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Abstract—Aiming at the problems that current text matching 

methods are difficult to accurately capture the fine-grained 

ranking information between texts and the insufficient 

information interaction between different negative examples, a 

text matching model combining ranking information and 

negative example smoothing strategy is proposed. Firstly, it 

ensures the consistency of the ranking of two sentence 

representations of the input text obtained after different Dropout 

masks through Jensen-Shannon Divergence. Secondly, it utilizes 

the pre-trained SimCSE as the teacher model to obtain coarse-

grained ranking information and distills this information into the 

student model through the ListNet sorting algorithm to obtain 

fine-grained ranking information. Finally, the negative examples 

are augmented by a negative example smoothing strategy, which 

effectively solves the problem of insufficient information 

interaction between negative examples without increasing the 

batch size. Experimental results on the standard semantic text 

similarity task show that the proposed model achieves a 

significant improvement in the Spearman correlation coefficient 

evaluation metrics compared with existing state-of-the-art 

methods, proving its effectiveness. 
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I. INTRODUCTION 

Text matching plays an important role in the field of 
Natural Language Processing for assessing the similarity or 
relevance between two text sequences. And the quality of 
sentence representation is crucial for the text matching task, 
which can greatly affect the matching effect of the model. 
Therefore, sentence representation learning has attracted 
extensive research interest [1,2]. In recent years, with the 
success of Pre-trained Language Models [3,4], there has been 
much interest in methods for directly generating sentence 
representations, such as using [CLS] token embeddings or 
average token embeddings from the last layer of pre-trained 
language models. However, several studies [5,6] have found 
that native sentence representations based on Pre-trained 
Language Models form a narrow cone in the vector space, 
which severely limits their representational power and is 
known as the anisotropy problem. Supervised methods (e.g., 
SBERT [2]) usually produce better quality sentence 
representations, but require fine-tuning on large amounts of 
labeled data. Therefore, to avoid the model's dependence on 
large amounts of labeled data, unsupervised comparison-based 

learning methods [7-9] have been proposed and have attracted 
much attention and exploration. 

Among the first methods proposed for unsupervised 
sentence embedding learning using contrastive learning is 
SimCSE [10]. This method implicitly assumes that “Dropout” 
is the smallest data augmentation and assumes that a sentence 
is semantically more similar to its augmented counterpart than 
to other sentences. Despite the simplicity of this approach, the 
performance of SimCSE is surprisingly well, and therefore 
subsequent research methods are based on SimCSE to further 
optimize and improve it. These methods usually use different 
enhancement algorithms to generate positive examples. For 
example, ESimCSE [11] enhances input samples by simply 
adding insertions and deletions to words repeatedly; ConSERT 
[12] effectively improves model matching by comparing 
multiple data enhancement strategies such as feature culling 
and random discarding to generate two different enhanced 
versions of the same sentence, and further combining them 
with in-batch negative examples. Although these methods 
achieve satisfactory results in obtaining coarse-grained ranking 
information between texts, they only consider each sample as a 
positive and negative example, and have some limitations in 
ranking highly similar and moderately similar sentences in 
more detailed distinctions. In practical applications, it is 
necessary to calculate the similarity between the query 
sentences and the sentences in the database and classify the 
sentences with more detailed ranking, which generally covers 
the levels of highly similar, moderately similar, generally 
similar and not similar. Refined ranking can effectively 
improve the performance of search and recommendation 
systems, enhance the model's ability to differentiate between 
semantically nuanced texts, and thus improve the relevance and 
accuracy of matching results, which in turn improves the user 
experience. Therefore, it is particularly important to learn how 
to accurately capture fine-grained ranking information of texts 
from unsupervised data. 

In addition, to address the problem of insufficient 
information interaction between negative examples, related 
studies consider different enhancement strategies to generate 
negative examples. For example, SNCSE [13] enables the 
model to learn the semantic differences between sentences 
more comprehensively by introducing the negative form of the 
original sentence as a soft negative example. However, this 
approach to the selection and construction of soft negative 
examples may have an impact on model performance. In 
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practice, the computational complexity of the SNCSE approach 
is higher, requiring more computational resources and time to 
train and infer the model. In contrast, SSCL [14] obtains 
additional negative examples from the middle layer of the pre-
trained language model, which helps to improve the quality of 
sentence representation. However, if the additional negative 
examples are not properly selected or are too many, they may 
lead to overfitting of the model and impair its generalization 
ability. Therefore, when considering the generation of negative 
examples for adequate comparison between negative examples, 
the impact of computational resource consumption, the number 
of negative examples, and other factors on the performance 
need to be taken into account to obtain the best results. 

