
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

767 | P a g e

www.ijacsa.thesai.org

An Efficient Ensemble Algorithm for Boosting

 k-Nearest Neighbors Classification Performance

via Feature Bagging

Huu-Hoa Nguyen

College of Information and Communication Technology, Can Tho University, Vietnam

Abstract—This paper proposes a novel ensemble algorithm

aimed at improving the performance of k-Nearest Neighbors

(KNN) classification by incorporating feature bagging techniques,

which help overcome the inherent limitations of KNN in Big Data

scenarios. The proposed algorithm, termed FBE (Feature

Bagging-based Ensemble), employs an efficient ensemble strategy

with sorted feature subset techniques to reduce the time

complexity from linear to logarithmic. By focusing on essential

features during iterative training and utilizing a binary search in

the testing phase, FBE boosts computational efficiency and

accuracy in high-dimensional and imbalanced datasets. Our study

rigorously evaluates the proposed FBE algorithm against

traditional KNN, Random Forest (RF), and AdaBoost algorithms

across ten benchmark datasets from the UCI Machine Learning

Repository. The experimental results demonstrate that FBE not

only outperforms the conventional KNN and AdaBoost across all

evaluated metrics (accuracy, precision, recall, and F1 score) but

also shows competitive performance compared to RF. Specifically,

FBE exhibits remarkable improvements in datasets characterized

by high dimensionality and class imbalances. The main

contributions of this research include the development of an

adaptive KNN framework that addresses the typical

computational demands and vulnerability to noise in the data,

making it well-suited for large-scale datasets. The ensemble

methodology within FBE also helps reduce overfitting, a common

challenge in standard KNN models, by diversifying the decision-

making process across multiple data subsets. This strategy ensures

robustness and reliability, positioning FBE as a suitable tool for

classification tasks in diverse domains such as healthcare and

image processing.

Keywords—Bagging; ensemble; feature; k-nearest neighbors

I. INTRODUCTION

Machine learning (ML) significantly improves our ability to
analyze large data sets and extract actionable insights in various
sectors, including healthcare and financial services. However,
integrating ML with Big Data presents complex challenges, such
as managing the vast volumes and varieties of data that could
exceed the capabilities of traditional processing methods. These
challenges can complicate the training and fine-tuning of ML
models, impacting their scalability. Furthermore, Big Data can
exacerbate issues like overfitting, where models perform well on
training data but poorly on new data. To overcome these
difficulties, there is a pressing need for advanced algorithms
tailored for large-scale data, as well as techniques for effective
dimensionality reduction and rigorous model validation.

The spectrum of machine learning models is varied, each
designed to meet specific data characteristics and analytical
requirements. Probabilistic models, like Bayesian networks,
excel at managing data uncertainty and variability but require
significant computational resources [1]. Regression models are
essential for predicting continuous variables and provide clear
interpretations, though they may oversimplify complex
relationships [2]. Architectural models, such as neural networks,
excel in pattern recognition and addressing non-linear
challenges, but they require substantial data and computational
resources and often lack clarity in their decision-making
processes [3]. Similarly, distance-based models like the k-
Nearest Neighbors are effective in classification tasks that rely
on proximity measures, yet struggle with high-dimensional data
due to the curse of dimensionality [4]. Each model type offers
unique advantages and limitations, necessitating careful
selection to align with specific goals and constraints.

In this research, we focus on distance/similarity-based ML
models, specifically the k-Nearest Neighbors (KNN) algorithm
[4]. KNN classifies new instances based on the most frequent
class among the closest neighbors within the feature space. This
inherently non-parametric and lazy learning model memorizes
the training data rather than constructing a definitive model,
enabling high adaptability and immediate response to new data.
Despite its simplicity and effectiveness, KNN faces several
challenges. As a lazy learner that retains the entire dataset,
KNN's computational demands increase with the size of the
data, limiting its use in large-scale datasets. The algorithm's
accuracy is also compromised by noisy or irrelevant features that
can distort distance measurements, leading to inaccurate
classifications. Moreover, choosing an optimal number of
neighbors (k) is critical; too few can lead to overfitting, while
too many may cause underfitting. Additionally, KNN struggles
with datasets that exhibit significant class imbalances,
potentially biasing predictions toward majority classes.

Our study explores enhancements to the traditional KNN
approach to address scalability issues, thereby optimizing its
efficiency without compromising accuracy, making it
particularly suitable for Big Data applications. Specifically, this
paper introduces a novel algorithm called FBE (Feature
Bagging-based Ensemble), designed to boost the performance
of KNN classification through feature bagging. This method
significantly reduces the traditional model's time complexity
from linear to logarithmic by sorting data subsets during the
training phase and utilizing an efficient binary search in the
testing phase, making it particularly suitable for Big Data

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

768 | P a g e

www.ijacsa.thesai.org

applications. We rigorously evaluated the proposed FBE
algorithm on ten benchmark datasets from the UCI Machine
Learning Repository. The experimental results demonstrated
significant improvements in classification performance over
traditional KNN and AdaBoost, and were competitive with the
Random Forest classifier. Our comprehensive experiments
highlight FBE's potential for handling complex, imbalanced, or
high-dimensional datasets. The algorithm experimentally excels
across various metrics, including accuracy, precision, recall, and
F1 score, underscoring its robustness and adaptability. Through
detailed evaluation and comparison with standard machine
learning models, FBE has proven its effectiveness and
versatility, addressing a wide range of challenging datasets.

