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Abstract—This paper proposes a novel ensemble algorithm 

aimed at improving the performance of k-Nearest Neighbors 

(KNN) classification by incorporating feature bagging techniques, 

which help overcome the inherent limitations of KNN in Big Data 

scenarios. The proposed algorithm, termed FBE (Feature 

Bagging-based Ensemble), employs an efficient ensemble strategy 

with sorted feature subset techniques to reduce the time 

complexity from linear to logarithmic. By focusing on essential 

features during iterative training and utilizing a binary search in 

the testing phase, FBE boosts computational efficiency and 

accuracy in high-dimensional and imbalanced datasets. Our study 

rigorously evaluates the proposed FBE algorithm against 

traditional KNN, Random Forest (RF), and AdaBoost algorithms 

across ten benchmark datasets from the UCI Machine Learning 

Repository. The experimental results demonstrate that FBE not 

only outperforms the conventional KNN and AdaBoost across all 

evaluated metrics (accuracy, precision, recall, and F1 score) but 

also shows competitive performance compared to RF. Specifically, 

FBE exhibits remarkable improvements in datasets characterized 

by high dimensionality and class imbalances. The main 

contributions of this research include the development of an 

adaptive KNN framework that addresses the typical 

computational demands and vulnerability to noise in the data, 

making it well-suited for large-scale datasets. The ensemble 

methodology within FBE also helps reduce overfitting, a common 

challenge in standard KNN models, by diversifying the decision-

making process across multiple data subsets. This strategy ensures 

robustness and reliability, positioning FBE as a suitable tool for 

classification tasks in diverse domains such as healthcare and 

image processing. 
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I. INTRODUCTION 

Machine learning (ML) significantly improves our ability to 
analyze large data sets and extract actionable insights in various 
sectors, including healthcare and financial services. However, 
integrating ML with Big Data presents complex challenges, such 
as managing the vast volumes and varieties of data that could 
exceed the capabilities of traditional processing methods. These 
challenges can complicate the training and fine-tuning of ML 
models, impacting their scalability. Furthermore, Big Data can 
exacerbate issues like overfitting, where models perform well on 
training data but poorly on new data. To overcome these 
difficulties, there is a pressing need for advanced algorithms 
tailored for large-scale data, as well as techniques for effective 
dimensionality reduction and rigorous model validation. 

The spectrum of machine learning models is varied, each 
designed to meet specific data characteristics and analytical 
requirements. Probabilistic models, like Bayesian networks, 
excel at managing data uncertainty and variability but require 
significant computational resources [1]. Regression models are 
essential for predicting continuous variables and provide clear 
interpretations, though they may oversimplify complex 
relationships [2]. Architectural models, such as neural networks, 
excel in pattern recognition and addressing non-linear 
challenges, but they require substantial data and computational 
resources and often lack clarity in their decision-making 
processes [3]. Similarly, distance-based models like the k-
Nearest Neighbors are effective in classification tasks that rely 
on proximity measures, yet struggle with high-dimensional data 
due to the curse of dimensionality [4]. Each model type offers 
unique advantages and limitations, necessitating careful 
selection to align with specific goals and constraints. 

In this research, we focus on distance/similarity-based ML 
models, specifically the k-Nearest Neighbors (KNN) algorithm 
[4]. KNN classifies new instances based on the most frequent 
class among the closest neighbors within the feature space. This 
inherently non-parametric and lazy learning model memorizes 
the training data rather than constructing a definitive model, 
enabling high adaptability and immediate response to new data. 
Despite its simplicity and effectiveness, KNN faces several 
challenges. As a lazy learner that retains the entire dataset, 
KNN's computational demands increase with the size of the 
data, limiting its use in large-scale datasets. The algorithm's 
accuracy is also compromised by noisy or irrelevant features that 
can distort distance measurements, leading to inaccurate 
classifications. Moreover, choosing an optimal number of 
neighbors (k) is critical; too few can lead to overfitting, while 
too many may cause underfitting. Additionally, KNN struggles 
with datasets that exhibit significant class imbalances, 
potentially biasing predictions toward majority classes. 

Our study explores enhancements to the traditional KNN 
approach to address scalability issues, thereby optimizing its 
efficiency without compromising accuracy, making it 
particularly suitable for Big Data applications. Specifically, this 
paper introduces a novel algorithm called FBE (Feature 
Bagging-based Ensemble), designed to boost the performance 
of KNN classification through feature bagging. This method 
significantly reduces the traditional model's time complexity 
from linear to logarithmic by sorting data subsets during the 
training phase and utilizing an efficient binary search in the 
testing phase, making it particularly suitable for Big Data 
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applications. We rigorously evaluated the proposed FBE 
algorithm on ten benchmark datasets from the UCI Machine 
Learning Repository. The experimental results demonstrated 
significant improvements in classification performance over 
traditional KNN and AdaBoost, and were competitive with the 
Random Forest classifier. Our comprehensive experiments 
highlight FBE's potential for handling complex, imbalanced, or 
high-dimensional datasets. The algorithm experimentally excels 
across various metrics, including accuracy, precision, recall, and 
F1 score, underscoring its robustness and adaptability. Through 
detailed evaluation and comparison with standard machine 
learning models, FBE has proven its effectiveness and 
versatility, addressing a wide range of challenging datasets. 