In summary, to accurately capture the fine-grained ranking 
information between texts and to address the problem of 
insufficient information interaction between different negative 
examples, this paper, inspired by the related literature [15,16] 
proposes a Text Matching Model with Ranking Information 
and Negative Example Smoothing Strategy (TMRNS). The 
model does this by ensuring that the rankings between two 
textual representations that have gone through different 
Dropout masks have consistency and minimizing the Jensen-
Shannon (JS) Divergence as the learning objective. Meanwhile, 
TMRNS uses the ListNet [17] sorting method to distill the 
coarse-grained ranking information from the teacher model 
into the student model, thus capturing the fine-grained ranking 
information of the text. Finally, by adding random Gaussian 

noise as an extension of the negative examples, the full 
interaction of information between different negative examples 
is realized, which significantly improves the relevance of the 
semantic similarity task. 

The main contributions and contents of this paper can be 
summarized as follows: 

 Proposed methods include Rank Consistency based on 
JS Divergence and Ranking Distillation based on the 
ListNet sorting algorithm, aiming to capture fine-
grained ranking information between texts to represent 
sentences with subtle semantic differences effectively. 

 Integrated the Smooth Positive Example Construction 
method based on dynamic buffers into the TMRNS 
model to enhance positive example. 

 Introduced a Smooth Negative Example Construction 
method based on Gaussian noise to address the issue of 
insufficient interaction between negative examples 
within batches. 

 Through empirical validation, it was demonstrated that 
capturing fine-grained ranking information of texts and 
the proposed negative instance smoothing strategies 
complement each other, leading to the development of a 
text matching model that integrates ranking information 
and negative instance smoothing strategies. 
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The boy is playing the piano.
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Fig. 1. TMRNS overall framework 

II. TMRNS MODEL DESIGN 

A. TMRNS Overall Framework 

The overall framework of the TMRNS model is shown in 
Fig. 1. In the TMRNS model, multiple texts within the same 
batch are input to the encoder at the same time, and the encoder 

successively obtains the corresponding example ix  and 

augmented example i


x  after two different dropout masks for 

each text in the input, at which time the teacher model obtains 

the two lists of similarity scores from both the example and the 
augmented example to extract coarse-grained information 
about the ranking of the sentence representations. The student 
model then utilizes JS Divergence to ensure that the ranking of 
each sentence representation in the two similarity score lists is 
consistent. The teacher model then distills its extracted coarse-
grained ranking information into the student model using the 
ListNet sorting algorithm to obtain fine-grained ranking 

information. Next, the augmented example i


x  is reconstructed 

using a first-in-first-out dynamic buffer to obtain the smoothed 
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positive example s
x . In addition, the negative example i


x  is 

extended by adding random Gaussian noise to obtain the 

smoothed negative example g
ix . Finally, the above methods are 

incorporated into the TMRNS model using different cross-
entropy loss functions for the training of the text matching 
model. 

B. Ranking Consistency based on JS Divergence 

Although SimCSE's contrastive learning approach performs 
well in distinguishing between positive and negative examples, 
it has some limitations in capturing the continuum of sentence 
similarity. Specifically, it may not work well in distinguishing 
between very similar and relatively similar sentences. This is 
mainly because the method does not sufficiently consider the 
differences between different examples in the batch, leading to 
weak results in capturing fine-grained ranking information. In 
this paper, we explicitly model fine-grained ranking 
information within sentences by using JS Divergence to ensure 
ranking consistency between two similarity lists for the same 
text. 

