
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

802 | P a g e  

www.ijacsa.thesai.org 

Pest Detection in Agricultural Farms using 

SqueezeNet and Multi-Layer Perceptron Model

Intan Nurma Yulita1*, Anton Satria Prabuwono2, Firman Ardiansyah3, Juli Rejito4, Asep Sholahuddin5, Rudi Rosadi6 

Department of Computer Science, Universitas Padjadjaran, Sumedang, Indonesia1, 4, 5, 6 

Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Rabigh, Saudi Arabia2 

Magister of Management, Institut Teknologi dan Bisnis Ahmad Dahlan Lamongan, Indonesia3 

 

 
Abstract—Pest detection is essential to protect agricultural 

systems from economic losses, lower food production, and 

environmental degradation. Detection of pests is a crucial aspect 

of agricultural sustainability because it helps to allocate resources, 

reduce production costs, and increase producers' profits. Artificial 

intelligence (AI) has revolutionized the detection of agronomic 

pests by employing deep learning models to accurately detect 

individual pests and differentiate between species and life stages. 

Combining SeueezeNet and Multi-Layer Perceptron, this study 

extracts feature vectors from image data to detect pests.  There are 

four primary phases: preprocessing, image embedding with 

SqueezeNet, the final classifier with MLP, and 10-fold cross-

validation. Data for this study is acquired in the form of plant 

pests. The total number of images acquired is 3150, with 350 from 

each class. Based on the research, the combination model 

demonstrates excellent performance. Each experiment's accuracy 

is greater than 99 %. It shows that Squeezenet can effectively 

extract the data's features, whereas Multi-Layer Perceptron can 

process these features for optimal classification performance. 

Even though there are still several classes, such as mites, sawflies, 

and stem borer, that have not been correctly classified. Since each 

image's background is unique, it cannot be classified correctly. 

These promising findings have broad implications for boosting 

agricultural output and decreasing pest-related losses. Optimal 

use of this approach in a variety of agricultural contexts requires 

more study and field testing. 

Keywords—Pest detection; Squeezenet; multi-layer perceptron; 

deep learning   

I. INTRODUCTION 

Globally, agricultural systems are threatened by pests, which 
cause enormous economic losses, lower food production, and 
environmental degradation. To create efficient tactics that allow 
for early detection and focused control of pests, it is essential to 
research pest detection in agriculture [1-2]. Infestations of pests 
on crops and livestock can lead to significant financial damages.  
Crop pests, including insects, fungi, bacteria, and viruses, have 
the potential to cause harm to crops and agricultural goods, 
resulting in a decrease in anticipated yield.  Consequently, 
farmers have less earnings, potentially leading to an increase in 
the pricing of agricultural goods, which can harm consumers.  
Globally, insect invasions can result in economic losses of up to 
billions of dollars annually.  Effective pest identification is 
crucial for ensuring and upholding global food security.  
Annually, significant quantities of food are squandered or 
impaired as a result of unregulated insect infestations.  This can 
result in food insecurity and famine for people reliant on 
agricultural yields for sustenance. 

Agriculturalists encounter significant obstacles in managing 
pests.  Frequently, they must confront assaults from a diverse 
range of pests, including those that have just appeared or have 
acquired immunity to the pesticides employed. These 
circumstances can lead to significant expenses, strenuous labor, 
and elevated levels of stress for agricultural farmers.  Accurate 
identification of pests is crucial for successful pest management.  
Failure to promptly discover or diagnose a pest infestation may 
render preventative or treatment efforts ineffective, perhaps 
leading to exacerbated harm.  Advanced detection technologies, 
such as sensors that rely on image analysis, data processing, and 
artificial intelligence, can assist in swiftly and precisely 
identifying objects or phenomena. The overutilization of 
pesticides for pest management can result in adverse effects on 
both the environment and human well-being.  Improved pest 
identification enables farmers to employ pesticides with more 
precision and effectiveness while minimizing environmental 
repercussions and health hazards. Pest infestations can impede a 
nation's capacity to export agricultural commodities.  Upon the 
detection of pest infestations on agricultural products, export 
destination nations have the authority to enforce trade 
restrictions, thereby causing harm to agricultural exports and the 
whole national economy. Within a worldwide framework, the 
identification of pests plays a crucial role in guaranteeing the 
safety of food, the advancement of the economy, and the 
preservation of the environment. Hence, the advancement of 
superior detection technologies and methodologies is crucial in 
endeavors to safeguard agricultural productivity and uphold 
worldwide food security. 