The remainder of this paper is structured as follows. 
Section II explores literature surveys and synthesis. Section III 
details the proposed algorithm, outlining its methodology and 
theoretical underpinnings, whereas Section IV is dedicated to 
experimental validation. Finally, Section V concludes the paper 
with a summary of our findings and future research. 

II. LITERATURE SURVEYS AND SYNTHESIS 

In the field of machine learning, particularly with respect to 
k-Nearest Neighbors (KNN) algorithms, considerable progress 
has been made in addressing the computational challenges 
inherent to KNN. This section examines a variety of methods 
developed to enhance KNN's performance and efficiency. 

Among various strategies to enhance KNN, dimensionality 
reduction is particularly impactful. It plays a crucial role in 
improving the efficiency of KNN by transforming high-
dimensional data into a more manageable format without 
significant information loss. One approach [5] employs an 
Extreme Learning Machine (ELM) to simplify complex data 
into a more accessible feature space. ELM, a supervised 
machine learning method with a single hidden layer, is noted for 
its rapid processing capabilities. However, it is also sensitive to 
noise and heavily depends on the random selection of weights 
and biases, which can limit its effectiveness. Another method [6] 
uses Mutual Information (MI) to enhance the efficiency of 
dimensionality reduction and employs General Purpose 
Graphics Processing Units to parallelize the nearest neighbor 
search process. While effective, this method requires additional 
hardware resources, which may not be practical in all settings. 

To mitigate the resource consumption challenges associated 
with kNN, numerous researchers have explored tree-based 
solutions as a common strategy. These methods typically 
involve selecting a splitting criterion to construct a tree, often a 
binary tree, which organizes the dataset in a way that accelerates 
the search for the nearest neighbor. Several innovative tree-
based models have been developed, such as the Combi Tree, 
which offers adaptive approaches to optimizing KNN. 

The Combi Tree, developed from a binary search tree [7], 
segments the data points into clusters and uses a hash table to 
compress each cluster. These clusters are then combined to form 
the Combi Tree. However, this approach operates exclusively 

within Hamming space, a high-dimensional space suited for 
binary data, making it less effective for other data types or 
similarity measures outside this space. Another strategy 
constructs a Binary Search Tree (BST) based on the norms of 
data points [8]. This involves a partitioning scheme that uses 
norms to distribute data points evenly within the BST, although 
this method may struggle with skewness in data distributions. 

Furthermore, a novel BST method [9] incorporates a scaling 
factor to improve search speed, particularly beneficial for 
managing large datasets where traditional binary search trees 
may be cumbersome and inefficient. This method adjusts the 
size of search intervals using the scaling factor as the search 
progresses, allowing for a rapid narrowing of the search space 
and achieving logarithmic time complexity. However, the 
validation of this method has been limited to synthetic data, with 
its effectiveness in real-world scenarios yet to be confirmed. 

While tree-based methods focus on structural optimizations, 
another approach involves refining the data itself through 
clustering. One method [10] utilizes the k-means clustering 
algorithm to segment the dataset, removing data points that have 
minimal impact on accuracy. During the testing phase, this 
method determines the cluster to which a given instance belongs 
and performs KNN within that specific subset. However, this 
pruning technique may not achieve optimal results in scenarios 
where the decision boundary is non-linear or the dataset is 
inherently noisy. 

To further refine this strategy, another study [11] uses 
clustering to reduce the number of data points required for each 
query. This method introduces a technique of region division to 
further limit the search space. It divides the space into several 
smaller regions and considers only the data points within the 
region containing the query point for the KNN search. 
Nevertheless, the clustering can become computationally 
demanding with high-dimensional data, restricting the 
scalability of these methods as the number of features increases. 

Building on the idea of clustering, the KNN Tree method 
[12] combines tree-based and clustering strategies to further 
enhance efficiency. It constructs a decision tree (DT) up to a 
specified depth and then applies KNN to the remaining subset 
of the dataset. This hybrid algorithm effectively reduces the 
number of samples required for KNN, thereby enhancing the 
model's efficiency. Notably, this method surpasses the 
performance of both standalone DT and traditional KNN, 
showing significant improvements in managing large-scale 
datasets. 