The student model modeling diagram is shown in Fig. 2. 
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Fig. 2. Student model modeling diagram 

Each small white circle in Fig. 2 represents the similarity 
score of the two texts. There are two sets of sentences denoted 

ix  and i


x , which come from the text vectors obtained from 

the in-batch examples after two different Dropout masks. For 
example, the four circles circled in the bottom dashed circle 
represent the four similarity scores computed for the encoding 

obtained from text 4S  after dropout1 separately from the 

encoding obtained from text 1 2 3 4S S S S、 、 、  after dropout2, and 
then passed through the classification layer SoftMax to get the 

bottom bar graph, where it is clear that 4x  and 4x  have the 

highest similarity. The rightmost solid circle similarly 
demonstrates the similarity computation process. Thus, for 
each example, two lists of similarities to other examples can 
first be obtained from its two vector representations, i.e.: 

1( ) { ( , )}N
i i j jT S s x x                           (1) 

'
1( ) { ( , )}N

i i j jT S s x x
                         (2) 

Where ( )s   is the cosine similarity operation and N is the 

batch size. 

Second, based on these two similar lists, their previous 
probability distributions [17], i.e., the probability that a list 
element can be ranked first in the sequence among all similar 
lists, are calculated separately. The calculation formula is as 
follows: 

1

~

1( ) ( ( ) / )i iT S T S  

                        (3)
 

1

~
' '

1( ) ( ( ) / )i iT S T S                         (4) 

Where 1  is the temperature hyperparameter and ( )   is 

the previous probability distribution function. 

Finally, the consistency of the ranking is ensured by 
minimizing the JS Divergence between the two previous 
probability distributions. The specific procedure involves 
taking the mean of the two distributions as the intermediate 
value, and then calculating the average of the KL scatter 
between the two distributions and the intermediate value to 

finally obtain the corresponding loss cl . The calculation 

formula is as follows: 
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Where iQ  and iV  denote 
1

~

( )iT S  and 
1

~
'( )iT S , respectively. 

Since the input text undergoes different dropout masks 
resulting in two textual representations, it is natural to obtain 
two lists of similarity scores with other texts from these two 
textual representations, and each element corresponding to 
these two lists should have the same ranking order. Thus, by 
enforcing rank consistency between these two lists of similarity 
scores based on JS Divergence, this task can ultimately be 
achieved by transforming it into a process of minimizing the 

loss cl . 

C. Ranked Distillation based on ListNet Sorting Algorithm 

Since the SimCSE algorithm performs well in the 
downstream task, this suggests that although it does not capture 
fine-grained ranking information, it is still able to capture 
coarse-grained ranking information. Therefore, a list of 
similarity scores can be generated using the trained teacher 
model as pseudo-ranking labels for ranking distillation in all 
examples of the same batch. In ranking distillation, inspired by 
the literature in [17], this paper proposes a ranking distillation 
method based on the ListNet sorting algorithm, which aims to 
learn finer-grained ranking information from pseudo-ranking 
labels, which are defined as: 

Guangxi Innovation Drive Development Special Project (AA20302001) 
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1

( ( ), ( ))
N

rank s i t i

i

l rank T S T S



                      (6) 

Where 
( )s iT S

 and ( )t iT S  denote the list of similarity scores 

obtained from the student model and the teacher model, 
respectively, and ( )rank   denotes the sorting algorithm. 

The ListNet sorting algorithm used in this paper is trained 
by maximizing the probability of the correct order of the 
elements in a sorted list. Specifically, a SoftMax function is 
used to convert the scores into probability distributions to 
minimize the cross-entropy loss between the predicted 
probabilities and the true probability distribution. When the 
number of examples N is large, the computational complexity 
increases dramatically because the number of permutations is 
N! To reduce the computational complexity, the previous 
probability distribution is used as an alternative, so that it is not 
necessary to consider all the permutations, but only focuses on 
the ranking probability of each element in the list. The 
calculation formula is as follows: 

2 3

1

( ( ) / log( ( ) / ))
N

listnet t i s i

i

l T S T S  


  
        (7) 

Where 
2

 and 
3

 are temperature hyperparameter. ( )   

denotes the softmax  function. 

In order to construct the teacher model, this paper adopts 
the weighted average similarity scores of two teachers as 
pseudo-ranking labels, aiming to achieve better transfer and 
preservation of knowledge sorted by list by integrating the 
knowledge of two teachers. By a weighted average of 
similarity scores of two teachers, the opinions of multiple 
teachers can be integrated, which improves the quality and 
reliability of pseudo-ranking labels. The specific calculation 
formula is as follows: 

1 2( ) ( ) (1 ) ( )t i t i t iT S T S T S   
             (8) 

Where  is the hyperparameter to balance the weights of 

the teachers. 