The remainder of this paper is structured as follows.
Section II explores literature surveys and synthesis. Section III
details the proposed algorithm, outlining its methodology and
theoretical underpinnings, whereas Section IV is dedicated to
experimental validation. Finally, Section V concludes the paper
with a summary of our findings and future research.

II. LITERATURE SURVEYS AND SYNTHESIS

In the field of machine learning, particularly with respect to
k-Nearest Neighbors (KNN) algorithms, considerable progress
has been made in addressing the computational challenges
inherent to KNN. This section examines a variety of methods
developed to enhance KNN's performance and efficiency.

Among various strategies to enhance KNN, dimensionality
reduction is particularly impactful. It plays a crucial role in
improving the efficiency of KNN by transforming high-
dimensional data into a more manageable format without
significant information loss. One approach [5] employs an
Extreme Learning Machine (ELM) to simplify complex data
into a more accessible feature space. ELM, a supervised
machine learning method with a single hidden layer, is noted for
its rapid processing capabilities. However, it is also sensitive to
noise and heavily depends on the random selection of weights
and biases, which can limit its effectiveness. Another method [6]
uses Mutual Information (MI) to enhance the efficiency of
dimensionality reduction and employs General Purpose
Graphics Processing Units to parallelize the nearest neighbor
search process. While effective, this method requires additional
hardware resources, which may not be practical in all settings.

To mitigate the resource consumption challenges associated
with kNN, numerous researchers have explored tree-based
solutions as a common strategy. These methods typically
involve selecting a splitting criterion to construct a tree, often a
binary tree, which organizes the dataset in a way that accelerates
the search for the nearest neighbor. Several innovative tree-
based models have been developed, such as the Combi Tree,
which offers adaptive approaches to optimizing KNN.

The Combi Tree, developed from a binary search tree [7],
segments the data points into clusters and uses a hash table to
compress each cluster. These clusters are then combined to form
the Combi Tree. However, this approach operates exclusively

within Hamming space, a high-dimensional space suited for
binary data, making it less effective for other data types or
similarity measures outside this space. Another strategy
constructs a Binary Search Tree (BST) based on the norms of
data points [8]. This involves a partitioning scheme that uses
norms to distribute data points evenly within the BST, although
this method may struggle with skewness in data distributions.

Furthermore, a novel BST method [9] incorporates a scaling
factor to improve search speed, particularly beneficial for
managing large datasets where traditional binary search trees
may be cumbersome and inefficient. This method adjusts the
size of search intervals using the scaling factor as the search
progresses, allowing for a rapid narrowing of the search space
and achieving logarithmic time complexity. However, the
validation of this method has been limited to synthetic data, with
its effectiveness in real-world scenarios yet to be confirmed.

While tree-based methods focus on structural optimizations,
another approach involves refining the data itself through
clustering. One method [10] utilizes the k-means clustering
algorithm to segment the dataset, removing data points that have
minimal impact on accuracy. During the testing phase, this
method determines the cluster to which a given instance belongs
and performs KNN within that specific subset. However, this
pruning technique may not achieve optimal results in scenarios
where the decision boundary is non-linear or the dataset is
inherently noisy.

To further refine this strategy, another study [11] uses
clustering to reduce the number of data points required for each
query. This method introduces a technique of region division to
further limit the search space. It divides the space into several
smaller regions and considers only the data points within the
region containing the query point for the KNN search.
Nevertheless, the clustering can become computationally
demanding with high-dimensional data, restricting the
scalability of these methods as the number of features increases.

Building on the idea of clustering, the KNN Tree method
[12] combines tree-based and clustering strategies to further
enhance efficiency. It constructs a decision tree (DT) up to a
specified depth and then applies KNN to the remaining subset
of the dataset. This hybrid algorithm effectively reduces the
number of samples required for KNN, thereby enhancing the
model's efficiency. Notably, this method surpasses the
performance of both standalone DT and traditional KNN,
showing significant improvements in managing large-scale
datasets.

To contextualize these advancements, Table I compares
these various approaches, underscoring the trade-offs and
enhancements that our algorithm introduces. These comparisons
elucidate the trade-offs involving speed, scalability, noise
sensitivity, and data specificity among the different methods.
Although each method significantly enhances the efficiency of
KNN, they also introduce specific limitations that may affect
their utility depending on application scenarios.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

769 | P a g e

www.ijacsa.thesai.org

TABLE. I. COMPARATIVE ANALYSIS ACROSS VARIOUS RELATED METHODS

Methods Advantage Drawback

ELM based [5] Increases processing speed by simplifying data representation. Sensitive to noise, affecting the robustness of classifications.

Pknn-mifs [6] Speeds up the KNN process through parallel processing. Requires additional hardware resources, increasing costs.

Combi tree [7] Achieves logarithmic complexity, suitable for binary data. Restricted to applications within Hamming space only.

Norm based [8] Effective in environments with uniform data distribution. Limited effectiveness in non-uniform or skewed data sets.