To contextualize these advancements, Table I compares 
these various approaches, underscoring the trade-offs and 
enhancements that our algorithm introduces. These comparisons 
elucidate the trade-offs involving speed, scalability, noise 
sensitivity, and data specificity among the different methods. 
Although each method significantly enhances the efficiency of 
KNN, they also introduce specific limitations that may affect 
their utility depending on application scenarios. 
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TABLE. I. COMPARATIVE ANALYSIS ACROSS VARIOUS RELATED METHODS 

Methods Advantage Drawback 

ELM based [5] Increases processing speed by simplifying data representation. Sensitive to noise, affecting the robustness of classifications. 

Pknn-mifs [6] Speeds up the KNN process through parallel processing. Requires additional hardware resources, increasing costs. 

Combi tree [7] Achieves logarithmic complexity, suitable for binary data. Restricted to applications within Hamming space only. 

Norm based [8] Effective in environments with uniform data distribution. Limited effectiveness in non-uniform or skewed data sets. 

BST based [9] Achieves logarithmic complexity, optimizing search times. Performance primarily validated on synthetic, not real-world, data. 

EDP [10] Enhances speed by efficiently pruning unnecessary data. Performance declines with non-linear data scenarios. 

SRBC [11] Provides faster execution compared to traditional KNN. Does not scale well with high-dimensional data. 

KNNTree [12] Achieves logarithmic time complexity, enhancing efficiency. Performance heavily dependent on correct hyper-parameter tuning. 

III. PROPOSED ALGORITHM (FBE) 

A. General Idea of FBE 

The general idea behind the proposed FBE algorithm is to 
transform the computationally expensive KNN into a more 
efficient and scalable model by employing the power of 
approximation-based sorting and ensemble learning. Below, we 
explore the foundational concepts that underpin the FBE. 

1) Dimensional selection and data sorting: FBE starts with 

the strategic selection and use of data dimensions. For example, 

consider a dataset represented in a three-dimensional space, as 

illustrated in Fig. 1. Within the FBE framework, dimensions are 

selected randomly, such as dimensions D1 and D3 for a specific 

iteration. The selection of dimensions is critical as it influences 

the subsequent sorting of the dataset. If D3 shows a stronger 

correlation with the class labels than D1, it becomes the primary 

axis for sorting. This sorting process, illustrated in Fig. 2, is 

essential as it reorganizes the dataset to align more closely with 

the inherent data structure, thus enabling more efficient 

searches during the testing phase. 

2) Approximation-based search and ensemble techniques: 

FBE uses approximation-based search techniques to reduce the 

time complexity traditionally associated with KNN, typically 

where n is the number of instances and d is the dimensionality 

of the data. By sorting the data according to selected 

dimensions that show a consistent relationship with the target 

variable, the algorithm paves the way for a binary search. This 

search method significantly reduces the search space from 

linear to logarithmic time complexity, making it feasible to 

handle large datasets effectively. 

The integration of ensemble techniques further enhances the 
FBE algorithm. By repeating the selection and sorting process 
multiple times, each with potentially different dimensions, the 
algorithm creates a diverse set of data views, each organized 
according to the most informative feature of that iteration. This 
ensemble of sorted subsets not only reduces the risk of bias in 
the model but also improves overall accuracy through collective 
decision-making during the testing phase. 

3) Synergistic benefits: The synergy between sorted subset 

selection and ensemble strategies results in a robust algorithm 

that not only increases computational efficiency but also 

sustains, if not improves, classification effectiveness. The 

ensemble approach reduces variance and potential overfitting 

by integrating multiple independent evaluations of nearest 

neighbors, each from slightly different perspectives of the data. 

As a result, FBE presents a compelling alternative to 

conventional KNN, especially in scenarios involving large-

scale datasets with complex, non-linear relationships among 

features. 

 

Fig. 1. Data points in three dimensions 

 

Fig. 2. Data points in randomly selected two dimensions 

B. FBE in Training Phase 

The training phase of FBE is methodically outlined in 
Algorithm 1 and consists of three primary steps, as follows. 

1) Step 1: Initialization: The algorithm begins by 

initializing an empty set 
FS which will eventually store subsets 

of the training data alongside their corresponding sorting 

features. This set plays a pivotal role in the ensemble strategy, 

facilitating a diverse array of simplified datasets for efficient 

neighbor searches during the testing phase. 

2) Step 2: Iterative processing: The core of Algorithm 1 

operates over m iterations, reflecting the ensemble nature of 

FBE. Each iteration is designed to create a unique subset of the 

data, focusing on different features to capture various 

characteristics of the data: 
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 Feature Selection: In each iteration, a subset of features,

X  , is randomly selected from the feature set X. This 
randomness introduces diversity in the features 
considered across different iterations, which is 
fundamental to the ensemble approach. 

 Best Feature Determination: For each selected feature a, 
its mutual information with the target labels y is 
calculated. Mutual information, denoted as MI(a,y), 
measures the amount of information one variable 
contains about another, thus helping to identify the most 
predictive features. Mathematically, MI is defined as: 

( , )
( , ) ( , ) log

( ) ( )y Y x X

p x y
MI X Y p x y

p x p y 

 
  

 


,      

where p(x,y) is the joint probability distribution of X and Y, 
and p(x) and p(y) are the marginal distributions of X and Y, 
respectively. 