It shows the need to investigate pest detection in agricultural 
settings. Insects, weeds, and diseases are all examples of pests 
that may significantly impair agricultural yields and quality [3-
4]. Discoveries from the field of pest detection have helped 
farmers much in spotting pests at their earliest stages of 
infestation, at which point they may begin taking effective 
preventative measures. Greater agricultural output and food 
security can result from early detection strategies that limit 
losses, maintain crop health, and optimize yields. 

To reduce the amount of harmful chemicals released into the 
environment while still effectively eradicating pests, Integrated 
Pest Management (IPM) was developed. IPM relies on accurate 
pest identification so that farmers can keep tabs on pest 
populations, set appropriate intervention levels, and take precise 
preventative measures. Studies on pest identification help 
farmers create IPM plans that work for their unique fields, 
climates, and pest populations. The overuse of chemical 
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pesticides not only endangers human and environmental health 
but also encourages pests to develop resistance [5]. With the 
help of precision agricultural techniques, which rely on precise 
pest identification and population monitoring, the acceptance of 
research on pest detection has facilitated the widespread use of 
pesticides. By lowering chemical inputs thanks to better pest 
identification, farmers can protect beneficial creatures, maintain 
ecological balance, and protect the environment. 

Crop yields and quality can be severely impacted by plant 
diseases [6-8], leading to significant economic losses. Effective 
disease control in agriculture relies on early identification and 
prevention. If farmers can discover diseases early on, they may 
take preventative actions like changing their irrigation methods, 
using resistant crop types, or using tailored treatments to lessen 
the impact the illness has on their crops. Pest infestations may 
have a devastating effect on a farm's bottom line and long-term 
viability. Overusing pesticides, losing crops, and having to hire 
extra help all add up, so it's important to be able to spot them 
quickly and accurately. Farmers can benefit from better pest 
detection and management decisions because of investments in 
research on pest detection that provide access to improved tools, 
technology, and information. Long-term agricultural 
sustainability depends on accurate pest identification, which 
improves resource allocation, lowers production costs, and 
boosts farmers' bottom lines. 

The development of AI has completely transformed the 
detection of agronomic pests [9], [10], resulting in a paradigm 
change in the pest detection industry. AI-enabled systems have 
enabled improvements in precision, efficacy, and proactiveness. 
Image recognition and pattern recognition are two domains in 
which AI systems, particularly those based on deep learning, 
have demonstrated excellence. This innovation enables the 
automatic identification and categorization of parasites based on 
form, color, and texture. These systems can accurately detect 
individual pests, even distinguishing between species and life 
stages. This saves producers time and effort by eliminating the 
need for them to manually inspect crops for parasites. Intricate 
patterns and characteristics in images may be learned by deep 
learning models, allowing them to precisely detect pests in 
agricultural situations [4], [11], [12]. These models can extract 
image embeddings to characterize the visual features of pests 
compactly and understandably, allowing for more precise 
recognition. Li, Y., and Yang, J. present a few-shot cotton pest 
recognition method that requires only a small amount of raw 
training data, in contrast to traditional deep learning algorithms 
[13]. To prove the few-shot model works, they use data collected 
in real-world scenarios. A convolutional neural network (CNN) 
is used to extract feature vectors from images. The CNN feature 
extractor is trained using the triplet loss to ensure the system is 
flexible enough to deal with different types of pests. 

