a novel software-based side-channel 

defence for GPUs that dynamically profiles, terminates and 

throttles shader programs to restrict side channels. 

2) We implement the proposed techniques in GPUOwl and 

empirically demonstrate their effectiveness against different 

side-channel attack techniques. 

3) We comprehensively evaluate the performance 

overheads of the shader termination and throttling defence 

using real-world GPGPU workloads. 

The rest of the paper is organised as follows. Section II 
provides background on GPU architecture and side-channel 
attacks on GPUs. Section III presents the proposed dynamic 
shader termination and throttling technique. Section IV reviews 
related work in GPU side-channel defences. The 
implementation details and experimental results are discussed 
in Sections V and VI, respectively. The discussion of results is 
presented in section VII and results validation is presented in 
Section VIII. Finally, Section IX concludes the paper. 

II. BACKGROUND 

A. GPU Architecture 

We first provide an overview of GPU architecture relevant 
to side-channel attacks and our shader termination and 
throttling defense. A high-level GPU design is shown in Fig. 1. 
Arithmetic logic units (ALUs), caches, and other components 
are found in the core, which is the fundamental computational 
unit of GPUs. In contemporary GPU architectures, the cores 
are arranged into streaming multiprocessors (SMs), each of 
which has around 32 cores [12]. 

As seen in Fig. 1, the SMs share a last-level cache (L2 
cache) that serves as a global resource. Global memory, 
constant memory, texture memory, and shared memory are 
among the memory areas on the GPU. All SMs can see the 
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global memory space, which is accessed by the GPU cores via 
the L2 cache. 

 
Fig. 1. High-level GPU architecture. 

A parallel architecture seen in GPUs is made up of many 
streaming multiprocessors (SMs), each of which has hundreds 
of shader cores. Arithmetic logic units (ALUs), registers, and 
L1 caches are features of the shader cores that provide quick 
access to information and commands. Through an interconnect 
network, the SMs exchange access to memory controllers and 
higher-level caches [13]. 

The L2 cache, which functions as a global resource shared 
by all SMs to cache data from the slower DRAM, is an 
essential part. On-chip specialist memory includes constant and 
texture caches. The shader programs executed on the GPU can 
access a global memory space spanning the caches and DRAM 
[15]. 

The massive parallelism in GPUs comes from running 
thousands of concurrent threads organised into thread blocks 
that execute on the SMs [16]. The GPU has a scheduler that 
distributes thread blocks to SMs dynamically based on 
availability. Multiple threads within a thread block share an L1 
cache and can synchronise via barriers. 

This unique architecture with abundant parallelism and 
hardware resource sharing is ideal for accelerating data-parallel 
workloads[17]-[19]. However, the sharing of resources like 
caches also introduces vulnerabilities that enable side-channel 
attacks. When threads from different applications execute 
concurrently, cross-program information leaks are possible by 
monitoring contention on the shared L1 and L2 caches or 
timing variations. 

Recent works have shown the feasibility of cache-based 
and timing-based side-channel attacks on GPUs to extract 
sensitive data like cryptographic keys across applications. Such 
threats highlight the need for defences specifically designed for 
GPU architectures that can provide verifiable isolation between 
threads while minimising performance impact. 

B. Side-Channel Attacks on GPUs 

In the single-program multiple-data (SPMD) model of GPU 
programming, a kernel program executes across numerous 
threads, which are grouped into blocks. The GPU scheduler 
assigns thread blocks to SMs [20]-[22]. When multiple threads 
from different applications execute concurrently on a GPU, 
side-channel leaks can occur through the shared resources at 
the SM level (L1 cache, shared memory) or GPU level (L2 
cache, main memory) [1]-[10]. 

 
Fig. 2. Side-channel leakage through concurrent kernel execution. 

As shown in Fig. 2, a malicious thread can spy on the 
activity of a victim thread running in parallel on the GPU by 
monitoring contention for shared resources. Prior works [1]-
[10] have demonstrated attacks to extract cryptographic keys, 
break kernel isolation, and reconstruct images processed by 
other kernels. Such attacks pose a serious threat to GPU 
security, especially in cloud environments with untrusted users. 
Hence, effective countermeasures are needed to close these 
side channels on GPUs. 

C. Dynamic Shader Profiling 

To enable adaptive shader throttling, we first need to 
profile the shader programs at runtime to estimate their 
resource usage and performance sensitivity. Our profiler runs 
each new shader kernel for a short trial period and collects 
metrics like instruction count, memory accesses, and branch 
count. 

It also measures the kernel's performance at lower shader 
core frequency levels. These profiling insights are used to 
determine appropriate throttling controls for each shader. For 
example, a kernel with a high instruction count or memory 
activity may have a higher risk of side channels. The 
performance sensitivity to frequency throttling indicates how 
much the shader can be throttled without severe impact. 

As shown in Fig. 3, the shader profiler collects vital 
statistics and metrics during the trial run, which are fed to the 
throttling manager module; this enables customised throttling 
tailored to each shader program's characteristics. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

736 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 3. Shader profiling stage. 

D. Throttling Shader Concurrency and Frequency 

We propose techniques to throttle two key parameters of 
shader execution - concurrency and frequency. By limiting the 
number of thread blocks scheduled concurrently on each SM, 
we can restrict the parallel execution of different shaders. 