 The feature a with the highest MI value is selected as the 
best feature b. This feature is considered the most 
effective at classifying data points for that iteration, 
guiding the sorting process. 

3) Step 3: Sorting and storing 

 Once the best feature b is identified, the subset of the data 

tX , corresponding to X  , along with the labels 
ty , are 

sorted based on b. This sorting is pivotal as it rearranges 
the data points so that similar values (and thus potentially 
similar classes) are positioned closer together, drastically 
enhancing the efficiency of neighbor searches in high-
dimensional spaces. 

The sorted subset along with its metadata (features used and 
the best feature) is encapsulated into a tuple 

 , , ,t tval X y X b  and added 
FS . Each tuple in 

FS  

represents a different “view” or “model” of the dataset, 
optimized for quick searching within the framework of the 
proposed ensemble method. 

By the end of m iterations, 
FS contains multiple sorted 

versions of subsets of the training set, each optimized differently 
based on the selected features. This setup allows the FBE 
algorithm during the testing phase to quickly locate the nearest 
neighbors by leveraging the pre-processed, efficiently sorted 
data structures, greatly reducing computational overhead and 
time complexity compared to traditional KNN approaches. 

In essence, Algorithm 1 lays the foundational work for FBE, 
ensuring that the ensemble method not only maintains high 
classification performance but also addresses the scalability 
issues often associated with KNN, particularly in large datasets. 

 

Algorithm 1: FBE in the training phase 

Input: 

 : Set of feature vectors 

 : Corresponding labels 

 k: Number of nearest neighbors 

 m: Number of iterations for ensemble 

 g: Grace parameter 

Output: 

 : Set of sorted features and associated metadata 

Procedure: 

1. Initialize the sorted feature set  to an empty set. 

2. For each iteration 𝑖 from 1 to 𝑚: 

 Select a subset of features randomly from X. 

 Initialize the best feature b to none and the maximum mutual information Max_MI to -1. 

 For each feature 𝑎 in : 

 Compute the mutual information MI between a and y. 

 If MI is greater than Max_MI: 

- Update Max_MI with MI. 

- Set the best feature b to a. 

 Select the subset of X corresponding to  as and set . 

 Sort and based on the values of the best feature b. 

 Create a tuple  and add it to  

3. Return  
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C. FBE in Testing Phase 

The testing phase of FBE is methodically described in 
Algorithm 2. This representation of Algorithm 2 aligns with 
Algorithm 1 by directly utilizing the sorted subsets generated 

during the training phase, ensuring that the ensemble method 
efficiently employs the preprocessed data to enhance prediction 
accuracy and computational efficiency. This testing phase 
comprises four primary tasks, as follows. 

 

1) Initialization and prediction collection 

 The algorithm begins by initializing an empty list of 
predictions, P, designed to collect the outcomes from 
each iteration. This facilitates an ensemble approach 
where multiple predictions are aggregated to determine 

the most likely class for a given testing instance, 
iX . 

 The ensemble method employed here ensures robustness 
in the predictions by averaging out biases that may be 
present in any single sorted subset of the training data. 

2) Iterative binary search on sorted subsets 

 For each iteration within the predefined number of 
ensemble iterations m, the algorithm processes through 
subsets of data that were sorted and stored during the 
training phase. These subsets are indexed from the 

Algorithm 2: FBE in the testing phase 

Input: 

 : A given testing data point. 

Output: 

 : Predicted class label for the testing data point . 

Procedure: 

1. Initialize an empty list of predictions P to store the predicted labels from each iteration. 

2. For each iteration 𝑖 from 1 to 𝑚 (as set in the training phase): 

 Set initial search bounds low = 1 and high = n, where n is the total number of data points in 

the data subset. 

 Extract the sorted subset of features and the corresponding labels  from the sorted 

feature set prepared in the training phase: 

  

  

  

 Determine the index in that best matches based on , using binary search: 

 While low < high: 

- Compute mid = low + (high – low)/2. 

- If  then set low = mid + 1,  

else set high = mid – 1. 

 After locating the nearest region, define the search interval within the sorted data: 

 left = max (0, low – k – g) 

 right = min (n, low + k + g) 

 Use traditional KNN to predict the class label from the subset  and 

, and add the result to predictions P. 

3. After all iterations, determine the majority class label from P and return it as . 

Legend: 

- k: Number of nearest neighbors (defined in training phase). 

- g: Grace parameter (defined in training phase). 

- : Sorted feature set, containing tuples of sorted feature subsets and their corresponding labels 

from the training phase. 

- m: Number of ensemble iterations, aligning with the number of sorted subsets in . 
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structured set 
FS , which contains key information such 

as the subset of features, the corresponding labels, and 
the feature that demonstrated the highest mutual 
information with the outcome during the training phase. 