In their study, Peng, Y., and Wang, Y. [14] offer a method 
for insect pest recognition that combines transformer 
architecture with convolution blocks. The representative 
features of an input image are extracted using a backbone 
convolutional neural network. The input images are processed 
through CNN structures made up of several CNN blocks to 
extract embeddings (visual features). Once the embeddings have 
been extracted from the backbone network, a simple global 
average pooling (GAP) layer is used to convert them into a one-

dimensional vector. The next step is to feed this vector into a 
linear classifier, which typically consists of one or more fully 
connected layers, to generate prediction vectors. Both of these 
researchers embedded images using a convolutional neural 
network (CNN) that had not been pre-trained. In contrast, David 
et al. create embeddings from leaf images using a CNN image 
classification network [15]. The Inception V3 network was 
trained in the source domain to learn generic plant leaf 
properties. This data was sent to the desired domain to learn new 
types of leaves from a limited set of images. However, there are 
several drawbacks to Inception V3 as compared to SqueezeNet. 

SqueezeNet is a relatively more straightforward architecture 
than Inception V3 [16]. The sequential, layered design makes it 
simple to learn and put into practice. The efficiency of 
SequeezeNet’s computing resources is improved by its 
simplicity, which allows for faster training and inference times. 
SqueezeNet often requires less RAM than Inception v3. This is 
helpful when working with constrained resources, such as those 
found on mobile platforms or peripheral devices. With less 
RAM needed, SqueezeNet is easier to roll out and makes better 
use of available hardware. Additionally, SqueezeNet is ideal for 
transfer learning assignments. To fine-tune a model that was 
originally trained on a big dataset, transfer learning is used. 
Squeezenet's simplicity facilitates adaptation and fine-tuning for 
particular tasks and datasets [17]. It enables the efficient 
transmission of knowledge from large-scale image datasets to 
smaller insect recognition a situation with limited labeled 
training data, SqueezeNet can perform admirably. Due to its 
simplified architecture, it can obtain excellent performance with 
reduced training datasets [18]. Advantageous in agriculture, 
where obtaining large datasets of labeled pests can be difficult. 
The capacity of SqueezeNet to generalize effectively with 
limited data can help mitigate the problem of data scarcity [19]. 
This work aims to highlight the benefits of utilizing SqueezeNet 
for image embedding, with the final layer being implemented as 
a Multilayer Perceptron (MLP).  This deviates from the common 
approach of applying the last layer straightforwardly.  The 
provided technique aims to optimize system performance in 
modeling classification. 

The objective of this research is to create a pest detection 
system by utilizing SqueezeNet to extract features from images 
of agricultural lands. To improve the classification accuracy of 
discovered pests, it is necessary to combine a Multi-Layer 
Perceptron model with SqueezeNet. The subsequent sections of 
this work are structured in the following manner. Section II: 
Material and Method - This section provides a detailed 
explanation of the proposed model, encompassing the structure 
of SqueezeNet and the MLP, along with the procedures involved 
in data preparation and the training procedure.  Section III: 
Results and Discussion - This chapter provides the performance 
outcomes of the model on the pest image dataset. Section IV: 
Conclusions - This chapter provides a concise overview of the 
main discoveries, contributions, and potential future paths of the 
research. 

II. MATERIAL AND METHOD 

The research process is depicted in Fig. 1. There are four 
main phases, including preprocessing, image embedding with 
SqueezeNet, the final classifier with MLP, and 10-fold cross-
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validation for image embedding, while the final classification 
layer is a multi-layer perceptron. 

A. Data Collecting 

As seen in Fig. 1, data for this study is acquired in the form 
of plant pests. To find data, the Kaggle data collection website 
(https://www.kaggle.com/simranvolunesia/pest-dataset) was 
used. Aphids, armyworm beetles, bollworms, grasshoppers, 
mites, mosquitoes, sawflies, and stem borers are among the plant 
parasites included in the dataset. It is vital to ensure that the 
amount of data obtained in each class is comparable so that the 
model may be weighted more easily throughout the learning 
phase. The total number of images acquired is 3150, with 350 
from each class. Fig. 2 depicts the capturing of several pests. 

 
Fig. 1. Research methodology. 

B. Image Processing 

The process of preparing images was an extremely important 
step in guaranteeing the quality, uniformity, and compatibility 
of the data. Before continuing to this step, the system first 
performed any necessary data preparation, such as scaling the 
images to a consistent size, normalizing their pixel values, and 
converting them to grayscale. 