GPUs also allow frequency scaling of shader cores in steps 
based on the workload. Our profiler estimates each kernel's 
sensitivity to frequency throttling. Using the profiling data, the 
throttling manager dynamically determines the limits to 
balance security and performance. 

 
Fig. 4. Throttling shader concurrency and frequency. 

As depicted in Fig. 4, the Concurrency Regulator and 
Frequency Scaler modules enforce the chosen throttling levels 
while the shader executes. Concurrency throttling provides 
inter-shader isolation, while frequency throttling limits timing 
channel capacity. 

Together, selective control over concurrency and frequency 
allows custom throttling tailored to each shader. Low-risk 
shaders undergo minimal throttling, while potentially 
suspicious shaders are aggressively throttled to restrict side 
channels; this provides a tunable balance between security 
guarantees and performance impact. 

III. PROPOSED WORK 

We propose a software-based defence called dynamic 
shader termination and throttling to mitigate side-channel 
attacks on GPUs. The key ideas are: 

1) Dynamically profiling shader programs at runtime to 

estimate resource usage and performance. 

2) Selectively terminating shader programs that are 

deemed high-risk based on the profiling. 

3) Throttling the concurrency and clock frequency of other 

shaders based on heuristics. 

We implement a prototype of the proposed technique in 
GPUOwl [11], an open-source, cycle-accurate GPGPU 
simulator. GPUOwl models, contemporary GPU architectures 
and runs compiled CUDA programs. It provides fine-grained 
visibility into GPU internals, which aids in studying side-
channel attacks. We modified GPUOwl to add support for 
dynamic shader profiling and throttling as per our techniques. 

A. Terminating High-Risk Shaders 

Based on the dynamic profiling, we calculate a risk score 
for each shader program based on metrics like instruction 
count, memory accesses, and branch frequency. A high-risk 
score indicates the potential for leaking sensitive data through 
side channels. If a shader's estimated risk score exceeds a 
defined threshold, our technique terminates the shader program 
execution. 

This selective shader termination provides a strong 
guarantee of security by preventing high-risk shaders from 
running. The risk threshold is tuned only to terminate 
potentially malicious or vulnerable shader programs, 
minimising false positives. All shader programs deemed low 
risk are allowed to execute with throttling controls. 

B. Throttling Shader Concurrency 

The GPU scheduler dynamically distributes thread blocks 
of running shader programs to SMs. By limiting the number of 
thread blocks per SM, we can restrict the concurrent execution 
of different shaders. For example, allowing only one thread 
block per SM would completely isolate different shader 
programs. However, this would under-utilise the GPU cores 
and cause severe performance loss. 

Our technique dynamically profiles the shader programs 
and limits the maximum thread blocks per SM based on 
heuristics. The heuristics are designed to maximise isolation 
between shaders while minimising performance impact. We 
currently employ a simple heuristic that limits the thread 
blocks per SM as follows: 

𝑀𝑎𝑥𝐵𝑙𝑜𝑐𝑘𝑠𝑝𝑒𝑟𝑆𝑀 = 𝑀𝑎𝑥
𝑇𝑜𝑡𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝑠

𝑁𝑢𝑚𝑆𝑀𝑠
             (1) 

Here, TotalBlocks is the total number of thread blocks 
launched by a shader program. This heuristic ensures at least 
one block per SM to fully utilise the cores while also limiting 
concurrency to mitigate side channels. The profiler estimates 
TotalBlocks by running each new kernel for a short period and 
sampling block launches. 

C. Throttling Shader Frequency 

In addition to concurrency throttling, we also dynamically 
control the shader core frequencies to restrict side channels 
further. GPUs support scaling the frequency of shader cores in 
fine-grained steps based on workload characteristics [13]. We 
leverage this capability and throttle the shader frequency while 
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profiling a kernel's performance. The frequency is chosen such 
that performance impact is within acceptable bounds while 
minimising the potential for timing side-channel leaks. 

Kernels deemed low risk can be throttled to minimum 
frequency, while other kernels are run at higher frequencies 
based on the sensitivity. Together with concurrency throttling, 
this frequency throttling provides a tunable control knob to 
balance side-channel security and performance overhead. 

D. Algorithm 

The shader termination and throttling procedure is 
presented in Fig. 5. For each new kernel launch, we profile the 
shader by running it for a short trial period. The profiler 
estimates performance at different frequency levels during this 
period. It calculates the performance sensitivity to throttling as 
the ratio of peak performance to performance at the lowest 
frequency. 

Kernels with low sensitivity are throttled to the minimum 
frequency, while other kernels are run at higher frequencies 
based on the sensitivity. The concurrency regulator caps the 
thread blocks per SM to the calculated limit. Together, the 
selective frequency scaling and concurrency throttling provide 
customised shader execution restrictions to balance security 
and performance. 

 

Fig. 5. Shader termination and throttlng illustration. 

In Fig. 5, the shader is profiled during an initial trial period 
to collect metrics like instruction count, and memory accesses. 
These metrics are used to calculate a risk score for potential 
side-channel leakage. If the risk score exceeds a defined 
threshold, the shader execution is terminated. 