 The core of the testing phase is a binary search on the 
selected subset using the best feature b identified during 
training. This guides the search to efficiently locate the 
segment of the dataset where the testing instance might 
belong, based on feature similarity. 

 The binary search algorithm adjusts the low and high 

pointers based on comparisons between [ ]iX X   and the 

mid-point value of [ ]tX X  . This method drastically 

reduces the number of comparisons needed to locate the 
nearest region in the dataset from which the neighbors 
are selected. 

3) Local nearest neighbor determination 

 Once the approximate location of 
iX is pinpointed in the 

sorted array, a local neighborhood is defined around this 
point. The size of this neighborhood is adjusted by the 
parameters k and g, where k denotes the number of 
nearest neighbors typically considered in KNN, and g 
allows for an expanded search buffer to mitigate the risk 
of missing potential nearest neighbors due to boundary 
effects or sparse regions within the dataset. 

 Traditional KNN is then applied within this localized 
segment of the dataset to predict the class based on the 
majority vote among the k-nearest neighbors found in 
this region. This ensures the fundamental KNN principle 
of classifying based on the nearest data points is 
preserved, even within the ensemble method. 

4) Aggregation and final prediction 

 After cycling through all iterations, the predictions from 
each subset are aggregated to determine the final class 

label for 
iX . The aggregation method typically involves 

selecting the majority class from the list of predictions, 
using the ensemble's diversity to provide a more accurate 
and stable prediction. 

 This majority voting system across different predictive 
models reduces variance and improves the reliability of 
the classification, particularly in cases where individual 
models might have biases or perform poorly under 
specific data conditions. 

In essence, Algorithm 2 enhances the traditional KNN 
approach by integrating an efficient binary search within 
strategically preprocessed subsets and utilizing an ensemble 
methodology to derive robust and accurate predictions. This 
approach not only speeds up the classification process 
significantly by reducing the number of distance calculations 
typically required in KNN but also leverages the diversity of 
multiple models to improve overall prediction accuracy. The 
combination of these strategies makes FBE particularly suitable 
for large-scale datasets where traditional KNN might struggle 
with scalability and performance. 

D. Complexity Analysis of the FBE Algorithm 

Understanding the computational complexity of FBE is 
essential for evaluating its efficiency, especially when compared 
to traditional KNN-based methods. This section examines the 
complexity of both the training and testing phases of the FBE, 
highlighting the improvements made by incorporating sorted 
subsets and ensemble techniques. 

1) Complexity analysis of FBE in the training phase: The 

training phase of FBE involves selecting subsets of features, 

computing mutual information (MI) to identify the most 

informative features, and sorting these subsets for efficient 

search during testing. Let n be the number of instances, d the 

number of dimensions, k the number of nearest neighbors, m 

the number of iterations, and g the grace parameter. 

 Feature selection and mutual information calculation: 

During each iteration, a subset of features is selected 
randomly, which introduces variability but also necessitates a 
reassessment of the data structure for each subset. The mutual 
information calculation, which helps in selecting the best feature 

for sorting, typically has a complexity of ( )O n per feature. 

Considering that any or all features could be involved in the 

worst case, the complexity for this step is ( . )O n d . 

 Sorting: 

After identifying the best feature, the subset is sorted based 
on this feature. Sorting a list of n elements generally consumes 

( log )O n n  time. Since this is done for each dimensionally 

reduced subset (effectively each feature in the worst case), the 

complexity becomes ( log )O nd n . 

 Overall complexity in the training phase: 

Combining these factors, the complexity for each iteration is 

( log )O nd nd n , which simplifies to ( log )O nd n . Across m 

iterations, this results in a total complexity of ( log )O mnd n , 

representing a significant computational requirement but still 
more manageable than exhaustive pairwise comparisons across 
all features and instances. 

2) Complexity analysis of FBE in the testing phase: The 

testing phase utilizes the pre-sorted subsets and a binary search 

mechanism to quickly locate potential nearest neighbors, 

significantly reducing the time required for each query. 

 Binary search: 

Binary search on a sorted subset has a complexity of 

(log )O n , which is independent of the dimensionality d because 

the search is confined to the sorted dimension identified during 
the training phase. 

 Local KNN computation: 

Once the approximate location of the test instance is 
determined, a localized KNN search is performed within a 
segment defined by k and g. The computational cost for this 
localized search depends on the size of the segment but remains 
less than searching the entire dataset. The complexity for this 
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step is approximated as 2( )O kd dg k kg   , which simplifies 

to 2( )O k in practical scenarios where k is much smaller than n. 

 Overall complexity in the testing phase: 

The combined complexity of the testing phase for m 

iterations is 2( (log )).O m n k  This highlights a substantial 

efficiency over methods that require full dataset scans. 