   

 

  

  

 

Fig. 2. Several pests in this study. 

C. SqueezeNet 

SqueezeNet is a lightweight deep-learning network that 
excels in image classification applications due to its small size 
and fast inference [19]. Although its primary purpose is 
categorization, the model can also be used to embed images. 
When an image is embedded, it is converted from its original 
format into a fixed-dimensional vector representation called an 
embedding vector. This vector summarizes the key aspects of 
the image, allowing for rapid comparison and study. It uses the 
intermediate layers to determine crucial image attributes. 
Numerous modules, including compress and expand layers, 
make up the network [16]. The number of input channels is 
constrained by the 1x1 filters used in the compress levels, while 
the local and global details are captured by the 1x1 and 3x3 
filters in the expand layers. 

Using SqueezeNet, this study eliminated classification 
layers at the end of the network and used activations from 
previous levels to create image embedding. These activations 
were capable of serving as image embeddings. As image 
embeddings, the activations from the last fully linked layer or 
the layer before it was frequently utilized. These activations 
produced a fixed-length vector representation of the 
discriminative properties of the input image. The generated 
image embeddings could then be used for image classification. 
By comparing the distance or similarity between embedding 
vectors, it performed tasks such as discovering similar images 
or detecting anomalies within a group of images. 

D. Multi-Layer Perceptron 

Artificial neural networks, such as the multi-layer perceptron 
(MLP) [20-21], are made up of layers upon layers of connected 
elements (neurons). Following image embedding, it is often 
employed as the final classifier in a variety of machine-learning 
applications, including image classification. In this research, 
SqueezeNet was used as the image embeddings, and the MLP 
functions were used as the final layer of the classification 
process. The final classifier's MLP architecture includes the 
following parts [22]: 

 Input Layer: The MLP receives as input the embedded 
image vector computed by the image embedding model. 
The image's various features and dimensions are 
represented by individual elements of the vector input. 
The input layer of the network is the initial stop for the 
data. The input layer's neurons do not perform any 
transformations or calculations on the data. Their only 
job is to pass on the input data to the hidden-layer 
neurons that come later. All of the hidden layer's 
neurons are weighted and connected to the input layer 
[23-24]. It is common practice to normalize or scale 
input data before sending it to the input layer. The input 
values are processed so that they fall within a suitable 
range for the activation functions before the MLP is 
trained. 
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 Hidden Layer: One or more hidden layers, which sit 
between the input and output layers, are a standard 
component of the MLP architecture. The strength of the 
connections between neurons in a given layer is 
determined by weights. The neurons in the hidden layer 
act as the processors in between the input and output 
layers in a multi-layer neural network. To produce an 
output, hidden-layer neurons take information from the 
layer above them, be it the input layer or another hidden-
layer neuron, in conjunction with their weights and 
biases. Because the neurons in the hidden layer perform 
a nonlinear change on the input data, the MLP can learn 
complex patterns and correlations [20]. Each neuron's 
activation function (such ReLU or tanh) is applied to the 
weighted sum of inputs and biases to introduce non-
linearity. The number of hidden layers and the number 
of neurons in each hidden layer are two examples of 
design considerations in developing an MLP that is 
commonly established through testing and model 
refinement. While adding more hidden layers and 
neurons to a model may seem like a good way to train it 
to learn more sophisticated representations, this 
approach can backfire if the model isn't properly 
regularized. Each neuron in a hidden layer is connected 
to every other neuron in the layer below it via a weighted 
link. It could be a layer below the input layer or even 
deeper. These weights are used to assign relative 
relevance to the inputs from the layer below [25]. Each 
neuron in the hidden layer sends its output to the neuron 
in the next layer after being subjected to the activation 
function. The weights and biases of the hidden layer 
neurons, as well as the weights and biases of the input 
and output layers, are iteratively adjusted during training 
to minimize the error between the predicted and desired 
outputs for a given set of input data using optimization 
algorithms (like backpropagation). 