BST based [9] Achieves logarithmic complexity, optimizing search times. Performance primarily validated on synthetic, not real-world, data.

EDP [10] Enhances speed by efficiently pruning unnecessary data. Performance declines with non-linear data scenarios.

SRBC [11] Provides faster execution compared to traditional KNN. Does not scale well with high-dimensional data.

KNNTree [12] Achieves logarithmic time complexity, enhancing efficiency. Performance heavily dependent on correct hyper-parameter tuning.

III. PROPOSED ALGORITHM (FBE)

A. General Idea of FBE

The general idea behind the proposed FBE algorithm is to
transform the computationally expensive KNN into a more
efficient and scalable model by employing the power of
approximation-based sorting and ensemble learning. Below, we
explore the foundational concepts that underpin the FBE.

1) Dimensional selection and data sorting: FBE starts with

the strategic selection and use of data dimensions. For example,

consider a dataset represented in a three-dimensional space, as

illustrated in Fig. 1. Within the FBE framework, dimensions are

selected randomly, such as dimensions D1 and D3 for a specific

iteration. The selection of dimensions is critical as it influences

the subsequent sorting of the dataset. If D3 shows a stronger

correlation with the class labels than D1, it becomes the primary

axis for sorting. This sorting process, illustrated in Fig. 2, is

essential as it reorganizes the dataset to align more closely with

the inherent data structure, thus enabling more efficient

searches during the testing phase.

2) Approximation-based search and ensemble techniques:

FBE uses approximation-based search techniques to reduce the

time complexity traditionally associated with KNN, typically

where n is the number of instances and d is the dimensionality

of the data. By sorting the data according to selected

dimensions that show a consistent relationship with the target

variable, the algorithm paves the way for a binary search. This

search method significantly reduces the search space from

linear to logarithmic time complexity, making it feasible to

handle large datasets effectively.

The integration of ensemble techniques further enhances the
FBE algorithm. By repeating the selection and sorting process
multiple times, each with potentially different dimensions, the
algorithm creates a diverse set of data views, each organized
according to the most informative feature of that iteration. This
ensemble of sorted subsets not only reduces the risk of bias in
the model but also improves overall accuracy through collective
decision-making during the testing phase.

3) Synergistic benefits: The synergy between sorted subset

selection and ensemble strategies results in a robust algorithm

that not only increases computational efficiency but also

sustains, if not improves, classification effectiveness. The

ensemble approach reduces variance and potential overfitting

by integrating multiple independent evaluations of nearest

neighbors, each from slightly different perspectives of the data.

As a result, FBE presents a compelling alternative to

conventional KNN, especially in scenarios involving large-

scale datasets with complex, non-linear relationships among

features.

Fig. 1. Data points in three dimensions

Fig. 2. Data points in randomly selected two dimensions

B. FBE in Training Phase

The training phase of FBE is methodically outlined in
Algorithm 1 and consists of three primary steps, as follows.

1) Step 1: Initialization: The algorithm begins by

initializing an empty set
FS which will eventually store subsets

of the training data alongside their corresponding sorting

features. This set plays a pivotal role in the ensemble strategy,

facilitating a diverse array of simplified datasets for efficient

neighbor searches during the testing phase.

2) Step 2: Iterative processing: The core of Algorithm 1

operates over m iterations, reflecting the ensemble nature of

FBE. Each iteration is designed to create a unique subset of the

data, focusing on different features to capture various

characteristics of the data:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

770 | P a g e

www.ijacsa.thesai.org

 Feature Selection: In each iteration, a subset of features,

X , is randomly selected from the feature set X. This
randomness introduces diversity in the features
considered across different iterations, which is
fundamental to the ensemble approach.

 Best Feature Determination: For each selected feature a,
its mutual information with the target labels y is
calculated. Mutual information, denoted as MI(a,y),
measures the amount of information one variable
contains about another, thus helping to identify the most
predictive features. Mathematically, MI is defined as:

(,)
(,) (,) log

() ()y Y x X

p x y
MI X Y p x y

p x p y

,

where p(x,y) is the joint probability distribution of X and Y,
and p(x) and p(y) are the marginal distributions of X and Y,
respectively.

 The feature a with the highest MI value is selected as the
best feature b. This feature is considered the most
effective at classifying data points for that iteration,
guiding the sorting process.

3) Step 3: Sorting and storing

 Once the best feature b is identified, the subset of the data

tX , corresponding to X , along with the labels
ty , are

sorted based on b. This sorting is pivotal as it rearranges
the data points so that similar values (and thus potentially
similar classes) are positioned closer together, drastically
enhancing the efficiency of neighbor searches in high-
dimensional spaces.

The sorted subset along with its metadata (features used and
the best feature) is encapsulated into a tuple

 , , ,t tval X y X b and added
FS . Each tuple in

FS

represents a different “view” or “model” of the dataset,
optimized for quick searching within the framework of the
proposed ensemble method.

By the end of m iterations,
FS contains multiple sorted

versions of subsets of the training set, each optimized differently
based on the selected features. This setup allows the FBE
algorithm during the testing phase to quickly locate the nearest
neighbors by leveraging the pre-processed, efficiently sorted
data structures, greatly reducing computational overhead and
time complexity compared to traditional KNN approaches.