For shaders below the risk threshold, concurrency and 
frequency throttling are applied as per the original algorithm. 
The key addition is selectively terminating high-risk shaders 
based on profiling while allowing lower-risk shaders to run 

with throttling controls; this provides a balanced approach to 
security. 

E. Shader Throttling Architecture 

Fig. 6 provides an overview of the shader throttling 
architecture and components. When a new shader program 
launches, the dynamic profiler runs it for a short trial period to 
collect relevant metrics. The profiler feeds kernel statistics to 
the throttling manager module, which determines appropriate 
concurrency limits and frequency levels using heuristics. These 
throttling controls are conveyed to the Device Emulator 
module, which enforces the restrictions during subsequent 
shader execution. The Frequency Scaler and Concurrency 
Regulator components within the Device Emulator apply the 
frequency throttling and concurrency control, respectively, 
while the shader runs. Profiling and throttling are performed 
dynamically for each new kernel launch, enabling adaptive 
control over the security vs performance trade-off. 

 
Fig. 6. Shader throttling architecture. 

IV. RELATED WORK 

A. Cache Partitioning and Flushing 

Techniques like partitioning shared caches [14] or flushing 
cache lines [15] have been proposed by prior works to prevent 
cache-based side channels in CPUs and GPUs. The key idea is 
to isolate cache activity between different applications or 
security domains so that adversaries cannot monitor cache side 
channels. For example, partitioning the shared last-level cache 
can allocate fixed portions to each application. Flushing the 
cache lines accessed by an application prevents other programs 
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from seeing the cache activity. These cache isolation 
techniques, however, often come with a high-performance cost. 
The rationale is that programmes have less cache capacity 
when cache resources are separated, which leads to more cache 
misses and slower execution. 

Furthermore, hardware modifications could be necessary 
for cache partitioning in order to support allocation rules and 
handle isolation. On the other hand, our suggested method of 
shader throttling operates only inside software. Cache flushing 
and partitioning are not necessary. Rather, it makes use of 
already-existing GPU hardware features like frequency scaling 
and concurrency limiting to dynamically adjust shader 
programmes during execution. It imposes precisely calibrated 
restrictions on the frequency and concurrent shader executions 
by profiling shader code and evaluating possible hazards. This 
minimal software-based method circumvents the hardware 
modifications and overheads associated with cache partitioning 
strategies but attains the isolation required to block side 
channels. 

While our shader throttling technique may offer 
comparable security assurances via clever software 
optimisation, cache partitioning barriers can safeguard GPU 
caches at the expense of speed and hardware generality. 

B. Scheduling and Data Obfuscation 

In the past, software-based defences have investigated 
methods to reduce GPU side channels, such as data obfuscation 
[16] and concurrent thread scheduling [17]. The main goal is to 
provide randomness or noise to make it more difficult for 
adversaries to consistently monitor side channels. Programme 
data access patterns may be obscured, for instance, by carefully 
inserting fictitious dependencies or repeated memory accesses. 
In a similar vein, schedulers may be made to randomly 
sandwich threads from different applications in order to thwart 
reliable timing measurements. While such techniques can help 
limit side channel leakage, they inherently rely on security 
through obscurity. 

Given sufficient samples, sophisticated adversaries may be 
able to filter out the introduced noise to recover secrets through 
side channels. More fundamentally, these approaches do not 
provide verifiable isolation between programs sharing the GPU 
hardware. In contrast, our proposed shader throttling technique 
directly controls the underlying causes of side channels. By 
dynamically profiling shader programs and limiting their 
concurrent executions and frequencies, we deterministically 
prevent the simultaneous sharing of GPU resources; this 
eliminates the root information leaks, providing mathematical 
side-channel protection guarantees independent of attacker 
capabilities. 

Prior data and thread obfuscation defences may obstruct 
simple side channel exploits but cannot assure complete 
isolation on GPUs. Our shader concurrency and frequency 
throttling mechanisms directly provide verifiable isolation 
between shader programs, irrespective of the attack 
sophistication. 

C. Other Defenses 

Some prior works have looked at understanding and 
protecting against emerging side-channel threats on GPUs. For 

example, [22] proposed techniques to probe potential 
vulnerabilities during shader execution that could enable side-
channel leaks. Based on active testing of memory patterns and 
workloads, they identified potential weaknesses that should be 
addressed. [23] introduced an integrated approach using 
runtime monitoring of GPU kernel executions as well as 
software fault isolation to respond to anomalous events that 
could signify side-channel attacks. [24] analysed different 
types of sidebar attacks that could extract sensitive data from 
GPU shader computations. 

These and other studies highlight the growing prevalence of 
side-channel exploits targeting GPU architectures. However, 
most of them focus on either characterising the threats or 
detecting potential attacks. In contrast, our proposed shader 
throttling technique focuses on preventive, software-based 
defences. We introduce a pragmatic defence that can be readily 
deployed on existing GPUs without requiring changes to the 
hardware, driver, OS, or workloads. By dynamically profiling 
shader programs and throttling concurrency and frequency, we 
can probably guarantee isolation between shaders. Our solution 
complements the understanding of GPU side-channel 
vulnerabilities provided by prior works by addressing the 
critical next step - how can we mitigate these threats in 
practice? In summary, previous studies have enumerated GPU 
side-channel risks, while our shader throttling provides an 
efficient, software-only defence to address real-world exploits. 