 Activation Function: The output of each neuron in the 
hidden layers is then subjected to a non-linear activation 
function to introduce non-linearity into the network. 
Capturing complex interdependencies between input 
features is aided by the activation function. Common 
activation functions include the tanh and the Rectified 
Linear Unit (ReLU). In this analysis, we analyze and 
contrast the two. Networks may learn and approximate 
complex relationships between inputs and outputs when 
non-linearity is introduced with a basic mathematical 
function like ReLU [26]. Because of its flexibility, 
practicality, and low computational cost, ReLU is 
quickly gaining in favor [27]. However, dead neurons 
(units that output zero for all inputs) may arise in ReLU 
training if the learning rate is too high. In the context of 
a Multi-Layer Perceptron, the hyperbolic tangent 
function (tanh) is widely used as an activation function 
in neural networks (MLP). The tanh function, like the 
sigmoid function, provides the network with non-
linearity, enabling it to learn intricate associations 
between its inputs and its outputs [28]. The tanh function 
might provide more noticeable results than the sigmoid 

function because of its steeper slope. However, it can 
experience the vanishing gradient problem for 
extremely large or very tiny inputs, just like the sigmoid 
function. In a typical multilayer perceptron (MLP), the 
output of each neuron in a hidden layer transforms a 
non-linear range using the tanh function, which is 
applied element-wise. Because of its non-linearity, the 
MLP network can more effectively learn and simulate 
intricate data patterns and correlations. 

 Output Layer: The output layer is the MLP's final layer 
and is responsible for producing categorization 
outcomes. The number of classes in a problem of 
classification is proportional to the number of neurons 
in the output layer. The output or forecast is generated 
by the last layer, which is informed by the calculations 
performed in the previous levels. The number of 
neurons employed in the final output layer varies from 
task to task. With MLP being employed, the output layer 
was packed with neurons, each of which represented a 
different class and gave back a score or probability. By 
calculating the error or loss between the expected 
outputs and the actual labels, the output layer played a 
crucial part in the training process. By adjusting the 
weights and biases of neurons across the network in 
light of the error, optimization techniques were used to 
reduce the gap between the expected and desired results. 

 Training and Backpropagation: Backpropagation is used 
to train the MLP, which entails tweaking the network's 
weights to reduce the discrepancy between the projected 
output and the actual labels [20]. Optimizing a loss 
function during training involves sending the error 
gradient from the output layer back through the hidden 
layers. 

 Prediction: New embedded image vectors can be fed 
into the network after the MLP has been trained, 
allowing for predictive use [21]. The MLP will produce 
output probabilities for each class, allowing for the 
highest likelihood probability to be used in the 
categorization of fresh images. Prediction is the process 
of using a trained network to generate output values for 
new, unknown input data. It is necessary to train the 
MLP on a dataset before it can make predictions on 
untrained data. To make predictions, we first feed the 
input data into a trained neural network and then extract 
values from the network. The output numbers mean 
different things depending on the purpose of the MLP's 
training. The accuracy of the predictions is highly 
dependent on the training procedure's efficiency and the 
quality of the training data. A more diverse and 
representative training set boosts an MLP's likelihood of 
producing accurate predictions on novel and unknown 
data. The MLP is a flexible and expressive classifier that 
can learn complex patterns and make predictions based 
on the extracted features from the image embedding 
model. It is a popular choice for various classification 
tasks, including image classification after image 
embedding, due to its ability to capture nonlinear 
relationships and generalize from training data. 
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E. 10 Fold Cross Validation 