D. Smooth Positive Case Construction based on Dynamic 

Buffers 

In this paper, we adopt the first-in-first-out dynamic buffer 
designed in the literature [18] to construct the smoothed 
positive examples. This dynamic buffer retrieves sentence 
embeddings based on cosine similarity and performs a 
weighted average operation on positive examples to obtain 
smoothed positive examples. The smoothed positive examples 
embedding loss is calculated as follows: 
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1
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                            (9) 

Where ( , )p
i ih h   denotes an augmented positive example 

pair, ( , )p
i jh h 

 denotes the current positive example and the 

augmented positive examples of other sentences as negative 

pairs, and the loss function pl  learns the sentence 

representation information of the augmented positive example 

pairs by bringing ( , )p
i ih h  closer and ( , )p

i jh h 
 farther apart. 

E. Gaussian Noise-based Construction of Smoothed Negative 

Examples 

In order to solve the problem of insufficient information 
interaction between different negative examples, and at the 
same time consider the impact of computational resource 
consumption and the number of negative examples, this paper, 
inspired by the literature [16], proposes a Gaussian noise-based 
smoothing negative example construction method under the 
premise of fixing the number of batch examples. 

Specifically, a Gaussian noise term is introduced into the 
InfoNCE loss function commonly used in contrast learning, 
given the following Gaussian distribution (with mean   and 

variance 2 ): 2~ ( , )G N   . In this study, M  Gaussian 

noise vectors of the same dimensions as the sentence vectors 
are randomly selected, and these vectors form high similarity 
negative pairs with each example in the batch in order to fill 
and smooth the representation space. These Gaussian noise 
vectors will not participate in the composition of positive 
examples. The InfoNCE loss function is improved to be 
expressed as: 

( , )/
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1 1

log
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i j i k
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sim h h sim h g
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e
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       (10) 

Where   denotes the temperature hyperparameter, 

( , )i isim h h
 denotes the similarity measure function, 

kg denotes 

the random Gaussian noise vector, M  denotes the number of 

Gaussian noise vectors involved in the computation, and   

denotes the equilibrium hyperparameter. 

F. Total Loss Function 

In summary, the TMRNS model combines fine-grained 
ranking information, smoothing positive examples, and 
smoothing negative examples into a unified text matching 
model, which effectively improves the performance of the 
model. 

During the training process, each key part of the model is 

given a loss function cl , rankl , pl  and il . These cross-entropy 

loss functions are jointly learned to get the final loss function 
L , which completes the overall training of the TMRNS model. 
The total loss function L  is formulated as follows: 

c rank p iL l l l l   
       (11) 
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III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Dataset and Evaluation Metrics 

In order to verify the effectiveness of the TMRNS model, 
experimental evaluation was conducted on the semantic text 
similarity task. The task consists of seven datasets: STS2012-
STS2016, STS-B, and SICK-R. These datasets contain a series 
of text pairs, each of which has a manually labeled similarity 
scoring label ranging from 0 to 5, indicating the degree of 
semantic similarity between the two texts. A higher value of 
the scoring label indicates a higher degree of similarity 
between the texts. The specific information of the dataset is 
shown in Table I and Table II.  

TABLE I.  EXAMPLE DATASET 

Text A Text B Score 

A girl in white is 
dancing. 

A girl is wearing white clothes and is 
dancing. 

4.9 

A woman is riding a 

horse. 

A man is opening a small package 

that contains headphones. 
1 

Three boys in karate 

costumes aren't fighting. 

Three boys in karate costumes are 

fighting. 
3.3 

TABLE II.  STATISTICAL INFORMATION ON THE DATASET 

Dataset STS12 STS13 STS14 STS15 STS16 STS-B SICK-R 

Example 

size 
3108 1500 3750 8500 9183 8624 9927 

In order to evaluate the semantic similarity performance of 
the model in this paper, the Spearman correlation coefficient is 
used as the evaluation index. Spearman is a statistical index 
that measures the correlation between two variables, and its 
value ranges from -1 to 1, where 1 indicates that the two 
variables are completely positively correlated, -1 indicates 
completely negatively correlated, and 0 indicates no 
correlation. 

B. Experimental Environment and Parameter Settings 

The TMRNS model was built using the Pytorch deep 
learning framework with the programming language Python, 
the operating system Ubuntu18.04.6LTS, and the hardware 
configuration 11thGenIntelCorei7-11700with2.50GHz×16, 
NVIDIATITANRTX/PCle/SSE2. 