3) Space complexity analysis of FBE: The space 

complexity of FBE is primarily determined by the storage 

required for the sorted subsets and their associated metadata. 

For m iterations, storing each subset and its features requires 

( )O mnd space, slightly higher than traditional KNN but 

justified by the significant gains in query time performance. 

In summary, the FBE algorithm presents a well-optimized 

approach to KNN, with ( log )O mnd n time complexity for 

training and 2( (log ))O m n k for testing. These improvements 

make FBE particularly suitable for large-scale datasets where 
the balance between accuracy, computational speed, and 
resource utilization is crucial. The algorithm effectively utilizes 
the strengths of ensemble methods and sorted data structures to 
enhance the scalability of nearest neighbor searches. 

IV. EXPERIMENTAL VALIDATION 

A. Dataset Descriptions 

To evaluate the effectiveness of FBE, a comprehensive 
selection of ten benchmark datasets was chosen, emphasizing 
the diversity and complexity inherent in real-world data. These 
datasets, predominantly sourced from the UCI Machine 
Learning Repository, are particularly suited to demonstrating 
the robust capabilities of FBE due to their varied challenges and 
characteristics. 

Among the datasets selected, five are centered on medical 
applications, a domain where data complexity and the need for 
precision and reliability are crucial. These datasets include ECG, 
Diabetes, Lymphography, Fertility, and Breast Cancer, each 
presenting unique challenges due to their imbalance and the 
nature of the outcomes they seek to predict. For instance, the 
ECG dataset, with its extensive feature set, tests the algorithm’s 
ability to handle large-scale data under circumstances where 
accuracy in predicting heart conditions can be lifesaving. On the 
other hand, datasets like Diabetes and Breast Cancer require the 
model to manage imbalanced data, where the prevalence of one 
class over another could bias the learning process, potentially 
leading to inaccurate diagnoses. Further complexity is 
introduced with the inclusion of datasets such as MNIST, which 
differ significantly in terms of dimensionality and class 
structure. The MNIST dataset, with its high-dimensional space 
composed of handwritten digit images, challenges the model to 
efficiently process and classify complex visual patterns. 
Additionally, the selection of datasets with smaller sample sizes 
mirrors typical scenarios where high-performance classification 
must be achieved despite limited data availability. 

Details of the selected datasets, including specific features 
and class distributions, are meticulously catalogued in Table II. 
This table serves as a reference point for understanding the 

diverse data challenges that FBE is engineered to tackle, 
illustrating the algorithm's broad applicability and robust 
performance across a variety of complex scenarios. 

B. Experimental Setup 

1) Computational tools: The experiments were conducted 

on a Linux Fedora 32 operating system, using an Intel Core i7-

4790 CPU at 3.6 GHz and equipped with 32 GB of RAM. This 

configuration, akin to a high-end personal computing setup, 

provides a stable and balanced environment suitable for both 

the development and evaluation phases. 

TABLE. II. DATASETS USED FOR EXPERIMENTS 

ID. Dataset Name Instance Feature Class 

1 Breast Cancer 569 30 2 

2 Lymphography 148 18 4 

3 Fertility 100 8 2 

4 ECG 109,446 187 5 

5 Diabetes 768 8 2 

6 Iris 150 4 3 

7 Spambase 110,201 4 2 

8 MNIST 70,000 784 10 

9 Glass 214 9 6 

10 Magic 19,020 10 2 

Python was chosen as the primary programming language 
due to its extensive support for machine learning. Key Python 
libraries utilized in the setup include: 

 Numpy: Facilitates efficient numerical computations 
with support for large, multi-dimensional arrays and 
matrices. This library is crucial for performance 
optimization in data-intensive applications. 

 Pandas: Offers powerful data manipulation capabilities 
that simplify data cleaning, transformation, and analysis, 
essential for preparing datasets for machine learning. 

 Scikit-Learn: Provides a wide array of machine learning 
algorithms and tools, making it indispensable for model 
training, evaluation, and comparison. 

2) Model benchmarking and parameter setting: To 

contextualize FBE's performance, it was benchmarked against 

three well-regarded classifiers: k-Nearest Neighbors (KNN), 

Random Forest (RF), and AdaBoost. These classifiers were 

selected due to their popularity and proven track records in both 

academic and industrial settings, serving as a robust baseline 

for comparison. The parameter configurations for the 

experiments were carefully chosen to balance between model 

complexity and predictive performance: 

 KNN and FBE: Configured with three nearest neighbors 
(k=3), a standard setting for KNN that offers a balance 
between underfitting and overfitting. For FBE, 
additional parameters included three iterations (m=3) to 
test the ensemble effect and a grace parameter (g=0) to 
evaluate its impact on model sensitivity and specificity. 
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 Random Forest: Utilized 100 fully grown decision trees 
to maximize the ensemble effect, enhancing the model's 
ability to generalize across different datasets. 