A machine learning model's efficacy and generalizability 
can be measured with the help of a technique called ten-fold 
cross-validation [29]. The dataset is split into ten equal halves 
(called folds), and the model is trained and evaluated several 
times. Ten identically sized subsets (called folds) are randomly 
selected from the original dataset. There are about the same 
number of examples in each fold. The cross-validation process 
is repeated 10 times. A fold is selected at each iteration to act as 
the validation set, while the other nine folds are used as the 
training set. There are nine pleats in the training set used to 
educate the model. The model is trained with these examples to 
learn regularities and associations. The validation set is the 
remaining fold after training is complete, and it is used to test 
the learned model. How well the model predicts reality. Each 
time a model is run through an assessment cycle, the results of 
those evaluations on a variety of validation sets are recorded as 
evaluation metrics [30], [31]. These measures reveal the general 
applicability of the model to different types of data. Once the 10 
iterations have been completed, the overall performance of the 
model is estimated by averaging the metrics collected during 
each fold. The ability of a model to generalize to new, unseen 
data can be gauged more accurately by looking at its average 
performance. By training and testing the model on ten separate 
groups of data, 10-fold cross-validation yields a more accurate 
picture of how well it performs overall. It helps reduce the 
magnitude of inconsistencies that can arise from having only one 
training-validation split. This research improved its model 
selection, hyperparameter tweaking, and generalizability by 
using 10-fold cross-validation to provide insight into how well 
the models would perform on unknown data. The evaluation 
parameter in this study is accuracy because no cases of 
imbalance class were found. 

III. RESULTS AND DISCUSSION 

Table I displays the findings of the study. The number of 
neurons and activation function employed were the two 
hyperparameters investigated. In most cases, the proposed 
technique performed well. Accuracy levels of 99 % were 
achieved in every experiment. The network's ability to interpret 
and make sense of complex incoming data is made possible by 
neurons. The amount and nature of the input data, the 
complexity of the task at hand, and the design of the network as 
a whole are just a few of the variables that must be considered 
when settling on the appropriate number of neurons. It is not 
possible to determine an ideal number of neurons. Typically, a 
deeper network will have a larger number of neurons, which will 
allow for the extraction of more nuanced and abstract properties. 
However, if you add too many neurons, the network may overfit, 
becoming excessively specialized in the training data and failing 
to generalize well to novel, unknown data. One approach to 
settling on the optimal number of neurons is starting with a small 
number and gradually increasing it while keeping an eye on the 
network's performance on a validation set. Furthermore, the 
quantity of neurons may be affected by the size of the input data. 
For instance, it may be wasteful to have a large number of 
neurons in the early layers if the input images are relatively 
small, as these neurons would already cover a sizable fraction of 
the input space. However, more neurons may be needed to pick 
up on the degree of detail needed for bigger images or more 

complicated tasks. Therefore, this research examined the effects 
of utilizing a range of values, including 25, 50, 100, 150, and 
200 neurons. The optimal number of neurons was 50. The gap 
between them was barely perceptible. In this research, the 
classification of non-linear data was better represented by a 
network of 50 neurons. 

TABLE I.  EXPERIMENTAL RESULTS 

Neurons Activation Accuracy (%) 

25 Tanh 99.71 

25 Relu 99.68 

50 Tanh 99.78 

50 Relu 99.74 

100 Tanh 99.74 

100 Relu 99.68 

150 Tanh 99.74 

150 Relu 99.71 

200 Tanh 99.71 

200 Relu 99.68 

The second test compared Tanh and ReLu as activation 
functions. Both activation functions are commonly used in 
neural networks and have distinct characteristics that can affect 
the network's performance. The activation functions play a 
crucial role in neural networks by introducing non-linearity to 
the model's decision-making process. They determine the output 
of a neuron or a node in a neural network, based on the weighted 
sum of inputs. The choice of activation function can indeed have 
an impact on the accuracy of a neural network. Different 
activation functions have distinct properties that can affect the 
network's learning dynamics, convergence, and generalization 
abilities. In this study, Tanh outperformed Relu. Tanh added a 
smooth non-linearity to the system. It provided a smooth 
transition between values and had a continuous output, making 
it useful in situations where it is needed. On the other hand, the 
output experienced jumps, and others discontinued due to the 
piecewise linear non-linearity introduced by ReLU. Also, when 
using the tanh function, data was standardized and centered. 