In this experiment, training is performed based on BERT 
encoders, with the temperature hyperparameter set to 0.05, the 
learning rate to 3e-5, the teacher weight   to 0.33, the weight 

decay rate dropout to 0.2, the balancing hyperparameter to 0.5, 
the batch size set to 64, and the number of Gaussian noise 
vectors to 192. Furthermore, for the BERT encoder, SimCSE-
BERT-base and SimCSE-BERT-large models are used for the 
teacher model. 

C. Experimental Results 

In order to verify the effectiveness and sophistication of the 
TMRNS model, four representative and competitive 
unsupervised comparative learning models are selected for 
comparison in this paper, namely, ConSERT [12], SimCSE 

[10], SSCL [14] and IS-CSE [18]. In Table III, the Spearman 
correlation coefficients of these models on the STS series 
dataset are shown for comparative analysis. 

Among the baseline models compared, ConSERT tried four 
methods for data enhancement, including sentence 
rearrangement, truncated word truncation features, and random 
discarding, and finally chose the latter two methods for 
training. In contrast, SimCSE used only one data enhancement 
method, namely random discard. This parsimonious design 
makes SimCSE easy to implement and apply and shows high 
competitiveness by achieving satisfactory performance on 
several sentence similarity tasks. SSCL obtains better 
performance by acquiring negative examples based on the 
middle layer of the pre-trained encoder. IS-CSE, on the other 
hand, considers the importance of the positive examples and 
obtains them by designing a dynamic buffer smoothing the 
boundaries of the feature space embeddings to smooth positive 
examples, which effectively improves the model performance. 

TABLE III.  COMPARISON OF EXPERIMENTAL RESULTS 

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg. STS 

BERT-base 

ConSERT 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74 

SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25 

SSCL 71.68 83.50 76.42 83.46 78.39 79.03 71.76 77.90 

IS-CSE 72.86 84.02 76.35 82.64 78.65 79.53 74.05 78.30 

TMRNS 74.32 83.17 75.91 83.05 80.71 81.01 72.91 78.73 

BERT-large 

IS-CSE 73.76 85.06 78.14 85.02 79.59 80.43 74.30 78.90 

TMRNS 73.39 85.42 77.95 85.41 81.14 81.30 74.99 79.94 

The TMRNS model proposed in this paper improves on the 
IS-CSE model. The model focuses on the capture of fine-
grained ranking information between texts, meaning that it is 
able to capture differences and similarities between texts more 
accurately, especially when it comes to the recognition of 
discriminative texts. By capturing fine-grained ranking 
information, TMRNS improves the semantic discriminative 
power of the model, which is important for many natural 
language processing tasks such as information retrieval and 
dialog systems. Meanwhile, the TMRNS model is 
reconstructed by adding random Gaussian noise to the negative 
examples, which realizes the full interaction between the 
negative examples. This approach not only effectively extends 
the number of negative examples, but also helps the model to 
better learn the subtle differences between negative examples, 
which improves the model's generalization ability when facing 
real-world complex data. Importantly, this methodological 
improvement does not add additional computational resource 
costs, which makes the TMRNS model more tractable and 
practical in real-world applications. The comparison 
experimental results are shown in Table III, from which it can 
be intuitively seen that the TMRNS models all outperform the 
comparative baseline models, and the average Spearman 
correlation coefficients based on BERT-base and BERT-large 
were improved by 0.43% and 1.04%, respectively, compared to 
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the optimal baseline model., which indicates that the model 
predicts that the text pair similarity scores between them have a 
stronger positive correlation with the manually labeled 
similarity scores, reflecting the effectiveness of the model in 
this paper. 

D. Ablation Experiments 

To prove the effectiveness of each key component in the 
TMRNS model, this paper designs the following variants of 
TMRNS based on the pre-training model BERT-large and 
analyzes the following variants of TMRNS for ablation 
experiments using the control variable method: 

 TMRNS-RK: denotes the removal of fine-grained 
ranking information, and experiments were conducted 
using the base positive and negative examples, the 
smoothed negative examples, and the smoothed positive 
examples. 

 TMRNS-GS: denotes the removal of smoothed negative 
examples and experiments using fine-grained ranking 
information, base positive and negative examples, and 
smoothed positive examples. 