In essence, Algorithm 1 lays the foundational work for FBE,
ensuring that the ensemble method not only maintains high
classification performance but also addresses the scalability
issues often associated with KNN, particularly in large datasets.

Algorithm 1: FBE in the training phase

Input:

 : Set of feature vectors

 : Corresponding labels

 k: Number of nearest neighbors

 m: Number of iterations for ensemble

 g: Grace parameter

Output:

 : Set of sorted features and associated metadata

Procedure:

1. Initialize the sorted feature set to an empty set.

2. For each iteration 𝑖 from 1 to 𝑚:

 Select a subset of features randomly from X.

 Initialize the best feature b to none and the maximum mutual information Max_MI to -1.

 For each feature 𝑎 in :

 Compute the mutual information MI between a and y.

 If MI is greater than Max_MI:

- Update Max_MI with MI.

- Set the best feature b to a.

 Select the subset of X corresponding to as and set .

 Sort and based on the values of the best feature b.

 Create a tuple and add it to

3. Return

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

771 | P a g e

www.ijacsa.thesai.org

C. FBE in Testing Phase

The testing phase of FBE is methodically described in
Algorithm 2. This representation of Algorithm 2 aligns with
Algorithm 1 by directly utilizing the sorted subsets generated

during the training phase, ensuring that the ensemble method
efficiently employs the preprocessed data to enhance prediction
accuracy and computational efficiency. This testing phase
comprises four primary tasks, as follows.

1) Initialization and prediction collection

 The algorithm begins by initializing an empty list of
predictions, P, designed to collect the outcomes from
each iteration. This facilitates an ensemble approach
where multiple predictions are aggregated to determine

the most likely class for a given testing instance,
iX .

 The ensemble method employed here ensures robustness
in the predictions by averaging out biases that may be
present in any single sorted subset of the training data.

2) Iterative binary search on sorted subsets

 For each iteration within the predefined number of
ensemble iterations m, the algorithm processes through
subsets of data that were sorted and stored during the
training phase. These subsets are indexed from the

Algorithm 2: FBE in the testing phase

Input:

 : A given testing data point.

Output:

 : Predicted class label for the testing data point .

Procedure:

1. Initialize an empty list of predictions P to store the predicted labels from each iteration.

2. For each iteration 𝑖 from 1 to 𝑚 (as set in the training phase):

 Set initial search bounds low = 1 and high = n, where n is the total number of data points in

the data subset.

 Extract the sorted subset of features and the corresponding labels from the sorted

feature set prepared in the training phase:

 Determine the index in that best matches based on , using binary search:

 While low < high:

- Compute mid = low + (high – low)/2.

- If then set low = mid + 1,

else set high = mid – 1.

 After locating the nearest region, define the search interval within the sorted data:

 left = max (0, low – k – g)

 right = min (n, low + k + g)

 Use traditional KNN to predict the class label from the subset and

, and add the result to predictions P.

3. After all iterations, determine the majority class label from P and return it as .

Legend:

- k: Number of nearest neighbors (defined in training phase).

- g: Grace parameter (defined in training phase).

- : Sorted feature set, containing tuples of sorted feature subsets and their corresponding labels

from the training phase.

- m: Number of ensemble iterations, aligning with the number of sorted subsets in .

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

772 | P a g e

www.ijacsa.thesai.org

structured set
FS , which contains key information such

as the subset of features, the corresponding labels, and
the feature that demonstrated the highest mutual
information with the outcome during the training phase.

 The core of the testing phase is a binary search on the
selected subset using the best feature b identified during
training. This guides the search to efficiently locate the
segment of the dataset where the testing instance might
belong, based on feature similarity.

 The binary search algorithm adjusts the low and high

pointers based on comparisons between []iX X and the

mid-point value of []tX X . This method drastically

reduces the number of comparisons needed to locate the
nearest region in the dataset from which the neighbors
are selected.

3) Local nearest neighbor determination

 Once the approximate location of
iX is pinpointed in the

sorted array, a local neighborhood is defined around this
point. The size of this neighborhood is adjusted by the
parameters k and g, where k denotes the number of
nearest neighbors typically considered in KNN, and g
allows for an expanded search buffer to mitigate the risk
of missing potential nearest neighbors due to boundary
effects or sparse regions within the dataset.

 Traditional KNN is then applied within this localized
segment of the dataset to predict the class based on the
majority vote among the k-nearest neighbors found in
this region. This ensures the fundamental KNN principle
of classifying based on the nearest data points is
preserved, even within the ensemble method.

4) Aggregation and final prediction

 After cycling through all iterations, the predictions from
each subset are aggregated to determine the final class

label for
iX . The aggregation method typically involves

selecting the majority class from the list of predictions,
using the ensemble's diversity to provide a more accurate
and stable prediction.

 This majority voting system across different predictive
models reduces variance and improves the reliability of
the classification, particularly in cases where individual
models might have biases or perform poorly under
specific data conditions.

In essence, Algorithm 2 enhances the traditional KNN
approach by integrating an efficient binary search within
strategically preprocessed subsets and utilizing an ensemble
methodology to derive robust and accurate predictions. This
approach not only speeds up the classification process
significantly by reducing the number of distance calculations
typically required in KNN but also leverages the diversity of
multiple models to improve overall prediction accuracy. The
combination of these strategies makes FBE particularly suitable
for large-scale datasets where traditional KNN might struggle
with scalability and performance.