TABLE II.  CONFUSION MATRIX OF THE BEST MODEL USING 50 NEURONS 

AND TANH FUNCTION WHERE APHIDS (A), ARMYWORM (B), BEETLE (C), 
BOLLWORM (D), GRASSHOPPER (E), MITES (F), MOSQUITO (G), SAWFLY (H), 

AND STEM BORER (I)  

  Predicted 

  A B C D E F G H I 

A
ct

u
al

 

A 350 0 0 0 0 0 0 0 0 

B 0 344 0 0 0 0 0 0 0 

C 0 0 350 0 0 0 0 0 0 

D 0 0 0 342 0 0 0 0 0 

E 0 0 0 0 350 0 0 0 0 

F 0 0 0 0 0 348 0 2 0 

G 0 0 0 0 0 0 350 0 0 

H 1 1 0 1 0 0 0 346 1 

I 0 0 0 1 0 0 0 0 349 
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TABLE III.  CONFUSION MATRIX OF THE WORST MODEL USING 50 

NEURONS AND TANH FUNCTION WHERE APHIDS (A), ARMYWORM (B), 
BEETLE (C), BOLLWORM (D), GRASSHOPPER (E), MITES (F), MOSQUITO (G), 

SAWFLY (H), AND STEM BORER (I)  

  Predicted 

  A B C D E F G H I 

A
ct

u
al

 

A 350 0 0 0 0 0 0 0 0 

B 0 344 0 0 0 0 0 0 0 

C 0 0 350 0 0 0 0 0 0 

D 0 0 0 342 0 0 0 0 0 

E 0 0 0 0 350 0 0 0 0 

F 1 0 1 0 0 346 0 2 0 

G 0 0 0 0 0 0 350 0 0 

H 1 0 0 2 0 0 0 346 1 

I 0 0 0 2 0 0 0 0 348 

Tables II and III show the confusion matrix produced by the 
best and worst models. Both have a small difference, so the 
confusion matrices of the two are also not much different. The 
most difficult species to classify are sawflies and mites. In the 
best model, the four sawfly species were classified as aphids, 
beetles, grasshoppers, and stem borers. Whereas in the worst 
model, this data was classified as aphids, grasshoppers, and stem 
borers. The performance of the best model had an advantage 
over the worst model in classifying mosquitoes. This model 
classified its two data sets as sawfly. Meanwhile, the worst 
model incorrectly classified the four objects because it predicted 
them as sawflies, aphids, and stem borers. This failure was 
caused by the different sizes of objects in each image as well as 
differences in the background of the image. 

IV. CONCLUSION 

Based on the research that has been done, the combination 
model of the SqueezeNet and MLP models obtained in each 
experiment was above 99% for the accuracy. It shows that 
SqueezeNet extracted the features of the data well, while the 
Multi-Layer Perceptron processed these features so that the 
classification ran optimally. There were several classes, for 
example, mites, sawflies, and stem borer that failed to be 
properly classified. It cannot be classified properly because the 
background of each image was different so it was difficult to 
find their patterns. Therefore, segmentation between objects and 
backgrounds is recommended for further research. 

The conducted research highlights the substantial influence 
of deep learning on pest identification in agriculture, showcasing 
its immense potential to enhance agricultural output and 
sustainability.  This approach enables expedited and more 
precise identification of pests.  The systems provide exceptional 
precision in analyzing image data, enabling the early detection 
of pests. Utilizing this technology, the system can independently 
oversee agricultural fields and detect pest infestations without 
the need for human involvement, thereby conserving farmers' 
time and labor.  Enhanced pest detection enables farmers to 
minimize the overuse of insecticides. Consequently, this results 
in a more sustainable kind of agriculture that has a reduced 
environmental footprint. Furthermore, by promptly and 

precisely identifying pests, agricultural productivity may be 
enhanced.  Optimal plant health leads to enhanced crop yields, 
thereby boosting agricultural output on a broader scale. Pest 
identification in agriculture is being advanced via the 
development of deep learning technologies, leading to 
innovation in agricultural technology.  This promotes 
sustainable agriculture that is both more efficient and 
ecologically benign. The field of deep learning has made 
significant advancements in detecting pests in agriculture, 
offering extremely efficient solutions that have the potential to 
greatly enhance agricultural output and sustainability.  In the 
future, it may anticipate more enhancements in plant protection 
and the quality of agricultural output due to ongoing technical 
advancements. 
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