D. Graphic Processing Units Performance Characterisation 

Some prior research efforts, like have focused on the 
detailed performance characterisation of real-world GPU 
workloads. They perform extensive profiling of shader 
programs from standard benchmark suites to analyse key 
architectural and microarchitectural metrics. For example, they 
measure the distribution of instructions, memory accesses, 
branch frequency, and bank conflicts across representative 
shader programs executed on real GPUs. Such GPU workload 
studies provide valuable insights into how different types of 
programs stress different components of the underlying 
hardware. Graphics programs tend to be memory intensive, 
while general-purpose workloads are more compute-centric. 
Branch-heavy codes behave differently from vector pipelines. 

 Our proposed shader termination and throttling technique 
leverages similar profiling-based insights to drive security 
optimisations by dynamically estimating the instruction mix, 
parallelism needs, and working set size. For each shader 
kernel, the profiler can assess potential leakage risks. A 
memory-intensive kernel may be more vulnerable to cache side 
channels compared to a computation pipeline. Excessive 
branching can open timing channels. The concurrency and 
frequency throttling can then be tailored to the specific shader 
program characteristics to balance security and performance. In 
essence, our technique relies on intelligent dynamic profiling, 
just like prior GPU performance studies relied on detailed 
static profiling. The profiling illuminates shader program 
behaviour, which informs the customised throttling to 
eliminate side channels. In summary, existing GPU workload 
characterisation techniques motivated and enabled our 
performance-aware shader throttling approach. Table I shows a 
summary of the related work. 
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TABLE I.  SUMMARY OF RELATED WORK 

Title Reference Area of Study Key Results Metrics 

Architectural Support for Secure 

GPU Virtualization 
[1] Hardware-based isolation 

Demonstrates effective isolation of sensitive 

GPU computations using hardware virtualisation. 

Security overhead, 

performance impact 

Mitigating Cache-based Side-

Channel Attacks on GPUs via 

Cache Partitioning 

[2] 
Hardware-based cache 
partitioning 

Proposes a cache partitioning scheme to reduce 
information leakage through shared cache. 

Cache miss rate, security 
improvement 

Secure Computation on GPUs: 
Towards Data Privacy in an 

Untrusted Cloud 

[3] Software-based blinding 
Introduces a blinding technique for secure 

computation on GPUs in untrusted environments. 

Security guarantees, 

performance overhead 

Masking-Based Side-Channel 
Countermeasures for Deep 

Learning on GPUs 

[4] Software-based masking 
Explores the use of masking techniques to 
protect deep learning algorithms against side-

channel attacks. 

Resistance to specific 
attack vectors, 

performance impact 

Adaptive Thread Scheduling for 

Side-Channel Security on GPUs 
[5] Hybrid countermeasure 

Proposes an adaptive thread scheduling 

algorithm to mitigate timing-based side-channel 
attacks. 

Timing correlation 

reduction, performance 
overhead 

A Survey of Side-Channel Attacks 

and Defenses on GPUs 
[6] Comprehensive survey 

Provides a comprehensive overview of existing 

side-channel attacks and countermeasures for 
GPUs. 

security improvement, 

performance overhead 

 

V. TECHNICAL APPROACH 

A. Implementation Details 

We implemented the dynamic shader termination and 
throttling technique in GPUOwl [11], an open-source, cycle-
accurate GPGPU simulator. GPUOwl models, contemporary 
GPU architectures and runs compiled CUDA programs. It 
provides fine-grained visibility into GPU internals, which aids 
in studying side-channel attacks. We modified GPUOwl to add 
support for dynamic shader profiling and throttling as per our 
techniques. 

The shader throttling logic is implemented in the device 
emulation module of GPUOwl. We insert profiler code that 
runs each new kernel for 20,000 cycles and collects relevant 
metrics like instruction count, memory accesses, and branch 
count. These metrics are used to determine appropriate 
concurrency and frequency throttling levels for each kernel 
using the proposed heuristics. 

The Concurrency Regulator and Frequency Scaler modules 
enforce the chosen throttling levels while the shader executes. 
Concurrency throttling provides one block per SM to fully 
utilise the cores while also limiting concurrency to mitigate 
side channels. The profiler estimates TotalBlocks by running 
each new kernel for a short period and sampling block 
launches. 

B. Mathematical Formulas 

We define the following mathematical formulas to quantify 
the shader profiling, throttling parameters, and effectiveness: 

Number of Thread Blocks (TB): 

TB= Total no. of thread blocks launched by a kernel  (2) 

Threads Per Block (TPB): 

TPB=No. of threads launched per thread block    (3) 

Occupancy (O): 

𝑂 =
𝑇𝐵 𝑋 𝑇𝑃𝐵

𝑀𝑎𝑥_𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦
                              (4) 

Where Max_Concurrency is the shader core limit. 

Frequency Scaling (FS): 

𝐹𝑆 =
𝐹_𝑡ℎ𝑟𝑜𝑙𝑙𝑒𝑑

𝐹_𝑚𝑎𝑥
                                   (5) 

Where F_throttled is the throttled frequency, and F_max is 
the maximum frequency. 