D. Complexity Analysis of the FBE Algorithm

Understanding the computational complexity of FBE is
essential for evaluating its efficiency, especially when compared
to traditional KNN-based methods. This section examines the
complexity of both the training and testing phases of the FBE,
highlighting the improvements made by incorporating sorted
subsets and ensemble techniques.

1) Complexity analysis of FBE in the training phase: The

training phase of FBE involves selecting subsets of features,

computing mutual information (MI) to identify the most

informative features, and sorting these subsets for efficient

search during testing. Let n be the number of instances, d the

number of dimensions, k the number of nearest neighbors, m

the number of iterations, and g the grace parameter.

 Feature selection and mutual information calculation:

During each iteration, a subset of features is selected
randomly, which introduces variability but also necessitates a
reassessment of the data structure for each subset. The mutual
information calculation, which helps in selecting the best feature

for sorting, typically has a complexity of ()O n per feature.

Considering that any or all features could be involved in the

worst case, the complexity for this step is (.)O n d .

 Sorting:

After identifying the best feature, the subset is sorted based
on this feature. Sorting a list of n elements generally consumes

(log)O n n time. Since this is done for each dimensionally

reduced subset (effectively each feature in the worst case), the

complexity becomes (log)O nd n .

 Overall complexity in the training phase:

Combining these factors, the complexity for each iteration is

(log)O nd nd n , which simplifies to (log)O nd n . Across m

iterations, this results in a total complexity of (log)O mnd n ,

representing a significant computational requirement but still
more manageable than exhaustive pairwise comparisons across
all features and instances.

2) Complexity analysis of FBE in the testing phase: The

testing phase utilizes the pre-sorted subsets and a binary search

mechanism to quickly locate potential nearest neighbors,

significantly reducing the time required for each query.

 Binary search:

Binary search on a sorted subset has a complexity of

(log)O n , which is independent of the dimensionality d because

the search is confined to the sorted dimension identified during
the training phase.

 Local KNN computation:

Once the approximate location of the test instance is
determined, a localized KNN search is performed within a
segment defined by k and g. The computational cost for this
localized search depends on the size of the segment but remains
less than searching the entire dataset. The complexity for this

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

773 | P a g e

www.ijacsa.thesai.org

step is approximated as 2()O kd dg k kg , which simplifies

to 2()O k in practical scenarios where k is much smaller than n.

 Overall complexity in the testing phase:

The combined complexity of the testing phase for m

iterations is 2((log)).O m n k This highlights a substantial

efficiency over methods that require full dataset scans.

3) Space complexity analysis of FBE: The space

complexity of FBE is primarily determined by the storage

required for the sorted subsets and their associated metadata.

For m iterations, storing each subset and its features requires

()O mnd space, slightly higher than traditional KNN but

justified by the significant gains in query time performance.

In summary, the FBE algorithm presents a well-optimized

approach to KNN, with (log)O mnd n time complexity for

training and 2((log))O m n k for testing. These improvements

make FBE particularly suitable for large-scale datasets where
the balance between accuracy, computational speed, and
resource utilization is crucial. The algorithm effectively utilizes
the strengths of ensemble methods and sorted data structures to
enhance the scalability of nearest neighbor searches.

IV. EXPERIMENTAL VALIDATION

A. Dataset Descriptions

To evaluate the effectiveness of FBE, a comprehensive
selection of ten benchmark datasets was chosen, emphasizing
the diversity and complexity inherent in real-world data. These
datasets, predominantly sourced from the UCI Machine
Learning Repository, are particularly suited to demonstrating
the robust capabilities of FBE due to their varied challenges and
characteristics.

Among the datasets selected, five are centered on medical
applications, a domain where data complexity and the need for
precision and reliability are crucial. These datasets include ECG,
Diabetes, Lymphography, Fertility, and Breast Cancer, each
presenting unique challenges due to their imbalance and the
nature of the outcomes they seek to predict. For instance, the
ECG dataset, with its extensive feature set, tests the algorithm’s
ability to handle large-scale data under circumstances where
accuracy in predicting heart conditions can be lifesaving. On the
other hand, datasets like Diabetes and Breast Cancer require the
model to manage imbalanced data, where the prevalence of one
class over another could bias the learning process, potentially
leading to inaccurate diagnoses. Further complexity is
introduced with the inclusion of datasets such as MNIST, which
differ significantly in terms of dimensionality and class
structure. The MNIST dataset, with its high-dimensional space
composed of handwritten digit images, challenges the model to
efficiently process and classify complex visual patterns.
Additionally, the selection of datasets with smaller sample sizes
mirrors typical scenarios where high-performance classification
must be achieved despite limited data availability.

Details of the selected datasets, including specific features
and class distributions, are meticulously catalogued in Table II.
This table serves as a reference point for understanding the

diverse data challenges that FBE is engineered to tackle,
illustrating the algorithm's broad applicability and robust
performance across a variety of complex scenarios.