According to Table IV, the average Spearman correlation 
coefficient of the TMRNS model on the STS task is 
significantly better than that of its variants, indicating that each 
key component in the TMRNS model plays an effective role in 
improving the model performance and collectively contributes 
to the model's optimal performance. 

TABLE IV.  ABLATION EXPERIMENT TABLE 

Model Avg. Spearman 

TMRNS 79.94 

TMRNS-RK 79.30 

TMRNS-GS 79.34 

In the ablation experiments, it can be found that the average 
Spearman correlation coefficient of the TMRNS-RK model 
significantly decreases compared to the TMRNS model, which 
demonstrates the effectiveness of the negative example 
smoothing strategy proposed in this paper, which positively 
affects the model performance by augmenting the negative 
examples. In addition, the TMRNS-GS model also shows a 
corresponding decrease in performance for the TMRNS model, 
which indicates that the approach of considering fine-grained 
ranking information between texts is effective, especially for 
highly and moderately similar texts, and greatly enhances the 
user's experience in practical applications. 

In summary, by comparing the results of the ablation 
experiments, the effectiveness of each component can be 
concluded, and the model performance is significantly 
improved after their fusion, which further proves the 
superiority and reliability of the TMRNS model. 

E. Parameter Analysis 

For the model proposed in this paper, M involves the 
number of Gaussian noise vectors, which form high-confidence 
negative pairs with the sentences in the batch. This paper 

further explores the effect of M on the performance of BERT-
base based TMRNS. 

 

Fig. 3. Impact of hyperparameter M based on BERT-base 

In this study, optimized hyperparameters of the model were 
used and only the value of hyperparameter M was adjusted. For 
each M value, the model was trained to convergence and then 
the checkpoints that performed best on the STS validation set 
were selected for test set evaluation. According to the results 
shown in Fig. 3, the performance of TMRNS on the test set 
shows a clear trend of improvement as the value of M 
increases. In setting M as a multiple of the batch size (bs=64), 
0× represents the original IS-CSE without using the negative 
case smoothing strategy. The model reaches its best 
performance when M equals 3, and after that, the model 
performance starts to decrease. Overall, TMRNS is not 
sensitive to the value of M (the recommended value is less than 
8) and is therefore easier to tune in practice. 

F. Stability Analysis 

To verify the stability of the TMRNS model, experimental 
evaluations are conducted on seven transfer learning tasks, 
which are MR, CR, SUBJ, MPQA, SST, TREC, and MRPC. 
The environment used in this experiment still follows the 
relevant configurations in subsection III.B. The experimental 
results for this task are shown in Table V, and the evaluation 
metric is accuracy. From the table, it can be seen that the 
average accuracy of the TMRNS model outperforms all the 
comparison models among the models with different pre-
trained encoders, which indicates that the performance of the 
model in this paper is very stable. 

TABLE V.  RESULTS OF THE MIGRATION TASK EXPERIMENT (ACCURACY) 

Model MR CR SUBJ MPQA SST TREC MRPC Avg 

BERT-base 

Avg. BERT 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94 

BERT-[CLS]  78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66 

IS-CSE 80.48 85.32 94.67 89.44 85.06 87.40 75.77 85.45 

TMRNS 82.69 87.18 94.99 89.78 86.99 88.20 75.71 86.51 

BERT-large 

IS-CSE 84.27 88.80 95.16 90.04 90.23 91.40 76.29 88.03 

TMRNS 84.80 89.27 95.40 90.23 90.72 93.20 76.75 88.62 
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IV. CONCLUSION 

In this paper, we presented a text matching model that 
combines ranking information and negative example 
smoothing strategies. The model considers the incorporation of 
fine-grained ranking information into a comparison learning 
framework that can learn more semantically differentiated 
sentence representations by ensuring ranking consistency and 
refining ranking information from teacher models. In addition, 
the model proposes a negative example smoothing strategy, 
which smoothes the negative examples by adding Gaussian 
noise and achieves an adequate comparison between different 
negative examples without increasing the batch size. The 
effectiveness of the model is verified by comparison 
experiments on semantic text similarity tasks, and significant 
improvement is achieved compared with state-of-the-art 
models. Meanwhile, after generalizability analysis, the model 
demonstrates strong stability performance. In the future, our 
research team will consider applying the method of this paper 
to more relevant natural language processing tasks. 
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