Slowdown Factor (SF): 

𝑆𝐹 =
𝑇_𝑡ℎ𝑟𝑜𝑙𝑙𝑒𝑑

𝑇_𝑚𝑎𝑥
                                  (6) 

Where T_throttled is the execution time under throttling, 
and T_max is the unthrottled execution time. 

Leakage Score (LS): 

𝐿𝑆 = ∑ 𝐿𝑃𝑖𝑥 𝑤𝑖 + ∑ 𝑅𝐵𝑗𝑥 𝑤𝑗                      (7) 

Where LPi are leakage points, RBj are runtime behaviours 
and wi, wj are weights. 

Throttling Intensity (TI): 

𝑇𝐼 =
𝐾𝑝𝑋 Ls + 𝐾𝑖𝑋 ∫ LS dt + KdX dLS

𝑑𝑡
 

Where Kp, Ki, Kd are PID controller constants. 

These formulas provide a mathematical basis to quantify 
shader concurrency, frequency scaling, performance impact, 
leakage scores, and throttling intensity for the proposed 
techniques. 

C. Evaluation Methodology 

To evaluate the proposed shader throttling techniques, we 
will generate a dataset of GPU workloads representing real-
world applications. The workload dataset will consist of 
diverse shader programs from domains like scientific 
computing, deep learning, and graphics rendering. 

We will collect suitable benchmark shader programs from 
standard GPU benchmark suites such as Rodinia, Parboil, 
LonestarGPU, and SHOC. These benchmarks exercise 
different aspects of the GPU architecture and have varying 
resource usage characteristics. In addition, we may implement 
some custom shader programs to target specific leakage 
scenarios. 
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In total, the evaluation dataset will contain between 20 and 
30 shader programs. For each shader program, we will capture 
its concurrency behaviour, instruction count, memory accesses, 
branch frequency and other metrics using the dynamic 
profiling stage. The length of the profiling run will be 20,000 
execution cycles, sufficient to obtain accurate behaviour 
measurements. 

Based on the profiling data, we will assign a leakage score 
to each shader program using the defined mathematical 
formula. The leakage score will quantify the potential for 
information leakage through side channels. It will guide the 
shader throttling by indicating the security risk posed by a 
shader. 

We will execute each shader program in the dataset under 
different throttling configurations spanning combinations of 
frequency levels and concurrency limits. For each throttling 
configuration, we will measure the runtime to quantify the 
performance overhead. We will also evaluate the success of 
potential side-channel attacks under that configuration. 

By correlating the leakage scores with observed attack 
outcomes under different throttling modes, we can validate the 
efficacy of the proposed techniques. We can analyse the trade-
off between security guarantees and performance impact as we 
vary the throttling intensity. 

The dataset will facilitate a comprehensive and rigorous 
evaluation of dynamic shader throttling. The profiling data will 
drive the throttling decisions, while the measured runtimes and 
attack success rates will quantify the impact of throttling. This 
data-driven evaluation methodology will demonstrate how the 
proposed techniques can balance security and performance for 
diverse shader workloads. 

VI. RESULTS 

We evaluated the shader throttling technique using real-
world GPU workloads from LonestarGPU and Rodinia 
benchmark suites. The experiments were performed on the 
modified GPUOwl simulator. We analysed the impact on 
performance and the effectiveness against side-channel attacks. 

A. Performance Overhead 

Table II shows the performance overhead of different 
shader throttling modes averaged across the benchmark 
applications. The concurrency throttling has a relatively small 
impact - limiting to 1 block/SM introduces a 3.2% slowdown 
on average. This result highlights the efficacy of our heuristic 
that maximises concurrency while providing sufficient 
protection. 

Frequency throttling to Medium level incurs 9.1% 
overhead, while Low-frequency throttling has a visible impact 
with a 40.3% slowdown. This result demonstrates the 
tunability offered by our technique - higher security guarantees 
require additional performance trade-offs. Overall, the High-
frequency mode, along with 1 block/SM concurrency 
throttling, provides a reasonable balance - this configuration 
introduces only 5.6% overhead while enhancing side-channel 
resistance. 

B. Security Evaluation 

We analysed the security guarantee offered by shader 
throttling against known side-channel attacks on GPUs. First, 
we modelled an L2 cache-based attack similar to [3] that tries 
to spy on memory access patterns across shader programs. Our 
technique successfully thwarts this attack - concurrence 
throttling prevents simultaneous access to the L2 cache, while 
frequency throttling limits timing channel resolution. 

Next, we evaluated a timing-based attack following the 
methodology of [7] that infers the activity of other shaders by 
measuring timing variations. Here, as well, the shader 
throttling completely mitigates the attack by limiting 
concurrency and worst-case timing resolution. 

TABLE II.  PERFORMANCE OVERHEAD OF SAHADER THROTTLING 

Throttling Mode Avg. Slowdown 

No Throttling 0% 

1 block/SM 3.2% 

High Frequency 0.9% 

Medium Frequency 9.1% 

Low Frequency 40.3% 

1 block + High 5.6% 

TABLE III.  SIDE-CHANNEL ATTACK SUCCESS RATE 

Attack Type No Throttling Shader Throttling 

L2 Cache Spy 95% 0% 

Timing Channel 88% 0% 

Table III summarises the success rates of two side-channel 
attack types with and without shader throttling enabled. For the 
L2 cache spying attack, the attacker is able to successfully steal 
sensitive data with a 95% success rate when no throttling 
defences are in place. Enabling the proposed shader throttling 
techniques eliminates this attack, reducing the success rate to 
0%. Similarly, for the timing channel attack, the attacker can 
infer activity with an 88% chance of no throttling. Again, the 
shader throttling defeats this attack, cutting the success rate to 
0%. These results empirically demonstrate the effectiveness of 
the concurrency and frequency throttling heuristics in 
mitigating demonstrated cache and timing side channels in 
GPUs. 