 AdaBoost: Similar to RF in the number of decision trees 
but with trees pruned at level one to focus on reducing 
overfitting, enhancing the model's generalizability. 

3) Performance evaluation metrics: Comprehensive 

metrics were selected to evaluate the performance of the models 

under test comprehensively: 

 Accuracy: Provides a general measure of model 
correctness across all classes, useful for initial 
assessments of model efficacy. 

 Precision: Critical for applications where the cost of a 
false positive is significant, helping to measure the 
reliability of the positive predictions. 

 Recall: Especially important in medical or financial 
applications where failing to detect positives can have 
serious consequences, it measures the model’s ability to 
capture all relevant instances. 

 F1 Score: Combines precision and recall into a single 
metric that quantifies a model’s accuracy at identifying 
only relevant instances, which is crucial for evaluating 
performance in imbalanced datasets. 

4) Evaluation protocols: To ensure a thorough evaluation 

of FBE and to benchmark its performance against conventional 

models, we employ a robust cross-validation methodology. 

Specifically, the data is split in a 7:3 ratio, with 70% used for 

training the models and the remaining 30% dedicated to testing. 

This widely accepted split ratio allows for substantial training 

data while providing enough test data to assess model 

generalization effectively. Furthermore, the cross-validation 

process is repeated 10 times to ensure the reliability and 

stability of the performance metrics. Each iteration randomly 

redistributes the data according to the 7:3 training-to-testing 

ratio, minimizing bias and variability in the evaluation. The 

performance metrics are calculated for each run, and the results 

are then averaged across all 10 iterations to produce a final 

performance measure. 

C. Performance Analysis and Comparisons 

The experimental results are thoroughly detailed in Tables 
III and IV. Visual representations of these results are presented 
in Fig. 3 and 4. 

Table III and Fig. 3 show that FBE consistently achieves 
high accuracy across all tested datasets, with standout 
performances on datasets like Iris (97%), Fertility (95%), and 
MNIST (80%). These results indicate a strong ability of FBE to 
handle both simple and complex data structures. On average, 
FBE achieves an accuracy of 87%, which is 7% higher than 
KNN and 11% higher than AdaBoost, and closely trails RF by 
only 1%. This demonstrates that FBE provides a robust 
alternative to more established models, particularly in handling 
varied data types effectively. 

TABLE. III. ACCURACY AND F1 SCORE PERFORMANCE OF COMPARED MODELS ON VARIOUS DATASETS 

ID. Dataset 
Accuracy F1 Score 

AdaBoost KNN RF FBE AdaBoost KNN RF FBE 

1 Breast Cancer 0.96 0.94 0.96 0.94 0.95 0.90 0.94 0.93 

2 Lymphography 0.66 0.76 0.84 0.86 0.62 0.72 0.74 0.86 

3 Fertility 0.80 0.85 0.88 0.95 0.56 0.59 0.64 0.49 

4 ECG 0.86 0.96 0.97 0.91 0.51 0.87 0.87 0.54 

5 Diabetes 0.76 0.69 0.76 0.79 0.73 0.66 0.72 0.77 

6 Iris 0.94 0.95 0.96 0.97 0.93 0.94 0.95 0.97 

7 Spambase 0.94 0.81 0.96 0.90 0.92 0.80 0.95 0.90 

8 MNIST 0.35 0.55 0.75 0.80 0.29 0.46 0.44 0.66 

9 Glass 0.49 0.70 0.80 0.77 0.35 0.61 0.69 0.78 

10 Magic 0.84 0.80 0.88 0.85 0.82 0.76 0.87 0.66 

Average 0.76 0.80 0.88 0.87 0.67 0.73 0.78 0.76 

 

Fig. 3. Accuracy and F1 Score performance of compared models across various datasets 
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These tables and figures also illustrate how the F1 Score 
highlights FBE's balanced performance in precision and recall. 
Notably, FBE achieves a score of 78% on the Glass dataset, 
significantly outperforming AdaBoost’s 35% and KNN’s 61%. 
On the Iris dataset, it attains an impressive 97%. These results 
underscore the model's effectiveness in scenarios where 
balancing false positives and false negatives is crucial. With an 
average F1 score of 76%, FBE surpasses both KNN and 
AdaBoost, demonstrating its superior ability to harmonize recall 
and precision across diverse applications. 

In terms of precision, as outlined in Table IV and Fig. 4, FBE 
shows exemplary results, especially in datasets like Iris (97%) 
and Fertility (95%), where accuracy in the positive predictive 
value is critical. FBE’s average precision across all datasets 
stands at 86%, higher than both AdaBoost and KNN, 
underscoring its reliability in classifying instances correctly. 

For the recall metric, Table IV and Fig. 4 reveal FBE's 
strength in sensitivity, particularly notable in datasets like ECG 
(85%) and Glass (79%). It maintains an average recall of 79%, 
indicating its effectiveness in identifying all relevant instances 

across varied datasets. This capability is crucial for applications 
where missing an instance can have significant repercussions. 