B. Experimental Setup

1) Computational tools: The experiments were conducted

on a Linux Fedora 32 operating system, using an Intel Core i7-

4790 CPU at 3.6 GHz and equipped with 32 GB of RAM. This

configuration, akin to a high-end personal computing setup,

provides a stable and balanced environment suitable for both

the development and evaluation phases.

TABLE. II. DATASETS USED FOR EXPERIMENTS

ID. Dataset Name Instance Feature Class

1 Breast Cancer 569 30 2

2 Lymphography 148 18 4

3 Fertility 100 8 2

4 ECG 109,446 187 5

5 Diabetes 768 8 2

6 Iris 150 4 3

7 Spambase 110,201 4 2

8 MNIST 70,000 784 10

9 Glass 214 9 6

10 Magic 19,020 10 2

Python was chosen as the primary programming language
due to its extensive support for machine learning. Key Python
libraries utilized in the setup include:

 Numpy: Facilitates efficient numerical computations
with support for large, multi-dimensional arrays and
matrices. This library is crucial for performance
optimization in data-intensive applications.

 Pandas: Offers powerful data manipulation capabilities
that simplify data cleaning, transformation, and analysis,
essential for preparing datasets for machine learning.

 Scikit-Learn: Provides a wide array of machine learning
algorithms and tools, making it indispensable for model
training, evaluation, and comparison.

2) Model benchmarking and parameter setting: To

contextualize FBE's performance, it was benchmarked against

three well-regarded classifiers: k-Nearest Neighbors (KNN),

Random Forest (RF), and AdaBoost. These classifiers were

selected due to their popularity and proven track records in both

academic and industrial settings, serving as a robust baseline

for comparison. The parameter configurations for the

experiments were carefully chosen to balance between model

complexity and predictive performance:

 KNN and FBE: Configured with three nearest neighbors
(k=3), a standard setting for KNN that offers a balance
between underfitting and overfitting. For FBE,
additional parameters included three iterations (m=3) to
test the ensemble effect and a grace parameter (g=0) to
evaluate its impact on model sensitivity and specificity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

774 | P a g e

www.ijacsa.thesai.org

 Random Forest: Utilized 100 fully grown decision trees
to maximize the ensemble effect, enhancing the model's
ability to generalize across different datasets.

 AdaBoost: Similar to RF in the number of decision trees
but with trees pruned at level one to focus on reducing
overfitting, enhancing the model's generalizability.

3) Performance evaluation metrics: Comprehensive

metrics were selected to evaluate the performance of the models

under test comprehensively:

 Accuracy: Provides a general measure of model
correctness across all classes, useful for initial
assessments of model efficacy.

 Precision: Critical for applications where the cost of a
false positive is significant, helping to measure the
reliability of the positive predictions.

 Recall: Especially important in medical or financial
applications where failing to detect positives can have
serious consequences, it measures the model’s ability to
capture all relevant instances.

 F1 Score: Combines precision and recall into a single
metric that quantifies a model’s accuracy at identifying
only relevant instances, which is crucial for evaluating
performance in imbalanced datasets.

4) Evaluation protocols: To ensure a thorough evaluation

of FBE and to benchmark its performance against conventional

models, we employ a robust cross-validation methodology.

Specifically, the data is split in a 7:3 ratio, with 70% used for

training the models and the remaining 30% dedicated to testing.

This widely accepted split ratio allows for substantial training

data while providing enough test data to assess model

generalization effectively. Furthermore, the cross-validation

process is repeated 10 times to ensure the reliability and

stability of the performance metrics. Each iteration randomly

redistributes the data according to the 7:3 training-to-testing

ratio, minimizing bias and variability in the evaluation. The

performance metrics are calculated for each run, and the results

are then averaged across all 10 iterations to produce a final

performance measure.

C. Performance Analysis and Comparisons

The experimental results are thoroughly detailed in Tables
III and IV. Visual representations of these results are presented
in Fig. 3 and 4.

Table III and Fig. 3 show that FBE consistently achieves
high accuracy across all tested datasets, with standout
performances on datasets like Iris (97%), Fertility (95%), and
MNIST (80%). These results indicate a strong ability of FBE to
handle both simple and complex data structures. On average,
FBE achieves an accuracy of 87%, which is 7% higher than
KNN and 11% higher than AdaBoost, and closely trails RF by
only 1%. This demonstrates that FBE provides a robust
alternative to more established models, particularly in handling
varied data types effectively.

TABLE. III. ACCURACY AND F1 SCORE PERFORMANCE OF COMPARED MODELS ON VARIOUS DATASETS

ID. Dataset
Accuracy F1 Score

AdaBoost KNN RF FBE AdaBoost KNN RF FBE

1 Breast Cancer 0.96 0.94 0.96 0.94 0.95 0.90 0.94 0.93

2 Lymphography 0.66 0.76 0.84 0.86 0.62 0.72 0.74 0.86

3 Fertility 0.80 0.85 0.88 0.95 0.56 0.59 0.64 0.49

4 ECG 0.86 0.96 0.97 0.91 0.51 0.87 0.87 0.54

5 Diabetes 0.76 0.69 0.76 0.79 0.73 0.66 0.72 0.77

6 Iris 0.94 0.95 0.96 0.97 0.93 0.94 0.95 0.97

7 Spambase 0.94 0.81 0.96 0.90 0.92 0.80 0.95 0.90

8 MNIST 0.35 0.55 0.75 0.80 0.29 0.46 0.44 0.66

9 Glass 0.49 0.70 0.80 0.77 0.35 0.61 0.69 0.78

10 Magic 0.84 0.80 0.88 0.85 0.82 0.76 0.87 0.66

Average 0.76 0.80 0.88 0.87 0.67 0.73 0.78 0.76

Fig. 3. Accuracy and F1 Score performance of compared models across various datasets