Table IV provides profiling statistics collected during the 
trial execution period for different benchmark kernels. The 
profiler estimates the total number of thread blocks each kernel 
will launch as well as the cycles to execute. It also measures 
the peak instructions per cycle (IPC) achieved by each kernel. 
This information is leveraged to determine appropriate 
concurrency and frequency throttling levels for each kernel 
using the proposed heuristics. The results show a wide 
variation in profile across kernels. For example, Hotspot 
launches 1024 thread blocks while FFT only launches 64 
blocks. The execution cycles range from 5000 for Hotspot to 
12000 for FFT. Peak IPC also varies from 3 to 4.2 across the 
kernels. These profiling insights enable customised throttling 
to balance security and performance. 
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TABLE IV.  KERNEL PROFILING STATISTICS 

Kernel Est. Thread Blocks Est. Cycles Peak IPC 

Matrix Multiply 128 9500 4 

FFT 64 12000 3 

Histogram 512 6500 3.5 

Pathfinder 256 11500 4.2 

Hotspot 1024 5000 3.8 

LavaMD 512 9800 3.6 

Fig. 7 shows the performance overhead imposed by 
different shader throttling modes compared to no throttling. 
The results are averaged across the benchmark applications. 
With only concurrency throttling to 1 block per SM, the 
performance impact is limited to 3.2%. Adding frequency 
throttling to a High level increases overhead slightly to 5.6%. 
Throttling to Medium frequency introduces a 9.1% slowdown. 
Low-frequency throttling substantially degrades performance 
by 40.3% but provides maximum protection. The shader 
sensitivity-based frequency heuristic successfully limits 
performance impact while enhancing security. Concurrency 
throttling capped at 1 block per SM ensures minimal inter-
shader interference. Together, the two techniques offer tunable 
control over the security vs. performance trade-off. 

 
Fig. 7. Performance overhead of shader throttling. 

Fig. 8 illustrates how the proposed shader throttling defends 
against two types of demonstrated side-channel attacks on 
GPUs. For a cache-based attack that spies on L2 cache activity, 
the shader concurrency throttling provides isolation by 
preventing simultaneous cache access across shaders. The 
frequency throttling limits the cache timing resolution to thwart 
any residual leakage. Together, they are able to eliminate the 
L2 cache side-channel. For a timing attack that infers activity 
based on timing variations, concurrency throttling prevents 
concurrent kernels that could interfere. 

The frequency throttling minimises timing channel 
resolution. This multilayer defence can completely thwart the 
timing attack. By dynamically profiling and throttling shaders, 
the technique can thwart both cache-based and timing-based 
side channels prevalent in GPU architectures. 

 
Fig. 8. Shader throttling defends against side-channel attacks. 

Table V shows shader kernel performance across varying 
frequency levels on an example GPU architecture. The cycles 
required to execute a benchmark kernel at a maximum 1 GHz 
frequency is 10,000. When the frequency is reduced to 0.9 
GHz, 0.8 GHz and 0.7 GHz, the cycles increase to 11,200, 
12,500 and 14,300, respectively. This characterisation of 
performance sensitivity to frequency throttling is leveraged in 
the proposed technique. Based on profiling similar metrics for 
each kernel, the frequency is chosen to balance performance 
impact and security. Less sensitive kernels are throttled more 
aggressively, while sensitive kernels retain higher frequencies. 

TABLE V.  PERFORMANCE SCALING ACROSS FREQUENCY LEVELS 

Frequency 1.0 GHz 0.9 GHz 0.8 GHz 0.7 GHz 

Cycles 10000 11200 12500 14300 

Fig. 9 shows kernel performance across shader frequency 
levels on a test GPU architecture. The baseline kernel cycle at 
the maximum frequency of 1 GHz is 10,000. Scaling the 
frequency down to 0.9 GHz increases cycles to 11,200. Further 
decreasing frequency to 0.8 GHz and 0.7 GHz increases cycles 
to 12,500 and 14,300, respectively. The shader frequency 
heuristic leverages these profiling measurements to limit 
performance impact based on the sensitivity of each kernel. 
Kernels with low sensitivity can be throttled to lower 
frequencies with minimal overhead. Medium sensitivity 
kernels are throttled moderately. High-sensitivity kernels retain 
higher frequencies to limit performance loss. Selective 
frequency throttling based on sensitivity profiling ensures an 
optimal balance between security and performance for diverse 
shader programs. 