The comparative analysis reveals that FBE not only 
competes closely with, but in many cases outperforms, 
traditional models. This is particularly evident in its consistent 
superiority over AdaBoost and frequent outperformance of 
KNN. While RF often shows slightly higher metrics, the gap is 
marginal, suggesting that FBE can offer comparable 
performance with added benefits of efficiency in processing and 
model simplicity. 

FBE's effectiveness can be attributed to its innovative 
approach in handling datasets. By focusing on the most 
informative features through its sorted subset and ensemble 
methods, it reduces the impact of noisy or irrelevant features that 
typically affect KNN algorithms. This feature prioritization not 
only enhances accuracy but also improves the model's ability to 
generalize across different data types, avoiding the overfitting 
commonly seen in traditional models. 

TABLE. IV. PRECISION AND RECALL PERFORMANCE OF COMPARED MODELS ON VARIOUS DATASETS 

ID. Dataset 
Precision Recall 

AdaBoost KNN RF FBE AdaBoost KNN RF FBE 

1 Breast Cancer 0.95 0.92 0.95 0.94 0.95 0.91 0.94 0.94 

2 Lymphography 0.66 0.75 0.85 0.86 0.63 0.72 0.75 0.84 

3 Fertility 0.78 0.87 0.88 0.95 0.56 0.62 0.65 0.48 

4 ECG 0.85 0.96 0.97 0.91 0.52 0.83 0.80 0.85 

5 Diabetes 0.76 0.70 0.77 0.79 0.71 0.65 0.73 0.76 

6 Iris 0.94 0.95 0.95 0.97 0.92 0.95 0.95 0.97 

7 Spambase 0.94 0.81 0.96 0.90 0.92 0.80 0.93 0.90 

8 MNIST 0.30 0.45 0.44 0.66 0.42 0.50 0.45 0.74 

9 Glass 0.48 0.69 0.80 0.77 0.41 0.61 0.69 0.79 

10 Magic 0.84 0.81 0.87 0.85 0.82 0.76 0.86 0.63 

Average 0.75 0.79 0.84 0.86 0.69 0.74 0.78 0.79 

 

Fig. 4. Precision and Recall performance of compared models across various datasets 
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The reasons behind FBE’s enhanced performance are 
manifold: 

 Ensemble advantage: FBE uses multiple sorted subsets, 
reducing variance and improving reliability through 
ensemble averaging. This approach mitigates the impact 
of outlier data points and feature noise, which can 
significantly affect models like KNN and AdaBoost. 

 Feature selection: By iteratively focusing on the most 
informative features, FBE minimizes the challenges of 
dimensionality and irrelevant feature noise, a frequent 
issue in high-dimensional datasets like MNIST. 

In summary, the detailed results highlight the high potential 
of FBE for handling high-dimensional or imbalanced data. Its 
performance across all metrics demonstrates both robustness 
and adaptability in addressing various classification challenges. 
The comprehensive evaluation of FBE against standard models 
reveals its effectiveness and versatility across diverse datasets. 
Its systematic feature selection and use of ensemble methods 
enhance its accuracy and reliability in complex classification 
tasks, spanning fields from healthcare to image processing. 

V. CONCLUSION AND FUTURE DIRECTIONS 

In this research, we have introduced a robust ensemble 
algorithm aimed at enhancing the performance of k-nearest 
neighbors classification through the innovative use of feature 
bagging. Our method involves selecting a subset of features, 
determining the most informative feature within this subset 
using the mutual information metric, and utilizing this feature to 
sort the data subset. This sorting facilitates an efficient binary 
search during the testing phase to quickly locate approximate 
nearest neighbors, and the process is iterated multiple times to 
improve classification performance and reliability. The 
proposed algorithm also undergoes a rigorous complexity 
analysis in both the training and testing phases. This analysis 
confirms that our approach not only improves performance 
metrics but does so with a significant reduction in computational 
overhead, moving from linear to logarithmic complexity. 

Our experimental validation shows that the proposed 
algorithm significantly outperforms traditional k-nearest 
neighbors and AdaBoost in terms of accuracy, precision, recall, 
and F1 score across various datasets, including those with high-
dimensional and imbalanced data. Notably, our approach shows 
marked improvement on datasets like MNIST, where traditional 
k-nearest neighbors typically struggle due to the curse of 
dimensionality and noise sensitivity. The ensemble algorithm 
consistently achieves higher accuracy rates, often exceeding the 
performance of the Random Forest in specific scenarios, 
particularly with imbalanced datasets. 

Future research will expand the robustness studies of our 
algorithm across a broader range of datasets, especially 
exploring its performance under extreme conditions of data 
distribution and class imbalance. This research paves the way 
for future studies to explore hybrid approaches that combine 
feature bagging with other machine learning techniques to 
further enhance classification performance and computational 
efficiency. 
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