0% 20% 40% 60% 80% 100%

Breast Cancer

Lymphography

Fertility

ECG

Diabetes

Iris

Spambase

MNIST

Glass

Magic

Average

Accuracy

FBE RF KNN AdaBoost

0% 20% 40% 60% 80% 100%

Breast Cancer

Lymphography

Fertility

ECG

Diabetes

Iris

Spambase

MNIST

Glass

Magic

Average

F1 Score

FBE RF KNN AdaBoost

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

775 | P a g e

www.ijacsa.thesai.org

These tables and figures also illustrate how the F1 Score
highlights FBE's balanced performance in precision and recall.
Notably, FBE achieves a score of 78% on the Glass dataset,
significantly outperforming AdaBoost’s 35% and KNN’s 61%.
On the Iris dataset, it attains an impressive 97%. These results
underscore the model's effectiveness in scenarios where
balancing false positives and false negatives is crucial. With an
average F1 score of 76%, FBE surpasses both KNN and
AdaBoost, demonstrating its superior ability to harmonize recall
and precision across diverse applications.

In terms of precision, as outlined in Table IV and Fig. 4, FBE
shows exemplary results, especially in datasets like Iris (97%)
and Fertility (95%), where accuracy in the positive predictive
value is critical. FBE’s average precision across all datasets
stands at 86%, higher than both AdaBoost and KNN,
underscoring its reliability in classifying instances correctly.

For the recall metric, Table IV and Fig. 4 reveal FBE's
strength in sensitivity, particularly notable in datasets like ECG
(85%) and Glass (79%). It maintains an average recall of 79%,
indicating its effectiveness in identifying all relevant instances

across varied datasets. This capability is crucial for applications
where missing an instance can have significant repercussions.

The comparative analysis reveals that FBE not only
competes closely with, but in many cases outperforms,
traditional models. This is particularly evident in its consistent
superiority over AdaBoost and frequent outperformance of
KNN. While RF often shows slightly higher metrics, the gap is
marginal, suggesting that FBE can offer comparable
performance with added benefits of efficiency in processing and
model simplicity.

FBE's effectiveness can be attributed to its innovative
approach in handling datasets. By focusing on the most
informative features through its sorted subset and ensemble
methods, it reduces the impact of noisy or irrelevant features that
typically affect KNN algorithms. This feature prioritization not
only enhances accuracy but also improves the model's ability to
generalize across different data types, avoiding the overfitting
commonly seen in traditional models.

TABLE. IV. PRECISION AND RECALL PERFORMANCE OF COMPARED MODELS ON VARIOUS DATASETS

ID. Dataset
Precision Recall

AdaBoost KNN RF FBE AdaBoost KNN RF FBE

1 Breast Cancer 0.95 0.92 0.95 0.94 0.95 0.91 0.94 0.94

2 Lymphography 0.66 0.75 0.85 0.86 0.63 0.72 0.75 0.84

3 Fertility 0.78 0.87 0.88 0.95 0.56 0.62 0.65 0.48

4 ECG 0.85 0.96 0.97 0.91 0.52 0.83 0.80 0.85

5 Diabetes 0.76 0.70 0.77 0.79 0.71 0.65 0.73 0.76

6 Iris 0.94 0.95 0.95 0.97 0.92 0.95 0.95 0.97

7 Spambase 0.94 0.81 0.96 0.90 0.92 0.80 0.93 0.90

8 MNIST 0.30 0.45 0.44 0.66 0.42 0.50 0.45 0.74

9 Glass 0.48 0.69 0.80 0.77 0.41 0.61 0.69 0.79

10 Magic 0.84 0.81 0.87 0.85 0.82 0.76 0.86 0.63

Average 0.75 0.79 0.84 0.86 0.69 0.74 0.78 0.79

Fig. 4. Precision and Recall performance of compared models across various datasets

0% 20% 40% 60% 80% 100%

Breast Cancer

Lymphography

Fertility

ECG

Diabetes

Iris

Spambase

MNIST

Glass

Magic

Average

Precision

FBE RF KNN AdaBoost

0% 20% 40% 60% 80% 100%

Breast Cancer

Lymphography

Fertility

ECG

Diabetes

Iris

Spambase

MNIST

Glass

Magic

Average

Recall

FBE RF KNN AdaBoost

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

776 | P a g e

www.ijacsa.thesai.org

The reasons behind FBE’s enhanced performance are
manifold:

 Ensemble advantage: FBE uses multiple sorted subsets,
reducing variance and improving reliability through
ensemble averaging. This approach mitigates the impact
of outlier data points and feature noise, which can
significantly affect models like KNN and AdaBoost.