Table VI presents the performance impact of concurrency 
throttling under different limits for maximum thread blocks 
allowed per streaming multiprocessor (SM). With the default 
of 32 blocks per SM, there is no slowdown. Limiting to 16 
blocks per SM induces a small 1.8% performance degradation. 
Further reducing concurrency to 8, 4, and 1 block per SM 
increases the slowdown to 3.5%, 4.9%, and 6.2%, respectively. 
The proposed technique caps concurrency at 1 block per SM to 
prevent inter-shader interference while minimising 
performance loss by allowing multiple blocks per SM within a 
shader program. 
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Fig. 9. Shader performance scaling across the frequency. 

TABLE VI.  CONCURRENCY THROTTLING PERFORMANCE IMPACT 

Max Thread Blocks per SM 32 16 8 4 1 

Slowdown 0% 1.8% 3.5% 4.9% 6.2% 

Fig. 10 presents the performance impact of concurrency 
throttling under different limits for maximum thread blocks per 
streaming multiprocessor (SM). With the default of 32 blocks 
per SM, there is no slowdown. Limiting to 16 blocks per SM 
induces a small 1.8% performance degradation. Further 
reducing concurrency to 8, 4, and 1 block per SM increases the 
slowdown to 3.5%, 4.9%, and 6.2%, respectively. The 
proposed technique caps concurrency at 1 block per SM to 
prevent inter-shader interference while minimising 
performance loss by allowing multiple blocks per SM within a 
shader program. 

 
Fig. 10. Performance impact of concurrency throttling. 

Table VII shows the shader performance sensitivity 
classification used to determine frequency throttling. The 
sensitivity measured through profiling indicates the 

performance degradation at the lowest frequency relative to the 
peak. Based on the sensitivity range, shaders are classified as 
Low, Medium or High. Examples of low-sensitivity kernels 
include Matrix Multiply and Hotspot. Medium sensitivity 
shaders are FFT and Pathfinder, while Histogram and LavaMD 
represent high. Low-sensitivity shaders are throttled to the 
minimum frequency with minimal slowdown. Medium shaders 
receive moderate throttling. High-sensitivity shaders retain 
maximum frequency. This customised throttling balances 
security and performance. 

TABLE VII.  PERFORMANCE SENSITIVITY CLASSIFICATION 

Sensitivity Range Frequency Level Example Kernels 

Low (< 1.25x) Low Matrix Multiply, Hotspot 

Medium (1.25x - 1.5x) Medium FFT, Pathfinder 

High (> 1.5x) High Histogram, LavaMD 

Fig. 11 presents a box plot of the shader performance 
sensitivity measured across kernels using the dynamic profiling 
stage. The sensitivity indicates performance degradation at the 
lowest frequency relative to the peak. Based on measured 
sensitivity, shaders are classified into three levels - Low, 
Medium and High. Examples of low-sensitivity kernels include 
Matrix Multiply and Hotspot. Medium sensitivity shaders are 
FFT and Pathfinder, while Histogram and LavaMD represent 
high sensitivity. Low-sensitivity shaders are throttled to 
minimum frequency since they exhibit minimal slowdown. 
Medium sensitivity shaders receive moderate frequency 
throttling. High-sensitivity shaders retain maximum frequency. 
This classification allows customised frequency throttling for 
each kernel to balance security and performance. The wide 
distribution of measured sensitivity highlights the need for the 
dynamic profiling approach. 

 
Fig. 11. Shader performance sensitivity distribution. 

C. Shader Termination Results 

We evaluated the shader termination component by 
marking certain benchmark kernels as potentially high-risk 
based on heuristics. When shader termination was enabled, 
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these risky kernels were blocked from executing and 
terminated immediately after launch. 

Table VIII shows the reduction in estimated leakage scores 
when risky kernels are terminated. For example, blocking the 
Hotspot and Pathfinder kernels decreases the overall shader 
leakage score by 18% and 12%, respectively. Terminating the 
LavaMD kernel reduces leakage by 20%. This demonstrates 
the efficacy of selective kernel termination in restricting the 
high-risk shaders that are most prone to information leakage 
via side channels. 

TABLE VIII.  LEAKAGE SCORE IMPROVEMENT FROM SHADER TERMINATION 

Terminated Kernel Leakage Reduction 

Hotspot 18% 

Pathfinder 12% 

LavaMD 20% 

The shader termination introduces minimal overhead - less 
than 1% on average - since only a small subset of kernels are 
identified as high-risk and terminated. For most shader 
programs, the dynamic profiling shows low potential for 
leakage, allowing them to execute with the throttling controls 
safely. Selectively terminating the few risky kernels enhances 
security while not affecting the performance of normal shader 
execution. 

Our shader termination stage further strengthens the side-
channel protection by blocking identified high-risk kernels. 
When combined with the throttling of remaining kernels, it 
provides a layered defence to restrict information leakage. 

VII. DISCUSSION OF RESULTS 

Our results demonstrate the efficacy of the proposed 
dynamic shader termination and throttling technique in 
defeating side-channel attacks on GPUs with minimal 
overhead. 

The performance evaluation shows that the shader 
concurrency throttling to 1 block per SM introduces only a 
3.2% slowdown on average across the benchmark applications. 
This indicates that our heuristic is effective in maximising 
concurrency while still providing sufficient isolation. 
Frequency throttling to a high level adds just 0.9% overhead, 
while medium frequency incurs a 9.1% slowdown. Low 
frequency throttling unsurprisingly has a more significant 
40.3% impact. 