 Feature selection: By iteratively focusing on the most
informative features, FBE minimizes the challenges of
dimensionality and irrelevant feature noise, a frequent
issue in high-dimensional datasets like MNIST.

In summary, the detailed results highlight the high potential
of FBE for handling high-dimensional or imbalanced data. Its
performance across all metrics demonstrates both robustness
and adaptability in addressing various classification challenges.
The comprehensive evaluation of FBE against standard models
reveals its effectiveness and versatility across diverse datasets.
Its systematic feature selection and use of ensemble methods
enhance its accuracy and reliability in complex classification
tasks, spanning fields from healthcare to image processing.

V. CONCLUSION AND FUTURE DIRECTIONS

In this research, we have introduced a robust ensemble
algorithm aimed at enhancing the performance of k-nearest
neighbors classification through the innovative use of feature
bagging. Our method involves selecting a subset of features,
determining the most informative feature within this subset
using the mutual information metric, and utilizing this feature to
sort the data subset. This sorting facilitates an efficient binary
search during the testing phase to quickly locate approximate
nearest neighbors, and the process is iterated multiple times to
improve classification performance and reliability. The
proposed algorithm also undergoes a rigorous complexity
analysis in both the training and testing phases. This analysis
confirms that our approach not only improves performance
metrics but does so with a significant reduction in computational
overhead, moving from linear to logarithmic complexity.

Our experimental validation shows that the proposed
algorithm significantly outperforms traditional k-nearest
neighbors and AdaBoost in terms of accuracy, precision, recall,
and F1 score across various datasets, including those with high-
dimensional and imbalanced data. Notably, our approach shows
marked improvement on datasets like MNIST, where traditional
k-nearest neighbors typically struggle due to the curse of
dimensionality and noise sensitivity. The ensemble algorithm
consistently achieves higher accuracy rates, often exceeding the
performance of the Random Forest in specific scenarios,
particularly with imbalanced datasets.

Future research will expand the robustness studies of our
algorithm across a broader range of datasets, especially
exploring its performance under extreme conditions of data
distribution and class imbalance. This research paves the way
for future studies to explore hybrid approaches that combine
feature bagging with other machine learning techniques to
further enhance classification performance and computational
efficiency.

ACKNOWLEDGMENT

This work has been supported by the College of Information
Technology and Communication (CICT) at Can Tho University.
We extend our heartfelt thanks to the Big Data and Mobile
Computing Laboratory of CICT for their invaluable assistance.
Additionally, we received support from the European Union's
Horizon research and innovation program under the MSCA-SE
(Marie Skłodowska-Curie Actions Staff Exchange) grant
agreement 101086252; Call: HORIZON-MSCA-2021-SE-01;
Project title: STARWARS (Stormwater and Wastewater
Networks Heterogeneous Data AI-Driven Management).

REFERENCES

[1] M. Magris and A. Iosifidis, “Bayesian learning for neural networks: an
algorithmic survey”, Artificial Intelligence Review, 56.10 (2023): 11773-
11823, 2023.

[2] I.H. Sarker, “Machine learning: Algorithms, real-world applications and
research directions”, Springer Nature Computer Science, 2.3 (2021): 160,
2021.

[3] Y. Eren and I. Kucukdemiral, “A comprehensive review on deep learning
approaches for short-term load forecasting”, Renewable and Sustainable
Energy Reviews, 189 (2024): 114031, 2024.

[4] P. Cunningham and S.J. Delany, “k-nearest neighbour classifiers - a
tutorial”, ACM Computing Surveys (CSUR), 54.6, pp. 1-25, 2021.

[5] A. Shokrzade, M. Ramezani, F.A. Tab and M.A. Mohammad, “A novel
extreme learning machine based knn classification method for dealing
with big data”, Expert Systems with Applications, 183, 115293 (2021).

[6] S. Shekhar, N. Hoque and D.K. Bhattacharyya, “Pknn-mifs: A parallel
knn classifier over an optimal subset of features”, Intelligent Systems with
Applications, 14, 200073 (2022).

[7] P. Gupta, A. Jindal, Jayadeva and S. Debarka, “Combi: Compressed
binary search tree for approximate k-nn searches in hamming space”, Big
Data Research, 25, 100223 (2021).

[8] A.B. Hassanat, “Norm-based binary search trees for speeding up knn big
data classification”, Computers, 7(4), 54 (2018).

[9] P. Pappula, “A novel binary search tree method to find an item using
scaling”, International Arab Journal of Information Technology, 19(5),
pp. 713-720, 2022.

[10] H. Saadatfar, S. Khosravi, J.H. Joloudari, A. Mosavi, S. Shamshirband,
“A new k-nearest neighbors classifier for big data based on efficient data
pruning”, Mathe- matics 8(2), 286, 2020.

[11] H. Wang, P. Xu and J. Zhao, “Improved knn algorithms of spherical
regions based on clustering and region division”, Alexandria Engineering
Journal 61(5), pp. 3571–3585, 2022.

[12] N. Islam, M. Fatema-Tuj-Jahra, M.T. Hasan and D.M. Farid, “Knntree: A
new method to ameliorate k-nearest neighbour classification using
decision tree”, In International Conference on Electrical, Computer and
Communication Engineering (ECCE), pp. 1–6, IEEE, 2023.