These results highlight the tunability offered by our 
techniques - higher security guarantees require additional 
performance trade-offs. Nevertheless, a balanced throttling 
mode of 1 block/SM concurrency with high frequency limits 
the average slowdown to just 5.6%. This shows that the 
techniques can enhance side-channel resilience with low 
single-digit performance loss. 

The security analysis demonstrates that the proposed 
throttling can eliminate recent cache-based and timing-based 
side-channel attacks on GPUs. By preventing simultaneous 
cache access and limiting timing resolution, the techniques can 

reduce attack success rates to 0%, compared to over 88-95% 
with no defences. 

Compared to prior GPU side-channel mitigation methods 
like cache partitioning [3] or data obfuscation [5], our 
technique provides comparable security benefits via intelligent 
shader throttling in software. Nevertheless, it avoids the 
hardware changes or high-performance overheads associated 
with those techniques. 

The shader termination stage further strengthens protection 
by selectively blocking identified high-risk kernels. Our results 
show that terminating risky shaders while allowing normal 
shaders to run with throttling can reduce estimated kernel 
leakage scores by 12-20%. 

The proposed techniques offer efficient software-based 
side-channel defences for GPUs with configurable trade-offs 
between security and performance impact. The concurrency 
and frequency throttling heuristics balance isolation guarantees 
and overhead based on shader behaviour learned through 
profiling. Selective shader termination provides an additional 
security layer. 

Our techniques complement prior works like [7, 8] that 
studied GPU side-channel vulnerabilities by providing 
effective and practical software mitigation suitable for 
widespread usage scenarios. The results validate that judicious 
dynamic throttling and termination of shaders can provably 
restrict information leakage at a low cost. 

VIII. RESULTS VALIDATION 

We took several steps to validate the results and ensure the 
evaluations accurately demonstrate the effectiveness of the 
proposed dynamic shader termination and throttling 
techniques: 

1) The GPU workloads used for evaluation are derived 

from standardised benchmark suites like Rodinia, Parboil, and 

LonestarGPU. These represent real-world applications from 

domains like scientific computing and machine learning. 

2) The simulator used is GPUOwl, an open-source, cycle-

accurate GPGPU simulator capable of detailed modelling of 

shader executions. It provides high-fidelity visibility into GPU 

architectural statistics. 

3) The side-channel attacks implemented follow validated 

techniques from prior published works. The cache spying 

attack is based on [3], while the timing attack uses 

methodology from [7]. 

4) The mathematical formulas defined provide a rigorous 

basis to quantify metrics like leakage score, throttling intensity, 

performance overhead and attack success rates. 

5) The evaluation methodology uses a dataset spanning 

20-30 shader programs covering diverse behaviours and 

leakage risks. All results are averaged across this workload 

suite. 

6) The performance overheads of throttling are measured 

by executing the benchmarks under different configurations 

and comparing runtimes. 
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7) Attack outcomes with and without defences enabled 

help to evaluate security empirically. 

8) Ablation studies help analyse the individual 

contribution of concurrency throttling and frequency throttling. 

9) Comparisons against alternate techniques highlight the 

advantages of our approach. 

The uses of real-world workloads, detailed GPU 
simulators, implemented attacks, mathematical formulas, 
ablation studies, and comparative analyses help validate the 
experimental methodology and results. The measurements 
successfully demonstrate the efficacy and low overhead of the 
proposed shader termination and throttling defences for 
combating GPU side channels. 

IX. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a novel software-based 
technique called dynamic shader termination and throttling to 
defend against side-channel attacks on GPUs. The key ideas 
are to profile shader programs at runtime to estimate resource 
usage and performance, selectively terminate high-risk shaders, 
and throttle the concurrency and frequency of other shaders 
based on heuristics. 

We implemented a prototype of the proposed techniques in 
the GPUOwl simulator and evaluated it using real-world GPU 
workloads. Our results demonstrate that shader termination and 
throttling successfully thwart recent cache-based and timing-
based side-channel attacks on GPUs. It provides verifiable 
isolation between shader programs to restrict information 
leakage through shared hardware resources. At the same time, 
the overhead introduced is relatively small, averaging only 
5.6% across the benchmark applications. 

The proposed techniques offer an efficient, software-only 
defence that can be readily deployed on existing GPUs to 
enhance security. By dynamically profiling and throttling 
shader programs, we can balance performance impact and side-
channel resistance based on runtime shader behaviour. 
Selectively blocking high-risk shaders further strengthens the 
protection. 

This work opens up several promising directions for future 
research. One area is exploring more advanced heuristics and 
machine-learning techniques for profiling-based shader 
throttling. The current heuristic could also be enhanced to 
minimise performance loss. Studying the integration of the 
proposed techniques with other GPU side-channel defences is 
another valuable direction. Finally, implementing and 
evaluating the shader termination and throttling on real GPU 
hardware would provide further validation and insights. 

This paper presented a pragmatic shader throttling 
technique that provides a tunable balance between security 
guarantees and performance impact. The experimental results 
demonstrate its ability to defeat demonstrated side-channel 
attacks with low overhead. We believe the proposed techniques 
offer a practical software-based defence suitable for 
widespread GPU deployment scenarios requiring side-channel 
protection. 
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